Weighted-$L^2$ polynomial approximation in $\mathbb {C}$
Résumé
We study the density of polynomials in H2(Ω, e−φ), the
space of square integrable holomorphic functions in a bounded domain
Ω in C, where φ is a subharmonic function. In particular, we prove
that the density holds in Carath´eodory domains for any subharmonic
function φ in a neighborhood of Ω. In non-Carath´eodory domains, we
prove that the density depends on the weight function, giving examples.
Domaines
Variables complexes [math.CV]Origine | Fichiers produits par l'(les) auteur(s) |
---|