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Regularity and a priori error analysis of a Ventcel problem
in polyhedral domains

Serge Nicaise∗, Hengguang Li†, and Anna Mazzucato,‡

July 5, 2021

Abstract
We consider the regularity of a mixed boundary value problem for the Laplace operator

on a polyhedral domain, where Ventcel boundary conditions are imposed on one face of the
polyhedron and Dirichlet boundary conditions are imposed on the complement of that face in
the boundary. We establish improved regularity estimates for the trace of the variational solu-
tion on the Ventcel face, and use them to derive a decomposition of the solution into a regular
and a singular part that belongs to suitable weighted Sobolev spaces. This decomposition, in
turn, via interpolation estimates both in the interior as well as on the Ventcel face, allows us
to perform an a priori error analysis for the Finite Element approximation of the solution on
anisotropic graded meshes. Numerical tests support the theoretical analysis.

AMS (MOS) subject classification (2010): 35J25, 65N30, 46E35, 52B70, 58J05.

Key Words: Elliptic boundary value problems, Ventcel boundary conditions, polyhedral domains,
weighted Sobolev spaces, Finite Element, anistropic meshes.

1 Introduction
This article concerns the regularity of solutions to an elliptic boundary-value problem for the
Laplace operator on a polyhedral domain in R3 under so-called Ventcel or Wentzell boundary
conditions. The regularity result we establish in weighted Sobolev spaces gives rise, in turn, to a
priori error estimates for the Finite Element Method (FEM) on a suitable anisotropic mesh.

We first introduce the Ventcel boundary-value problem. Let Ω be a bounded domain of R3

with Lipschitz boundary Γ and let ΓV be an open subset of Γ with positive measure. We denote
by ΓD = Γ \ ΓV the complement of ΓV , which we assume has also positive measure.

We consider the following mixed boundary-value problem:

−∆u = f, in Ω,(1a)
u = 0 on ΓD,(1b)

−∆LBu+ ∂νu = g, on ΓV ,(1c)
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where ∆ is the standard (Euclidean) Laplacean in R3, ∆LB is the Laplace-Beltrami operator on
Γ, ν is the unit outer normal vector on ∂Ω, ∂ν means the associated normal derivative, and f and
g are given data.

This problem is a special case of a more general boundary-value problem, where (1b) is replaced
by:

−α∆LBu+ ∂νu+ βu = g,

which can be thought of as a generalized Robin-type boundary condition. The more general prob-
lem is well posed only under conditions on the sign of α and β. Ventcel boundary conditions arise
naturally in many contexts. In the context of multidimentional diffusion processes, Ventcel bound-
ary conditions were introduced in the pioneering work of Ventcel [27, 28] (see also the work of Feller
for one-dimensional processes [12, 13]). They can model heat conduction in materials for which
the boundary can store, but not absorb or transmit heat. They can also be derived as approximate
boundary conditions in asymptotic problems or artificial boundary conditions in exterior problems
(see e.g. [7, 8, 23] and references therein), in particular in fluid-structure interaction problems.

Problem (1) is known to have a unique variational solution if f and g are in the appropriate
Sobolev space as recalled in Section 2. We are concerned here with the higher regularity for
solutions to this problem when the data is also regular, in the case that the domain Ω is a polyhedral
domain in R3. It is well known that, due to the presence of edges and corners at the boundary of
Ω, even when ΓV is empty, elliptic regularity does not hold, and the solution is not smooth even
if the data is smooth. This loss of regularity affects the rate of convergence of the Finite Element
approximation to the solution if uniform meshes are used.

By using weighted Sobolev spaces, where the weights are the distance to the edges and vertices,
respectively, one can characterize precisely the behavior of the variational solution near the singular
set in terms of singular function and singular exponents (Theorem 2.5). In turn, the decomposition
of the solution into a regular and a singular part, together with interpolation estimates (Theorem
3.1), leads to establishing a priori error estimates for the Finite Element approximation (Corollary
3.4), where the elements are given on an anisotropic mesh that exploits the improved regularity
of the solution along the edges versus the corners of the polyhedron. There is a well established
literature on this approach for mixed Dirichlet, Neumann, and even standard Robin boundary
condition (see for example [4, 5, 26]). There are also several works in the literature concerning
the Ventcel boundary-value problems on singular domains (see in particular [18, 24]), and their
implementation of the FEM (see [16] and references therein). The novelty of this work consists
in extending the approach using weighted spaces and anisotropic meshes to the Ventcel boundary
conditions, which include tangential differential operators at the boundary of the same order as
the main operator in Ω. As a matter of fact, the main difficulty in considering such boundary
conditions lies in establishing the needed regularity of the traces on the faces of the polyhedron.
For simplicity, we restrict here to the case where the Ventcel condition is imposed on only one
face of the polyhedron. If the Ventcel condition is imposed on adjacent faces, one would expect
higher regularity to hold for the solution on these faces, under suitable transmission conditions
at the common edges. however, capturing this behavior entails studying weighted Sobolev spaces
for which the weight is the distance to the boundary and not the distance to the singular set (as
those arising from the analysis of equations with degenerate coefficients). We reserve to address
this problem in future works.

