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Polynomial approach for modeling a piezoelectric disk resonator partially covered with electrodes

The frequency spectrum of a partially piezoelectric disc resonator is studied by using Legendre polynomials. The formulation, based on three dimensional equations of linear elasticity, takes into account the high contrast between the electroded and non-electroded regions. The mechanical displacement components and the electrical potential are expanded in a double series of orthonormal functions and are introduced into the equations governing wave propagation in piezoelectric media. The boundary and continuity conditions are automatically incorporated into the equations of motion by assuming position-dependent material physical constants or delta-functions. The incorporation of electrical sources is illustrated. Structure symmetry was used to reduce the number of unknowns. The vibration characteristics of piezoelectric discs are analyzed by the three dimensional modelling
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approach with the modal and harmonic analyses. Numerical results are presented such as resonant and anti-resonant frequencies, electric input admittance, electromechanical coupling coefficient and field profiles for PIC151 and PZT5A resonator discs fully and partially metallized. The results obtained are compared with those published earlier and those obtained from an analytical approach in order to validate our model.
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I NTRODUCTION

Micro-electro-mechanical systems (MEMS) resonators are rapidly gaining importance as they are spreading more and more into many different fields of applications, for example transportation, communication, automated manufacturing, environmental monitoring, health care, defense systems, and a wide range of consumer products [START_REF] Wang | VHF free-free beam high-Q micromechanical resonators[END_REF][START_REF] Clark | High-Q VHF micromechanical contour-mode disc resonators[END_REF][START_REF] Trolier-Mckinstry | Thin Film Piezoelectrics for MEMS[END_REF][START_REF] Xu | The compatibility of ZnO piezoelectric film with micromachining process[END_REF][START_REF] Humad | High frequency micromechanical piezo-on-silicon block resonators[END_REF][START_REF] Torah | Thick-film piezoceramics and devices[END_REF][START_REF] Maréchal | Highfrequency transducers based on integrated piezoelectric thick films for medical imaging[END_REF]. Among the different types of MEMS, resonantly driven micro-devices are an important branch that requires the analysis of the resonant and anti-resonant frequencies and the modal shapes of the structure [START_REF] Hernando | Characterization and displacement control of low surface-stress AlN-based piezoelectric micro-resonators[END_REF].

The vibration characteristics of piezoelectric structures are completely determined from the three dimensional equations of linear elasticity, the Maxwell equations, and the piezoelectric constitutive equations [START_REF] Tiersten | Linear piezoelectric plate vibration[END_REF][START_REF]IEEE Standard on Piezoelectricity[END_REF]. There are many studies which deal with modelling of the MEMS piezoelectric resonator. Guo et al [START_REF] Guo | The finite element analysis of the vibration characteristics of piezoelectric disc[END_REF] presented and calculated the resonant frequencies for PZT-5A piezoelectric discs with diameter-to-thickness ratios of 20 and 10 using the vibrations characteristics of piezoelectric discs. Ivina [START_REF] Ivina | Numerical analysis of the normal modes of circular piezoelectric plates of finite dimensions[END_REF] analysed the thickness symmetric vibrations of piezoelectric discs with partial axi-symmetric electrodes by using the finite element method. Schmidt [START_REF] Schmidt | Extensional vibrations of piezoelectric plates[END_REF] employed the linear piezoelectric equations to investigate the extensional vibrations of a thin partly electroded piezoelectric plate. Rogacheva [START_REF] Rogacheva | The dependence of the electromechanical coupling coefficient of piezoelectric elements on the position and size of the electrodes[END_REF] used the cases of piezoceramic discs and cylindrical shells based on the finite element method to analyse and calculate the resonant and anti-resonant frequencies and electromechanical coupling coefficient. Chi-Hung Huang [START_REF] Huang | Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes[END_REF] analyzed a thin piezoceramic disc partially covered with electrodes using the linear theoretical and experimental vibration.

