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Abstract

This document deals with the Computer Aided
Geometric Design with a short presentation of
the Minkowski-Lorentz space. This space gen-
eralizes to R5 the one used in the relativity the-
ory. The Minkowski-Lorentz space o�ers a more
intuitive writing of a sphere given by a point,
a normal vector at the point and its curvature.
It also eases the use of canal surfaces thus rep-
resented by curves. The quadratic computation
in R3 becomes linear in that space. The use
of spheres, canal surfaces and their particular
case known as Dupin cyclides is illustrated in a
schematic seahorse. The seahorse applies the G1

connection in the Minkowski-Lorentz space.

Oriented spheres and Pencils

An oriented sphere S with centre Ω and ra-
dius r > 0 satis�es the relationship

−−→
ΩM = ρ

−→
N

with the rule ρ = r (resp. ρ = −r) if the
unit normal vector

−→
N to the sphere at point

M is getting outside (resp. inside). The power
of the point M to the sphere S is de�ned by
χS (M) = ΩM2 − ρ2. The set of points solu-
tion of λ1 χS1 (M) + λ2 χS2 (M) = 0 is called
the spheres pencil de�ned by S1 et S2.
There kinds of pencils exist, a circle based pencil
(Fig. 1(a)), a tangent spheres pencil (Fig. 1(b))
a limited points pencil (Fig. 1(c)).

(a) (b) (c)
Figure 1: The 3 kinds of spheres pencils in R3

The Minkowski-Lorentz space

The quadratic form of Lorentz is de-
�ned on the basis (−→eo ;−→e1 ;−→e2 ;−→e3 ;−→e∞) by
Q4,1(xo, x, y, z, x∞) = x2 + y2 + z2 − 2xo x∞.
The light cone Cl satis�es the equation
x2 + y2 + z2 − 2xo x∞ = 0 in the frame
(O5;−→eo ;−→e1 ;−→e2 ;−→e3 ;−→e∞). The unit sphere Λ4 with
centre O5 in R5 is given by :

Λ4 =
{
σ ∈ R5 | Q4,1

(−−→
O5σ

)
=
−−→
O5σ

2
= 1
}

It represents the oriented spheres and planes of
R3. A sphere or a plane S is represented by a
point σ of R5.

Figure 2: The Minkowski-Lorentz space

Linear pencils of spheres on Λ4

On the unit sphere Λ4 any pencil of sphere is represented by the intersection C = Λ4 ∩ P of a plane
called 2-plane P passing through O5. C is a unit circle seen di�erently depending on the type of
plane.

• If P is a space-like plane that is ∀−→u ∈ −→P , −→u 2 > 0 then C is drawn as an ellipse(Fig.3.(a)) .
The set C represents a based circle sphere pencil where all spheres get a common circle.

• If P is a light-like plane that is ∀−→u ∈ −→P , −→u 2 = 0 and P is parallel to a hyperplane tangent at
Cl. (Fig.3.(b)) Then the set C is drawn as two straight lines symmetric wrt O5. All spheres in
the pencil are tangent at a point.

• If P is a time-like plane that is ∀−→u ∈ −→P , −→u 2 < 0 then C is drawn as a hyperbola and forms a
limited points pencil. (Fig.3.(c))These points are obtained from the light directions of P.

Figure 3: The representation of the three spheres pencil types on Λ4

Canal surfaces on Λ4

The envelop of a one-parameter set of oriented spheres in R3 de�nes a canal surface. The cones and
the Dupin cyclides are known examples of canal surfaces of degree 2. On Λ4, any curve t → σ(t)
represents a canal surface. Its characteristic circles are obtained by the intersection of 2 particular
spheres (Fig 4).

Figure 4: A Dupin cyclide on Λ4 (left) on R3 (centre) and seahorse (right)

On Λ4 the circle C1 represents a Dupin cyclide. The tangent vector at the curve on point σ (t0)

is given by
−→
dσ

dt
(t0). The characteristic circle of the Dupin cyclide is provided by the intersection

of the two spheres S (t0) and
•

S (t0). These spheres are represented in Λ4 by σ (t0) and
•
σ (t0).The

last sphere is obtained by the intersection between the half line

[
O5;

−→
dσ

dt
(t0)

)
and Λ4. The �gure 5

shows two cyclides from Λ4 to R3.

Figure 5: The same representation, on Λ4 of a Dupin cyclide and of a circular cone: the implementation is
the same with or without the point at in�nity of R3 (M2 is send to the in�nity), the modeling is the same as
envelope of spheres or planes (Dupin cyclide or circular cone).

Conclusion : The Minkowski-Lorentz space o�ers a new way to handle curves and surfaces for
CAD purposes making the computation easier. Algorithms for G1 joins, not given here, are used to
sketch a seahorse as example. References :
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