The paper is organized as follows. In Section 2, we recall the variational formulation for
Problem (1), and prove our main regularity result for the solution in weighted spaces. In Section 3,
we introduce the anisotropic mesh and the associated Finite Element discretization of the problem,
and derive a priori error estimates. Section 4 contains some refined 2D interpolation estimates
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valid on the polyhedral faces, needed for the error analysis. We close in Section 5 by presenting
some numerical examples to validate the theoretical analysis.

We end this Introduction with some needed notation.
If Ω is a domain of Rn, n ≥ 1, we employ the standard notation Hm(Ω) to denote the Sobolev

space that consists of functions whose ith derivatives, for 0 ≤ i ≤ m, are square-integrable. The
L2(Ω)-inner product (resp. norm) will be denoted by (·, ·)Ω (resp. ‖ · ‖Ω). The usual norm and
semi-norm in Hs(Ω), for s ≥ 0, are denoted by ‖ · ‖s,Ω and | · |s,Ω, respectively. The trace operator
from H1(Ω) into H

1
2 (∂Ω) will be denoted by γ. We also introduce the space:

H1
ΓD (Ω) = {u ∈ H1(Ω) : γu = 0 on ΓD},

which is clearly a closed subspace ofH1(Ω). If v is a d-dimensional vector, we will write v ∈ Hs(Ω)d,
although for ease of notation, we may write Hs(Ω) simply for Hs(Ω)d. Lastly, we employ the
standard notation D′(Ω)) to denote the space of distributions on Ω.

Throughout, the notation A . B is used for the estimate A ≤ C B, where C is a generic
constant that does not depend on A and B. The notation A ∼ B means that both A . B and
B . A hold. We will also employ standard multi-index notation for partial derivatives in Rd, i.e.,
∂α = ∂α1

x1
. . . ∂αdxd where α = (α1, . . . , αd) ∈ Zd+ and |α| = α1 + . . .+ αd.

Acknowledgements: The second author was partially supported by the US National Science
Foundation (NSF) grant DMS-1418853. The third author was partially supported by NSF grant
DMS-1312727. The visit of the first author to Penn State University and Wayne State University,
where part of this work was conducted, was partially supported through NSF grant DMS-1312727
and the Wayne State University Grants Plus Program.

2 Some regularity results
In this section we recall needed facts about the well-posedness of the Ventcel Problem (1), and
establish regularity estimates for its variational solution in weighted spaces.

The variation formulation of (1) is well known (see [1, 18, 16]). We let

V := {u ∈ H1
ΓD (Ω) : γu ∈ H1

0 (ΓV )},

which is a Hilbert spaces equipped with the natural norm

‖u‖2V := ‖u‖21,Ω + |γu|1,ΓV ,∀u ∈ V.

We further introduce the bilinear form

a(u, v) =

∫
Ω

∇u · ∇v dx+

∫
ΓV

∇T (γu) · ∇T (γv) dσ(x), ∀u, v ∈ V.

As this bilinear form is continuous and coercive in V , by the Lax-Milgram lemma, for any f ∈ L2(Ω)
and g ∈ L2(ΓV ), there exists a unique solution u ∈ V of

(2) a(u, v) =

∫
Ω

fv dx+

∫
ΓV

gv dσ(x), ∀v ∈ V.

It was shown in [16, Thm 3.3] that if ΓD is empty and if Γ is C1,1, then u belongs to H2(Ω)
and γu belongs to H2(ΓV ). This regularity is no longer valid if Ω is a non-convex polyhedral
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domain, and the main purpose of this section is to describe the behavior of the solution near the
singular set, which consists of the edges and vertices of the boundary faces of the polyhedron, and
characterize the regularity of boundary traces of u and its derivatives.

To this end, we will employ anisotropic weighted Sobolev spaces, for which the weights are
(variants of) the distance to the edges and vertices, respectively. There is a vast literature con-
cerning the use of weighted Sobolev spaces in the analysis of singular domains (we refer for instance
to [11, 17, 19, 20, 21] and references therein). In the context of the analysis of Dirichlet/Neumann
boundary conditions, anisotropic Sobolev spaces were used in [2, 4, 3, 6].

From now on we assume that Ω is a polyhedral domain of the space and that ΓV is reduced to
one face F of the boundary.

By a face, we mean an open face on the boundary. Let S and E be the set of vertices and the
set of open edges of Ω, respectively.

On the polygonal face F , we denote its set of vertices by SF . Given a vertex S ∈ SF , we
denote by (rS , θS) the radial distance and angular component of the local polar coordinate system
centered at S on the plane containing F . In addition, we let ωF,S be the interior angle on the face
F associated with the vertex S.

Following [4], we consider a triangulation {Λ`}L`=1 of the domain Ω that consists of disjoint
tetrahedra Λ`. We will refer to each tetrahedron Λ` as a macro element, to distinguish it from the
elements of the mesh utilized in the analysis of the FEM in Section 3. The purpose of the macro
elements is to localize the construction and the regularity estimates near edges and vertices of Ω.
We will also refer to any edge or vertex of an element Λ` as a singular edge or singular vertex, if
that edge or vertex lies along a true edge or is a true vertex of Ω and the solution is not in H2

near that true edge or vertex.
We will assume that each Λ` contains at most one singular edge and at most one singular vertex.