In the literature, several methods are used for modelling the acoustic propagation in a piezoelectric structure. Among these methods, the Legendre polynomial method provides excellent precision for the waveguides with various geometries such as planar and cylindrical multilayered and functionally graded structures [START_REF] Datta | Analysis of surface waves using orthogonal functions[END_REF][START_REF] Lefebvre | Acoustic Waves Propagation in Continuous Functionally Graded Plates: An Extension of the Legendre Polynomial Approach[END_REF][START_REF] Lefebvre | Legendre polynomial approach for modelling free ultrasonic waves in multilayered plates[END_REF][START_REF] Elmaimouni | Guided waves in inhomogeneous cylinders of Functionally Graded Materials (FGM)[END_REF]. This method uses constitutive and propagation equations to describe the structure; it is easy to implement for numerical calculations, with remarkable simplicity when using physical quantities such as elastic stiffness, permittivity and density along with rectangular window functions through which the boundary conditions are automatically included [START_REF] Yu | Wave Propagation in the Circumferential Direction of General Multilayered Piezoelectric Cylindrical Plates[END_REF][START_REF] Yu | Toroidal wave in multilayered spherical curved plates[END_REF][START_REF] Elmaimouni | Acoustical Guided Waves in Inhomogeneous Cylindrical Materials[END_REF]. Moreover, the acoustic field distributions are easily obtained [START_REF] Elmaimouni | Modal analysis and harmonic response of resonators: an extension of a mapped orthogonal functions technique[END_REF][START_REF] Elmaimouni | Polynomial approach modeling of resonator piezoelectric disc[END_REF][START_REF] Elmaimouni | Modeling of MEMS resonator piezoelectric disc by means of an equicharge current source method[END_REF]. However, (i) it has only been applied to modelling Bulk Acoustic Wave (BAW) resonators in plates [START_REF] Raherison | Legendre polynomial modeling of composite BAW resonators[END_REF][START_REF] Raherison | 2D Legendre polynomial modeling of composite bulk acoustic wave resonators[END_REF][START_REF] Rabotovao | Modeling of high contrast partially electroded resonators by means of a polynomial approach[END_REF], and never for analyzing partially electroded cylindrical resonators; (ii) its convergence depends on the relative properties of the materials.

In this paper, as announced in the perspective of a previous paper [START_REF] Elmaimouni | Modeling of MEMS resonator piezoelectric disc by means of an equicharge current source method[END_REF], we present a polynomial approach for studying the frequency spectrum of a partially electroded piezoelectric MEMS resonator disc. The formulation statement is based on linear threedimensional elasticity using an analytic form for the field variables. The boundary, symmetry, and continuity conditions according to the geometry of the structure are automatically incorporated into the physical equations that govern the structure. The incorporation of the electrical source in the field equations is illustrated. The numerical results for harmonic and modal analyses are presented for a full and a partial metallization. To take into account the high contrast between the electroded and non-electroded regions, the structure studied is divided into two parts: the electroded one and the non-electroded one. Resonant and antiresonant frequencies, electric input admittance (impedance), electromechanical coupling coefficient and field profiles, easily obtained, are presented for PIC151 and PZT5A. The results obtained are, for extreme geometries allowing a one-dimensional approached analytical modelling, compared with those obtained by the approached analytical model. A good agreement is obtained. We assume that the elastic and piezoelectric medium of the cylinder is characterized by constant mass density , elastic moduli at constant electric field ij C , piezoelectric constant ij e and electric permittivity at constant strain ij defined with respect to the coordinates axes z Or . The strain-displacement relations are given by [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF]: (1) where u , v , and w are the mechanical displacement components respectively in the radial, circumferential, and axial directions. We assume the disc material has the symmetry of a hexagonal crystal in class 6mm.

Mathematics and formulation of the problem

The constitutive equations for a 6mm linear piezoelectric material can be expressed as: ) In cylindrical coordinates, the field equations governing wave propagation in piezoelectric media are given by [START_REF] Auld | Acoustic Fields and Waves in Solids[END_REF] The structure and the electric source are axisymmetric. In this case, the wave fields do not depend on the azimuthal variable ( 0 /

).
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is the elastic stiffness constant at constant electric displacement. i, j and k take on the values 1,2 and 3.

The stress-displacement and the electric displacement relations for the extensional vibration in region (1) with electrodes and region (2) without electrodes are given respectively in Eqs. ( 5) and ( 6):
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where the superscript (i) denotes the region number, )

(i the electric potential with the usual quasi-static approximation, The boundary and continuity conditions in the regions ( 1) and ( 2) of the piezoelectric resonator disc are given by:
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where R R a / 0 0 denotes the metallization rate.

