Article Dans Une Revue Physica D: Nonlinear Phenomena Année : 2024

Nonlinear dynamics of a hanging string with a freely pivoting attached mass

Résumé

We show that the natural resonant frequency of a suspended flexible string is significantly modified (by one order of magnitude) by adding a freely pivoting attached mass at its lower end. This articulated system then exhibits complex nonlinear dynamics such as bending oscillations, similar to those of a swing becoming slack, thereby strongly modifying the system resonance that is found to be controlled by the length of the pivoting mass. The dynamics is experimentally studied using a remote and noninvasive magnetic parametric forcing. To do so, a permanent magnet is suspended by a flexible string above a vertically oscillating conductive plate. Harmonic and period-doubling instabilities are experimentally reported and are modeled using the Hill equation, leading to analytical solutions that accurately describe the experimentally observed tonguelike instability curves
Fichier principal
Vignette du fichier
PhysicaD2024HAL.pdf (1.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04560135 , version 1 (26-04-2024)

Licence

Identifiants

Citer

Filip Novkoski, Jules Fillette, Chi-tuong Pham, Eric Falcon. Nonlinear dynamics of a hanging string with a freely pivoting attached mass. Physica D: Nonlinear Phenomena, 2024, 463, pp.134164. ⟨10.1016/j.physd.2024.134164⟩. ⟨hal-04560135⟩
221 Consultations
44 Téléchargements

Altmetric

Partager

More