If Λ` contains both a singular edge and a singular vertex, that vertex belongs to that edge. We
will also assume that all Λ` are shape regular with diameter of order O(1). In each macro element
Λ`, we introduce a local Cartesian coordinate system x(`) = (x

(`)
1 , x

(`)
2 , x

(`)
3 ), such that the singular

vertex, if it exists, is at the origin, and the singular edge, if it exists, lies along the x(`)
3 -axis. We

then define the distance functions to the set of singular edges and singular vertices, respectively,
as follows:

r(`)(x(`)) =

√
(x

(`)
1 )2 + (x

(`)
2 )2,(3a)

R(`)(x(`)) =

√
(x

(`)
1 )2 + (x

(`)
2 )2 + (x

(`)
3 )2,(3b)

and introduce the auxiliary function

θ(`)(x(`)) = r(`)(x(`))/R(`)(x(`)).(3c)

We observe that r(`), and R(`) extend as continuous functions to the closure of the macro element
Λ`, while θ(`) extends as a bounded function.

In what follows, we will omit the sup-index (`) in these distance functions and in x, when there
is no confusion about the underlying macro element. Given a subdomain Λ ⊂ Ω, we define the
following weighted Sobolev space for k ∈ N and β, δ ∈ R:

V kβ,δ(Λ) := {v ∈ D′(Λ), ‖v‖V kβ,δ(Λ) <∞},
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where
‖v‖2V kβ,δ(Λ) =

∑
|α|≤k

‖Rβ−k+|α|θδ−k+|α|∂|α|v‖2L2(Λ),

and R(x) = R(`)(x(`)) and θ(x) = θ(`)(x(`)), given in (3b) and in (3c), if x ∈ Λ` is represented by
x(`) in local coordinates.

We will also need to define spaces on the faces of Ω. To this end, given G a bounded polygonal
domain in R2, we also define

V kγ (G) := {v ∈ D′(G), ‖v‖V kγ (G) <∞},

where
‖v‖2V kγ (G) =

∑
|α|≤k

‖ργ−k+|α|∂|α|v‖2L2(G).

Above, ρ is the distance function to the set of vertices of G, defined in a manner similar to R
above.

We further classify the initial macro elements Λ` into four types as follows:

Type 1. Λ̄` ∩ (S ∪ E) = ∅;

Type 2. Λ̄` ∩ S 6= ∅ but Λ̄` ∩ E = ∅;

Type 3. Λ̄` ∩ E 6= ∅ but Λ̄` ∩ S = ∅;

Type 4. Λ̄` ∩ E 6= ∅ and Λ̄` ∩ S 6= ∅.

We first start with an improved regularity of ∂νu on ΓV . In what follows, for ease of notation
we will let uF be the trace γu of u on the face F . Furthermore, for a two-dimensional domain D,
we define the space H̃s(D), 0 < s < 1, as the closure of C∞c (D) in Hs(D).

Lemma 2.1 If D ⊂ R2 is a two-dimensional domain with Lipschitz boundary, then for any h ∈
(H̃

1
2 (D))′, the unique solution w ∈ H1

0 (D) of

−∆w = h in D,

belongs to H1+ε(D) ∩H1
0 (D) for any ε ∈ (0, 1

2 ).

Proof. We fix ε ∈ (0, 1
2 ). Since H1−ε

0 (D) = H̃1−ε(D) is continuously and densely embedded
into H̃

1
2 (D), by duality we obtain that (H̃

1
2 (D))′ is continuously embedded into (H1−ε

0 (D))′ =
H−1+ε(D). Hence, w can be seen as a solution of the Laplace equation with datum in H−1+ε(D).
Owing to Theorem 18.13 and Remark 18.17/2 in [11], w belongs to H1+ε(D).

Lemma 2.2 Let u ∈ V be the solution of (2), then we have

∂νu ∈ L2(ΓV ).

Proof. We first observe that, by Theorem 2.8 of [22], ∂νu ∈ (H̃
1
2 (ΓV ))′. Then, we may

interpret uF ∈ H1
0 (F ) as the unique variational solution of

(4) ∆LBuF = −g + ∂νu ∈ (H̃
1
2 (F ))′.
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By Lemma 2.1, we deduce that uF belongs to H1+ε(F ) ∩ H1
0 (F ) for any ε ∈ (0, 1

2 ). We now fix
ε ∈ (0, 1

2 ) small enough that the mapping

H
3
2 +ε(Ω) ∩H1

0 (Ω)→ H−
1
2 +ε(Ω) : v → ∆v,

is an isomorphism (see [11, Thm 18.13]).
Now, by applying the trace theorem from [14], there exists w ∈ H 3

2 +ε(Ω) such that

γw = 0 on ΓD,(5)
γw = uF on F.(6)

This implies, again by uniqueness, that v := u− w ∈ H1
0 (Ω) is the solution of

−∆v = f + ∆w ∈ H− 1
2 +ε(Ω).

We therefore deduce that v belongs to H
3
2 +ε(Ω) and, hence, u belongs to this space as well. By a

standard trace theorem, we finally conclude that ∇u ∈ Hε(Γ)3.
Thus, we have the following decomposition of the singular solution uF on the polygonal face.

Corollary 2.3 Let again u ∈ V be the solution of (2). Then, it holds

(7) uF = uF,R +
∑

S∈SF :ωF,S>π

cSr
π

ωF,S

S sin

(
πθS
ωF,S

)
,

where uF,R ∈ H2(F ) and cS ∈ C.