We automatically incorporate the boundary conditions by introducing the functions ) ( 1 q and ) ( 3 q , defined as follows:
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In the propagation equations, the delta functions, ) 1

( 1 q and ) 1 ( ) 1 ( 3 3 q q
, coming from the derivatives of 1 q and 3 q , multiplied by the normal stress components and electrical displacement components allow to satisfy the boundary conditions in the studied cylindrical structure [START_REF] Datta | Analysis of surface waves using orthogonal functions[END_REF]. In this case, the field equations governing wave propagation in piezoelectric media in regions ( 1) and ( 2) are given by:
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The mechanical displacement components

) (i u and ) (i w and the electrical potential ) (i with 2 , 1 i
in the regions (1) and ( 2) are expanded in a double series of orthonormal functions in 1 q and 3 q with an analytic form chosen to ensure some of the boundary, symmetry, and continuity conditions. Here, we can develop these variables in terms of the Legendre polynomials s P m ' as: 
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V is a voltage applied to the resonator.

In region (2): In practice, the summation over the polynomials in equations ( 9) and ( 10) is truncated at some finite values M m and N n when higher order terms become essentially negligible. Substituting Eqs. ( 5) and ( 6) into Eqs. (8a) to (8f) and multiplying Eqs. (8a) and (8d) with 2 2 1 H q , and Eqs. (8b), (8c), (8e) and (8f) with 2 1 H q , taking account of the mechanical displacements and the electric field of Eqs. ( 9) and ( 10), multiplying each equation of the region (1) and region (2) respectively by
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with j and k running from zero to respectively M and N; integrating over 1 q from zero to 0 a in region (1) with electrodes, and from 0 a to 1 in region (2) without electrodes, and 3 q from - 1 to +1, and taking advantage of the orthonormality of the polynomials
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The developed model allows both harmonic and modal analyses to be performed. It gives direct access to the resonant and anti-resonant frequencies respectively.

Using the displacement current density in the cylindrical piezoelectric resonator defined as z D i J , the average electrical current 0 I that flows through the metallic electrode of area S is given by:
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) ( 33 0 [START_REF] Schmidt | Extensional vibrations of piezoelectric plates[END_REF] Using the expression of the electrical displacement component z D defined in equation ( 3), and calculating the spatial average current 0 I of the partially electroded resonator, we obtain:
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is the static capacitance of the partially electroded resonator, mn P0 is the identity matrix with m and n running from zero to respectively M and N,
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Harmonic analysis

The objective is now to calculate the normalized electrical input admittance of the micro electromechanical system (MEMS) resonator Y expressed in a normalized form as:
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The expansion of equation [START_REF] Huang | Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes[END_REF] gives the normalized electric input admittance:
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Modal analysis: resonance and anti-resonance frequencies

Modal analysis is a specific case of harmonic analysis obtained by cancellation of the electrical excitation. To calculate the resonance frequencies r , we will cancel the voltage excitation 0

V across the electrodes. In this case, Eq. ( 12) becomes:
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Similarly, for calculating the anti-resonance frequencies a , we vanish the normalized input admittance in Eq. ( 16), and substituting in Eq. ( 12) the voltage excitation source 0

V by the obtained result gives: 

Numerical results

Based on the foregoing formulations, a computer program was written with Matlab software to numerically calculate the resonance and anti-resonance frequencies through a modal analysis and the normalized electrical input admittance through a harmonic analysis. The physical properties of the materials used in this approach, PIC151 and PZT5A, are presented in the following Table 1. As mentioned above, the summation over the polynomials in Eqs.

(9) and ( 10) is truncated at some finite values M m and N n when higher order terms become negligeable.

Validation with complete metallization

In this paper, we developed a semi-analytical analysis for modelling MEMS resonators with a voltage excitation using a partial metallization. Two analyses are presented: harmonic analysis for calculating the normalized input electrical admittance of the resonator and modal analysis for calculating the resonance and anti-resonance frequencies. In order to validate our numerical results, these analyses have been validated in the case of a MEMS resonator with a complete metallization for thickness extensional, rod and radial modes for which onedimensional approached analytical models exist [START_REF] Elmaimouni | Modeling of MEMS resonator piezoelectric disc by means of an equicharge current source method[END_REF]. For the present approach, we simulate a complete metallization by % 99 0 a .

