PANO-ECHO: PANOramic depth prediction enhancement with ECHO features - CAO et robotique (CAOR)
Communication Dans Un Congrès Année : 2024

PANO-ECHO: PANOramic depth prediction enhancement with ECHO features

Amandine Brunetto
Sascha Hornauer
Fabien Moutarde
Jialiang Lu
  • Fonction : Auteur
  • PersonId : 1465535

Résumé

Panoramic depth estimation gains importance with more 360°images being widely available. However, traditional mono-to-depth approaches, optimized for a limited field of view, show subpar performance when naively adapted. Methods tailored to process panoramic input improve predictions but can not overcome ambiguous visual information and scale-uncertainty inherent to the task.

In this paper we show the benefits of leveraging sound for improved panoramic depth estimation. Specifically, we harness audible echoes from emitted chirps as they contain rich geometric and material cues about the surrounding environment. We show that these auditory cues can enhance a state-of-the-art panoramic depth prediction framework. By integrating sound information, we improve this vision-only baseline by ≈ 12%.

Our approach requires minimal modifications to the underlying architecture, making it easily applicable to other baseline models. We validate its efficacy on the Matterport3D and Replica datasets, demonstrating remarkable improvements in depth estimation accuracy.

Fichier principal
Vignette du fichier
540900b071.pdf (1.49 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04819654 , version 1 (19-12-2024)

Identifiants

Citer

Xiaohu Liu, Amandine Brunetto, Sascha Hornauer, Fabien Moutarde, Jialiang Lu. PANO-ECHO: PANOramic depth prediction enhancement with ECHO features. 2024 IEEE Conference on Artificial Intelligence (CAI), Jun 2024, Singapore, France. pp.1063-1070, ⟨10.1109/CAI59869.2024.00193⟩. ⟨hal-04819654⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More