Proof. As ∂νu belongs to L2(F ) by Lemma 2.2, the right-hand side in (4) is now in L2(F )
and therefore Theorem 4.4.3.7 of [15] yields (7).

We will refer to uF,R as the regular part of uF , hence the subscript, as it has the expected
regularity from elliptic theory. We will consequently call uF − uF,R the singular part of uF .

For the regularity of the solution in the interior of the domain Ω, we first have the following
lifting estimate based on the trace theorem.

Lemma 2.4 Given uF ∈ H
3
2 +ε(F )∩H1

0 (F ) for some ε ∈ (0, 1
2 ), there exists a lifting w ∈ H2+ε(Ω)

satisfying (5)-(6).

Proof. The idea is to use again the trace theorem from [14] with s = 2 + ε and the operator

(8) u→ (fj,0, fj,1)Nj=1 :=
(
u|Γj , (∂νju)|Γj )

)N
j=1

,

where Γj are the faces of Ω and νj the outward normal vector along Γj . As 1+ε is not an integer, this
trace operator (8) is surjective from H2+ε(Ω) onto the subspace of

∏N
j=1(H

3
2 +ε(Γj)×H

1
2 +ε(Γj))

that satisfies the compatibility conditions (C1) of [14]. If we assume that Γ1 = F , it is therefore
sufficient to show that there exist fj,1 ∈ H

1
2 +ε(Γj), j = 1, · · · , N such that

(uF , f1,1)× (0, fj,1)Nj=2

satisfies these conditions (C1). Since such conditions are quite technical to check, as in [14] we
can reduce to check such conditions in the case where Ω is the trihedral xi > 0, i = 1, 2, 3 and
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F is the face x1 = 0 (and hence N = 3 with Γ2 ≡ x2 = 0 and Γ3 ≡ x3 = 0), by means of a
localization argument and a linear change of variables. In such a case, the conditions (C1) of [14]
for (uF , f1,1)× (0, fj,1)3

j=2 take the form:

uF = 0 on A1,2 ∪A2,3,(9a)

f1,1 = 0 on A1,3,(9b)

∂2uF = 0 on A1,3,(9c)

∂3uF = f3,1 on A1,3,(9d)

f1,1 = 0 on A1,2,(9e)

∂2uF = f2,1 on A1,2,(9f)

∂3uF = 0 on A1,2,(9g)

f2,1 = 0 on A2,3,(9h)

f3,1 = 0 on A2,3,(9i)

where Ai,j = Γ̄i∩ Γ̄j . The first condition trivially holds as uF belongs to H1
0 (F ), and similarly (9c)

(resp. (9g)) because ∂2uF (resp. ∂3uF ) is the tangential derivatives of uF on A1,3 (resp. A1,2). To
satisfy the second and fourth conditions we simply take f1,1 = 0. Hence it remains to verify the
conditions (9f) and (9h) (resp. (9d) and (9i)) that can be interpreted as constraints on f2,1 and
f3,1, respectively. In other words, we look for f2,1 ∈ H

1
2 +ε(Γ2) (resp. f3,1 ∈ H

1
2 +ε(Γ3)) satisfying

the boundary conditions (9f) and (9h) (resp. (9d) and (9i)). Such a solution f2,1 (and similarly
f3,1) exists by applying Theorem 1.5.1.2 of [15] (valid for a quarter plane), because the function
defined by ∂2uF on A1,2 and 0 on A2,3 belongs to Hε(Γ2).

For a vertex v ∈ S, let Cv be the infinite polyhedral cone that coincides with Ω in the neigh-
borhood of v. Let Gv = Cv ∩ S2(v) be the intersection of Cv and the unit sphere centered at v.
For an edge e ∈ E , let ωe be the interior angle between the two faces of Ω that contain e. Then, for
v ∈ S and for e ∈ E , respectively, we define the following parameters associated to the singularities
in the solution near v and e:

(10) λv := −1

2
+

√
λv,1 +

1

4
, λe := π/ωe,

where λv,1 is the smallest positive eigenvalue of the Laplace-Beltrami operator on Gs with Dirichlet
boundary conditions. We observe that a vertex v is singular if λv < 1/2 and an edge e is singular
if λe < 1. For a given macro element Λ`, we set λ(`)

v = λv if Λ` contains one singular vertex v of
Ω and λ(`)

v = ∞ otherwise. Similarly, we set λ(`)
e = λe if Λ` contains on singular edge e of Ω and

λ
(`)
e =∞ otherwise. Then, the following decomposition for the variational solution of (1) holds.
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Theorem 2.5 Let u ∈ V be again the solution of (2). We have:

(11) u = uR + uS ,

where uR ∈ H2(Ω) and uS ∈ H1(Ω) satisfies, for all ` ∈ {1, . . . , L},

∂uS

∂x
(`)
j

∈ V 1
β,δ(Λ`), j = 1, 2,(12)

∂uS

∂x
(`)
3

∈ V 1
β,0(Λ`),(13)

for any β, δ ≥ 0 such that

β >
1

2
− λ(`)

v , δ > 1− λ(`)
e ,

Again, the subscripts refer to the fact that uR has the expected regularity, and hence it will be
called the regular part of the solution, while uS = u− uR represents the singular part.