We used our present polynomial approach to calculate the normalized electric input impedance of a fully electroded PIC151 resonator as a function of the normalized frequency for thickness extensional modes (Fig. 2a), rod modes (Fig. 2b) and radial modes (Fig. 2c).

Obtained results are compared with results obtained thanks to a previous software written exclusively for fully electroded resonators [START_REF] Elmaimouni | Modeling of MEMS resonator piezoelectric disc by means of an equicharge current source method[END_REF]. The truncation order is M=N=10. As shown in these figures, our results are in good accordance. Our approach was also initially tested for resonance and anti-resonance frequencies of PIC151 resonator disc respectively for thickness, rod and radial modes. Comparison of our results not reported here with approached analytical method revealed an agreement to six digits. are presented in Table 2 with associated accuracies.

Guo r polynomial r Guo r r f f f _ _ _ 100 %
. A good agreement is obtained.

Partially electroded disc with varying metallization rates

In this section, resonant and anti-resonant frequencies for a MEMS resonator disc were also calculated with several metallization rates. Tables 3 and4 give respectively a comparison of the resonant r f and anti-resonant a f frequencies for an acoustic wave 3D resonator with associated accuracies obtained between our results using the present polynomial approach and those of an approached analytical model easy to write for thin discs (Appendix A).

To illustrate the capabilities of our polynomial approach with regard to the harmonic analysis for a partially electroded resonator, we have calculated the normalized electric input admittance of the resonator. Fig. 3a and3b show the calculated normalized admittance for a contour mode PIC151 resonator as a function of the normalized frequency with the metallization rates respectively 60% and 90%. We have also calculated the variation of the frequency parameter
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of the first five extensional resonance modes as a function of the metallization rate 0 a for PIC151 resonator as shown in Fig. 4. The good agreement obtained between our results calculated by the present polynomial approach and literature results [START_REF] Huang | Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes[END_REF] validates our present approach for a partially electroded resonator.

The electromechanical coupling coefficient is an important characteristic of a piezoelectric resonator for converting mechanical energy into electrical energy, or vice versa [START_REF] Huang | Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes[END_REF]. This coefficient can be defined as

a r a f f f K 2 2 2
for a f > r f , where r f is the resonance frequency and a f is the antiresonance frequency for a particular mode. This equation was applied to the appropriate pairs of frequencies a f , r f for each mode to calculate the electromechanical coupling coefficient. This coupling coefficient for the first three lowest modes is plotted in Fig. 5 as a function of the metallization rate 0 a for the PIC151 resonator.

The results using the present polynomial approach are compared with those published by Chi-Huang [START_REF] Huang | Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes[END_REF] for a partially electroded piezoceramic disc. In this presentation, it is clear that the first mode possesses by far the largest coupling of all order modes.

Mechanical displacement modes shapes are characterized by the radial and axial displacements components for longitudinal modes without any circumferential displacement

) 0 , 0 , ( v w u
. We used our present polynomial approach to calculate the field profiles for a PIC151 partially electroded MEMS resonator. Fig. 6 with a metallization rate 50%. In both cases, the displacement modes shape of the MEMS resonator is dominant under the metallized area.

Conclusion

In this paper, we developed a semi-analytical analysis for modelling high contrast partially electroded MEMS resonators. In our model, the Legendre polynomial approach which describes the structure and incorporates automatically the electrical source, the boundary, symmetry, and continuity conditions in the constitutive and propagation equations is used to calculate the frequency spectrum of a piezoelectric MEMS resonator disc. Two analyses were presented: harmonic analysis for calculating the normalized input electrical admittance and modal analysis for calculating the resonant and anti-resonant frequencies of the resonator. We have also presented as a function of the metallization rate 0 a , the electromechanical coupling coefficient and the variation of the frequency parameter of the extensional vibration. The particle displacement profiles are also calculated. The results of our theory are compared with those published earlier in order to check up the accuracy and range of applicability of the proposed approach. The developed software proves to be very efficient to retrieve the resonance and anti-resonance frequencies and the modes of all orders.