Proof. The decomposition (7) implies that there exists ε ∈ (0, 1
2 ) small enough such that

uF ∈ H
3
2 +ε(F ) ∩ H1

0 (F ). Hence by Lemma 2.4, there exists a lifting w ∈ H2+ε(Ω) satisfying
(5)-(6). With this lifting at hands, we consider u − w, which belongs to H1

0 (Ω) and is the weak
solution of

−∆(u− w) = f + ∆w.

As f + ∆w belongs to L2(Ω), we can apply Theorem 2.10 of [4] to u− w, which gives the decom-
position:

u− w = uR + uS ,

with uR ∈ H2(Ω) and uS satisfying (12)-(13). Finally, the result follows by setting uR = w + ur.

Remark 2.6 Theorem 2.5 shows that for the solution to (2) with the Ventcel boundary condition,
its regularity in Ω, determined by the geometry of the domain, is similar to the regularity of the
Poisson equation with the Dirichlet boundary condition. Meanwhile, the trace of the solution u
on the face F is the solution of a two-dimensional elliptic problem with the Dirichlet boundary
condition. Corollary 2.3 implies that the regularity of the trace depends on the interior angles of
the polygon F .

3 Finite element approximation
We consider an (anisotropic) triangulation Th = {Ti}Ni=1 of Ω as in Section 3 of [4] or in Section
2 of [3], consisting of tetrahedra with refinement parameters µ` and ν`. We assume the general
conditions for a triangulation of the domain (see e.g.[9, 10]) and that the number of tetrahedra m
satisfies N ∼ h−3, where h is the global mesh size. In addition, we assume that the initial subdo-
mains Λ` are resolved exactly, namely, Λ̄` = ∪i∈L` T̄i, where ` = 1, · · · , L and L` ⊂ {1, · · · ,m} is
the index set of the tetrahedra included in Λ̄`.

In each Λ`, the parameters µ`, ν` ∈ (0, 1] determine the anisotropic mesh refinement close to
edges and vertices, respectively as indicated in (14) below. When µ` = 1 or ν` = 1, there will be no
graded refinement in Λ`. We recall the local Cartesian coordinate system (x

(`)
1 , x

(`)
2 , x

(`)
3 ) in each
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of the subdomain Λ`, which is such that the singular vertex is at the origin and the singular edge
is along the x3-axis, if they exist. Then, for each element Ti ⊂ Λ` of the triangularization, we let

ri := inf
x∈Ti

[(x
(`)
1 )2 + (x

(`)
2 )2]1/2, Ri := inf

x∈Ti
[(x

(`)
1 )2 + (x

(`)
2 )2 + (x

(`)
3 )2]1/2,

be the distance of Ti to the origin and the x3-axis, respectively. We then introduce local, anisotropic
mesh parameters in Ti as follows:

hi :=

{
h1/µ` if ri = 0,

hr1−µ`
i if ri > 0,

Hi :=

{
h1/ν` if 0 ≤ Ri . h1/ν` ,

hR1−ν`
i if Ri & h1/ν` ,

(14)

We also introduce the actual mesh sizes h̃j,i, which are the lengths of the projections of Ti ⊂ Λ` on
the x(`)

j -axis, 1 ≤ j ≤ 3. Then, there exists a triangulation Th satisfying the following conditions:

1. If µ` < 1, then h̃j,i ∼ hi, j = 1, 2, h̃3,i . Hi, and h̃3,i ∼ Hi if ri = 0.

2. The number of tetrahedra in Λ` with ri = 0 is of order h−1.

3. The number of tetrahedra in Λ` such that 0 ≤ Ri . h1/ν` is bounded by h2µ`/ν`−2, and there
is only one tetrahedral element with Ri = 0.

4. If µ` < 1, then µ` ≤ ν` for 1 ≤ ` ≤ L.

We refer to [4] or a detailed description of these conditions. It is clear that this triangulation Th
induces an exact triangulation Fh of the face F , the elements of which are simply given by T̄ ∩ F̄
for T ∈ Th.

Based on these triangulations, we introduce the approximation space Vh of V as follows:

Vh := {uh ∈ V : u|T ∈ P1(T ), ∀T ∈ Th},

where Pm, m ∈ Z+, denotes the space of all polynomials of degree ≤ m. This is clearly a closed
subspace of V .

Then, the Finite Element approximation of Problem (2) consists of looking for a solution
uh ∈ Vh of

(15) a(uh, vh) =

∫
Ω

fvh dx+

∫
ΓV

gvh dσ(x), ∀vh ∈ Vh.

By Céa’s lemma, we have
‖u− uh‖V . inf

vh∈Vh
‖u− vh‖V ,

Hence an error estimate will be available if we can built an appropriate approximation vh of u.
This is the purpose of the next theorems in this section.

Theorem 3.1 Recall the parameters in (10) and in (14). Assume that for all ` = 1, · · · , L, we
have:

µ` < λ(`)
e ,(16a)

ν` < λ(`)
v +

1

2
(16b)
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1

ν`
+

1

µ`
(λ(`)
v −

1

2
) > 1.(16c)

Then, there exists vh ∈ Vh such that

(17) ‖u− vh‖1,Ω . h.

Proof. The proof of Theorem 2.5 furnishes the splitting of u as

u = ũ+ w,

where ũ = u − w and w ∈ H2+ε(Ω) with ε ∈ (0, 1
2 ). Hence we define an interpolant Ihu of u as

follows:

(18) Ihu := ũI +Dh(ũ− ũI) + Lhw,

where Dh is the interpolant introduced in [3], ũI is the Lagrange interpolant of ũ with respect to
the partition {Λ`}, while Lhw is the standard Lagrange interpolant of w, which consists of piece-
wise polynomials of degree 1. Then, using the regularity estimate in Theorem 2.5 and applying
Theorem 3.11 of [3], we have

(19) ‖ũ− ũI +Dh(ũ− ũI)‖1,Ω . h.

On the other hand, as w belongs to H2+ε(Ω) and H2+ε(Ω) is continuously embedded intoW 2,p(Ω)
with p ∈ (2, 6

3−2−ε ), by the estimate (5.6) of [4] for a fixed p ∈ (2, 6
3−2−ε ), we deduce that

‖w − Lhw‖1,Ω . h‖w‖W 2,p(Ω) . h‖w‖2+ε,Ω.

This estimate and (19) prove the estimate (17).
We observe that Ihu = Lhw = LhuF on the face F , since ũI and Dh(ũ− ũI) vanish on F . We

next state and prove an error estimate for the Finite Element approximation on the face F .

Theorem 3.2 For a macro element Λ` such that Λ̄` ∩ F 6= ∅, let ωF,v,` be the interior angle of F
associated with the vertex v ∈ V. Assume that the conditions

ν` <
π

ωF,v,`
,(20a)

1

ν`
+

1

µ`
(

π

ωF,v,`
− 1) > 1,(20b)

are satisfied. Then, it holds:

(21) ‖uF − LhuF ‖1,F . h.

Proof. We will prove that for all ` = 1, · · · , L, we have

(22) |uF − LhuF |1,F∩Λ̄` . h.

Hence, summing on `, we find that

|uF − LhuF |1,F . h,

and the conclusion of the theorem follows from Poincaré’s inequality.
To prove (22), we distinguish different cases:
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1. F̄ ∩ Λ̄` contains no singular vertex or singular edge: In this case, uF belongs to H2(F ∩ Λ̄`)
and the mesh on F ∩ Λ̄` is quasi-uniform. Thus, the estimate (22) is standard.

2. F̄ ∩ Λ̄` contains a singular vertex v but no singular edge: Thus, uF belongs to

V 2
γ (F ∩ Λ̄`) = {v ∈ L2

loc(F ∩ Λ̄`) : Rγ+|β|−2Dβv ∈ L2(F ∩ Λ̄`),∀|β| ≤ 2},

with γ > 1− π
ωF,v,`

, and the estimate (22) is also standard, since the triangulation in F ∩ Λ̄`
is isotropic (see for instance [25], [15, §8.4]).

3. F̄ ∩ Λ̄` contains a singular edge: Then, the mesh on F ∩ Λ̄` is anisotropic. There are two
possible situations: (S1) F̄ ∩ Λ̄` contains no singular vertex; and (S2) F̄ ∩ Λ̄` also contains a
singular vertex v. Due to Corollary 2.3, for (S1), uF belongs to H2(F ∩ Λ̄`), while for (S2),
uF belongs to V 2

γ (F ∩ Λ̄`). Now for any triangle Ti in F ∩ Λ̄`, we will prove that

(23) |uF − LhuF |1,Ti . h|uF |2,γ,Ti ,

with γ = 0 for (S1) and γ > 1− π
ωF,v,`

for (S2), where

|u|22,γ,T =
∑
|α|=2

∫
T

R2γ |Dαu|2 dx.

If this estimate is valid, then summing on Ti, we get (22).

To prove (23), we distinguish two cases.

i. If Ti is far from the singular corner, then we know that uF belongs to H2(Ti), and, by using
Estimate (25) below, we have:

|uF − LhuF |1,Ti . hi|∂1uF |1,Ti +Hi|∂3uF |1,Ti(24)
. Hi|uF |2,Ti .

If Λ` is of Type 3, then uF belongs to H2(F ∩ Λ̄`), but as ν` = 1, by the assumptions on the
mesh we have Hi . h, hence the estimate (24) directly yields (23). If Λ` is of Type 4, we
again distinguish two cases:

a) If Ri & h
1
ν` , then Hi ∼ hR1−ν`

i , and therefore,

|uF − LhuF |1,Ti . hR1−ν`
i |uF |2,Ti .

This yields (23) by our assumption (20a).

b) If 0 < Ri . h
1
ν , then as Hi ∼ h

1
ν , the estimate (24) becomes:

|uF − LhuF |1,Ti . h
1
ν |uF |2,Ti .

But from Lemma 4.5 below, we know that Ri & h
1
µ and, therefore,

|uF − LhuF |1,Ti . h
1
ν−

γ
µRγi |uF |2,Ti .

This yields (23) by our assumption (20b).
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ii. If Ti is near a singular corner (i.e., Ri = 0), then applying Lemma 4.3 we have:

|uF − LhuF |1,Ti . h
1
ν−

γ
µ |uF |2,γ,Ti .

Again we get (23) owing to our assumption (20b).

The proof is now complete.
Theorems 3.1 and 3.2 directly lead to the following a priori global interpolation estimate on u

and error estimate on the Finite Element solution uh.