Appendix A: For a completely electroded thin disc (H<<R), a one-dimensional approached analytical model easy to write allows to calculate the analytical normalized admittance used to validate our present polynomial approach written for partially electroded resonator: where: 
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  Consider a homogeneous solid cylinder of finite height assumed to have undergone a uniform polarization treatment in the thickness direction. R and H are respectively the radius and thickness of the cylinder. Assume that the crystalline z-axis coincides with the axis of the disc taken as the z-axis of a cylindrical coordinate system z Or . The polarization is in the z direction and the faces at 2 / H z of the disc are covered with central electrodes of radius 0 R . The electrodes on top and bottom surfaces are assumed to be very thin and their mechanical properties such as mass and stiffness are assumed negligible. They are connected to a signal generator

  stress and electric displacement components.

  :

  coefficients respectively for the mechanical displacements components and the electrical potential. They are given respectively

  proposed expansions for the mechanical displacement components and the electric potential allow to impose the continuity at sought in the form of series of orthonormal polynomials m Q where we take advantage of the parity of the physical variables and of the s P m ' .

f

  are matrices whose elements are integrals and function of a 0 , , the form factor R H a / and the physical properties of the materials. The integrals of all matrix elements are calculated using the recurrence relation of

3. 2 .

 2 Validation with a partially electroded disc: varying pattern of electrodes 05mm and H=2.03mm were also calculated and compared with those calculated by Guo et al.[START_REF] Guo | The vibration characteristics of piezoelectric discs[END_REF] using a finite element method. The corresponding results

  R=15mm and H=1mm. A good agreement is
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 1234 Fig. 1 Configuration of partially electroded piezoelectric resonator disc
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 567 Fig. 5 Electromechanical coupling coefficients for the PIC151 piezoelectric resonator as a function of the metallization rate 0 a ( polynomial results, solid lines: results from C. H. Huang et al)

  

Table 1

 1 Material properties used in simulations for PIC151 and PZT5A piezoelectric resonator discs.
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Table 2

 2 Normalized resonance frequencies of first six rod modes of a partially metallized PZT5A

	Table(s)				
	piezoelectric resonator				
		Partially electroded disc	r	%
	Mode	Guo f _ (kHz) [30] r	r f _	polynomial	(kHz)
	1	53.74		53.64	0.1861
	2	140.6		140.78	0.1280
	3	215.8		215.54	0.1205
	4	295.5		295.68	0.0609
	5	364.5		363.67	0.2277
	6	431.6		432.11	0.1182

Table 3

 3 Normalized resonance and anti-resonance frequencies of first five radial modes of a partially

	Table(s)								
	electroded PIC151 piezoelectric resonator disc with	a	0	5 . 0
			Resonance frequency					Anti-resonance frequency
		r f _	analytical	r f _	polynomial			a f _	analytical	a f _	polynomial
	Mode	(kHz)	(kHz)	r	%		(kHz)	(kHz)	a	%
	1	71.732	71.757	0.0349	84.293	84.331	0.0451
	2	189.636	189.742	0.0559	195.042	195.256	0.1097
	3	291.586	291.675	0.0305	295.914	296.217	0.1024
	4	406.851	406.979	0.0315	408.011	408.442	0.1056
	5	508.965	509.312	0.0682	512.447	512.968	0.1017

Table 4

 4 Normalized resonance and anti-resonance frequencies of first five radial modes of a partially

	Table(s)								
	electroded PIC151 piezoelectric resonator disc with	a	0	7 . 0
			Resonance frequency					Anti-resonance frequency
		r f _	analytical	r f _	polynomial			a f _	analytical	a f _	polynomial
	Mode	(kHz)	(kHz)	r	%		(kHz)	(kHz)	a	%
	1	67.198	67.221	0.0327	83.503	83.615	0.1341
	2	178.315	178.421	0.0594	178.617	178.843	0.1265
	3	286.670	286.786	0.0405	288.139	288.454	0.1093
	4	387.758	387.865	0.0276	391.387	391.790	0.1030
	5	487.643	487.859	0.0443	489.303	489.868	0.1155