Corollary 3.3 Assume that for all ` = 1, · · · , L, (16a), (16b), (16c), (20a) and (20b) hold. Then
there exists vh ∈ Vh such that

‖u− vh‖V . h.

Corollary 3.4 Under the assumption of Corollary 3.3, if u ∈ V is the solution of (2) and uh ∈ Vh
the solution of (15), then

‖u− uh‖V . h.

4 Anisotropic error estimates in two dimension
To complete the proof of Theorem 3.2 we need some interpolation estimates in two space dimen-
sions. In this section, Ti will be a triangle in the triangulation Fh of the face F , which is induced
by the triangulation Th of Ω. We will need the two-dimensional version of Theorem 4.10 of [4],
given below.

Theorem 4.1 Assume that Λ` is of Type 3 or 4. Suppose that F̄ ∩ Λ̄ contains the singular edge.
Recall the local Cartesian coordinate system (x1, x2, x3) for Λ`, for which the singular edge is on
the x3-axis. Let F ∩ Λ̄ be in the plane given by x2 = 0. Let Ti ⊂ F ∩ Λ̄` be a triangle in the
triangulation Fh. Then, for v ∈ H2(Ti), we have

(25) |v − Lhv|1,Ti . hi|∂1v|1,Ti +Hi|∂3v|1,Ti ,

where hi and Hi are defined in (14).

Proof. Let h̃1,i and h̃3,i be the lengths of the projections of Ti on the x1- and x3-axis,
respectively. We distinguish between the case h̃3,i . hi or not.

1. If h̃3,i . hi, then diam Ti . hi (see the proof of Theorem 4.10 of [4]) and owing to Theorem
2 of [2], we have

|v − Lhv|1,Ti . hi|v|2,Ti ,

and (25) holds since hi . Hi.

2. If h̃3,i & hi, then Theorem 1 of [2] on the reference element and Lemma 4.8 of [4] yield

|v − Lhv|1,Ti . h̃i,1|∂1v|1,Ti + h̃3,i|∂3v|1,Ti .

This estimate implies (25), because h̃i,1 . hi and h̃3,i . Hi (see assumption (B1) in [2],
recalling that µ` < 1 if a macro element is of Type 3 or 4).

12



We continue with an anisotropic error estimate in weighted Sobolev spaces (compare with
Theorem 1 of [2] for two-dimensional triangles in standard Sobolev spaces and Theorem 4.5 of [4]
for three-dimensional tetrahedra in weighted Sobolev spaces).

Theorem 4.2 Let T̂ be the standard reference element of vertices (0, 0), (1, 0) and (0, 1). Denote
by R̂ the distance to (0, 0). Let 0 ≤ γ < 1. Then for all u ∈ V 2

γ (T̂ ), and i = 1 or 2, we have:

(26) ‖∂i(u− Lu)‖0,T̂ . ‖R̂γ∇∂iu‖0,T̂ ,

where Lu is the Lagrange interpolant of u.

Proof. We first remark that Lemma 8.4.1.2 of [15] shows that V 2
γ (T̂ ) is continuously embedded

into C(T̂ ), hence the Lagrange interpolant Lu of u is well-defined. We define the space:

H1,γ(T̂ ) := {v ∈ L2(T̂ ) : R̂γ∇v ∈ L2(T̂ )2},

which is an Hilbert space equipped with its natural norm ‖ · ‖1,γ . We will also use the semi-norm:

|v|1,γ = ‖R̂γ∇v‖T̂ , ∀v ∈ H1,γ(T̂ ).

Then by the proof of Lemma 8.4.1.2 of [15], we know that H1,γ(T̂ ) is embedded into W 1,p(T̂ ) for
all 1 < p < 2

1+γ , and hence compactly embedded into L2(T̂ ). The first embedding and a trace
theorem also guarantee that any v ∈ H1,γ(T̂ ) satisfies

(27) v ∈ L1(ê), ‖v‖L1(ê) . ‖v‖1,γ ,

for any edge ê of T̂ . The second embedding implies that

(28) ‖v‖1,γ . |v|1,γ ,

for all v ∈ H1,γ(T̂ ) such that
∫
T̂
v dx = 0.

Now we follow the arguments of Lemma 3 and Theorem 1 of [2]. We will first prove the estimate
for ∂1. We observe that (27) implies that the functional

F (v) =

∫
ê1

v(x) dσ,

where ê1 is the edge of T̂ parallel to the x̂1 axis, is well defined and continuous on H1,γ(T̂ ):

(29) |F (v)| . ‖v‖1,γ ,∀v ∈ H1,γ(T̂ ).

Next, we note note that
F (∂1(u− Lu)) = 0,

if u ∈ V 2
γ (T̂ ). We then define the polynomial q of degree 1 by

q(x̂1, x̂2) = cx̂1,

where
c = 2

∫
T̂

(∂1u)(x̂) dx̂.
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With this choice, we see that ∫
T̂

(∂1(u− q))(x̂) dx̂ = 0,

and therefore by (28) we obtain:

(30) ‖∂1(u− q)‖1,γ . |∂1(u− q)|1,γ = |∂1u|1,γ .

As q − Lu is linear, ∂1(q − Lu) is constant, and we can write

‖∂1(q − Lu)‖1,γ . |F (∂1(q − Lu))| = |F (∂1(q − u))|.

By (29), we deduce that
‖∂1(q − Lu)‖1,γ . ‖∂1(q − u)‖1,γ .

This estimate and the triangle inequality imply that

‖∂1(u− Lu)‖0,T̂ ≤ ‖∂1(u− Lu)‖1,γ ≤ ‖∂1(u− q)‖1,γ + ‖∂1(q − Lu)‖1,γ . ‖∂1(q − u)‖1,γ

and the conclusion for ∂1 follows from (30). The estimate for ∂2 follows in an analogous manner.

Then, we are ready to derive the interpolation error estimate near a singular corner of F .

Lemma 4.3 Assume that Λ` is of Type 3 or 4. Let 0 ≤ γ < 1. If Ti is near a singular corner
(i.e., Ri = 0), then for any uF ∈ V 2

γ (Ti), we have

|uF − LhuF |1,Ti . h
1
ν`
− γ
µ` |uF |2,γ,Ti .

Proof. The result follows by mapping Ti to T̂ as in Lemma 4.8 of [4], by using the estimate
(26), and then mapping back to Ti by using the properties (3.2) and (3.3) in [4] and the fact that
R̂ . h

− 1
µ`Ri (see [4, p. 538]).

Remark 4.4 If Ti is isotropic, the previous Lemma is well known and can be found in [25] (see
also [15, §8.4]).

Lemma 4.5 Assume that Λ` is of Type 4. Let Ti be a triangle belonging to Λ̄` ∩ F such that
Ri > 0, then

Ri & h
1
µ` .

Proof. Without loss of generality, by a relabeling, we can always assume that T0 is the triangle
that contains the singular vertex v`. Then, it has two edges that contain v`, the first one is the
edge in the x1-axis and is of length ∼ h

1
µ` , while the other one is of length ∼ h

1
µ` . Moreover, as

the angle between these two edges is independent of the mesh, the ball of center v` and radius
ch

1
µ` intersects only T0 by choosing c small enough. The estimate follows from the definition of

the distance.
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Figure 1: The computational domain Ω (left) and the macro elements (right).

5 Numerical examples
In this section, we present some numerical examples to illustrate the theory presented in the
previous sections.

We will solve the boundary-value problem (1) using the FEM with linear elements on a poly-
hedral domain. The domain is given as follows. We let T̃ be the triangle with vertices (0, 0), (1, 0),
and (0.5, 0.5), and let the domain be the prism Ω :=

(
(0, 1)2 \ T̃

)
× (0, 1). We refer to the labeling

in Figure 1 in what follows. We will solve (1) in variational form (2) with data f = 1 and g = 0.
The interior angle between the two faces that contain the edge e := v2v7 is 3π/2. Based on the
estimates in (10) and Theorem 2.5, e is the singular edge; and the solution u admits a decomposi-
tion into the singular and regular parts with regularity determined by λe = 2/3. By Theorem 2.5,
the location of the face F , where the Ventcel boundary condition is imposed does not drastically
affect the regularity of the solution.

To verify our theory, we implement two sets of numerical tests regarding different locations of
the special boundary face F = ΓV : (I) F is the bottom face of prism Ω, with vertices v1, v2, v3, v4,
and v5; (II) F is a face that contains the singular edge with vertices v2, v3, v7, and v8.

For both cases, the singular parts uS of the solution have anisotropic exponents and belong to
the same weighted space. Moreover, by Corollary 3.4, it is sufficient to choose the parameters in
(14) corresponding to the singular edge such that µ` < 2/3 and ν` = 1, in order to achieve the
optimal (first-order) convergence rate.

In Table 1, we list the convergence rates of the numerical solution for the aforementioned model
problems with ν` = 1, but with different values of the mesh grading parameter µ`. We let N be the
number of degrees of freedom in the discrete system. Then, the mesh size satisfies h ∼ N−1/3. Since
the exact solution is not known, the convergence rate is computed using the numerical solutions
for successive mesh refinements, u2h uh, and uh/2, as

the convergence rate = log2(
‖uh − u2h‖V
‖uh/2 − uh‖V

),(31)

where u2h and uh/2 are the finite element solutions with mesh parameters 2h and h/2, respectively.
Therefore, as h decreases, the asymptotic convergence rate in (31) is a reasonable indicator of the
actual convergence rate for the Finite Element solution.

It is clear from the table that for both cases, the first-order convergence rate is obtained for
µ` = 0.58 < 2/3, while we lose the optimal convergence rate if µ` = 0.76, 1.00, both larger than the
critical value 2/3. When µ` = 0.76, that is, 2/3 < µ` < 1, this choice still leads to an anisotropic
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h\µ` 0.58 0.76 1.00 0.58 0.76 1.00
2−3 0.834 0.843 0.825 0.821 0.833 0.825
2−4 0.938 0.930 0.890 0.936 0.896 0.889
2−5 0.977 0.960 0.894 0.977 0.899 0.890
2−6 0.991 0.968 0.871 0.990 0.876 0.866
2−7 0.995 0.968 0.837 1.000 0.842 0.831

Table 1: Convergence rates for different values of µ`: (I) F is the bottom face (left); (II) F is a
side face containing the singular edge (right).

mesh graded toward the singular edge, but the grading is insufficient to resolve the singularity
in the solution, and hence does not give rise to the predicted first-order convergence rate. These
results are in strong agreement with the theoretical results in Sections 3 and 4.
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