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The stabilization of the wave equation in a polygonal domain with cracks is analyzed. Using the multiplier method, we show that a boundary stabilization augmented by an internal one concentrated in a small neighbourhood of the cracks lead to the exponential stability of the problem.

Introduction

We consider a bounded polygonal domain of R 2 with straight cracks and denote by Ŵ its boundary. We assume that Ŵ = ¯ D ∪ ¯ N where Ŵ D and Ŵ N are two open connected parts of Ŵ.Wealsoassumethat Ŵ N = Ŵ 1 N ∪ Ŵ 2 N where Ŵ 1 N is the set of cracks. If ŴD ∩ Ŵ2

N is not empty, we assume that the interior angle at each corner between Ŵ D and Ŵ 2 N is <π(that means that is convex in a neighbourhood of this corner). We further suppose that the cracks emerge from Ŵ 2 N in the following sense. If we denote by (σ j ) 1≤ j≤n the different cracks of , then for all j ∈{1 ...,n}, each σ j is supposed to have one extremity T j in common with Ŵ 2 N , while the other extremity Fig. 1 Polygonal domain with cracks S j does not belong to ŴD ∪ Ŵ2 N , see Fig. 1. This assumption implies that the cracks never meet the Dirichlet part of the boundary. In the sequel ν denotes the unit outward normal vector along Ŵ 2 N (defined everywhere except at the vertices of Ŵ 2 N ), while on a crack σ j it is simply a fixed unit normal vector.

On this domain , we consider the following problem ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ u tt -△u + au t = 0in × (0, +∞) u = 0o nŴ D × (0, +∞) ∂u ∂ν = 0o nŴ 1 N × (0, +∞) where O =∪ n j=1 O j , O j being a fixed neighbourhood of σ j as small as we want and a 0 , b 0 are positive real numbers. We further assume that int Ŵ D =∅or α(x)>0, ∀x ∈ Ŵ 2 N .

∂u ∂ν + αu + bu t = 0o nŴ 2 N × (0, +∞) u(•, 0) = u 0 , u t (•, 0) = u 1 in , (1.1) where a ∈ L ∞ ( ), α, b ∈ H s (Ŵ 2 N ),
(1.2)

Note that the boundary condition

∂u ∂ν = 0o nŴ 1 N × (0, +∞)
means that it holds on both sides of the cracks. We suppose that the domain verifies the following geometric conditions:

∃x 0 ∈ R 2 : (x -x 0 ) • ν ≤ 0onŴ D and (x -x 0 ) • ν>0on Ŵ2 N , (1.3) 
(x -S j ) • ν(x)>0on( Ō j ∩ Ŵ2 N )\{T j }, ∀ j = 1,...,n.

(1.4)

Problem (1.1) is a wave equation with a standard damping term on Ŵ 2 N but set in a domain with cracks. Such a problem was largely studied in the literature but always without the presence of cracks, see [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF][START_REF] Komornik | Exact controlabillity and stabilization-The multiplier method[END_REF][START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF][START_REF] Martinez | Boundary stabilization of the wave equation in almost star-shaped domain[END_REF][START_REF] Moussaoui | Singularités des solutions du problème mêlé, contrôlabilité exacte et stabilisation frontière[END_REF]. We also refer to [START_REF] Brossard | Stabilisation frontiére du systéme élastodynamique dans un polygone plan[END_REF][START_REF] Brossard | Boundary stabilization of elastodynamic systems, II. The case of a linear feedback[END_REF] for stability results concerning the elastodynamic system with mixed boundary conditions. Let us notice that some controllability results in domain with cracks are obtained in [START_REF] Grisvard | Contrôlabilité exacte de l'équation des ondes en présence de singularités[END_REF] with some geometrical assumptions and in [START_REF] Niane | Contrôlabilité exacte frontìere de l'équation des ondes en présence de fissures par adjonction de contrôles internes au voisinage des sommets de fissures[END_REF][START_REF] Nicaise | Boundary exact controlability of interface problems with singularities I: addition of the coefficients of singularities[END_REF][START_REF] Nicaise | Boundary exact controlability of interface problems with singularities II: Addition of internal controls[END_REF] with weaker assumptions by adding internal control near the crack tips. In the spirit of these later papers, due to the expected singular behavior of the solution near the crack tips, we add an additional internal damping in a small neighbourhood of the cracks. Under the previous assumptions, using the multiplier method we show the exponential stability of our problem.

Note that all the above assumptions are used in the proof of our stability result (this will be specified through the paper), and are not easy to relax except the one concerning the convexity near the corner of Ŵ D and Ŵ 2 N , indeed if this is not the case it suffices to add an internal damping in a neighbourhood of these corners to get an exponential decay.

The paper is organized as follows. Section 2 is devoted to the well posedness of problem (1.1) obtained by using standard semigroup theory. In Sect. 3, we state the exponential stability result and recall a useful integral inequality from [START_REF] Komornik | Exact controlabillity and stabilization-The multiplier method[END_REF]. Some technical results concerning regularity results for elements in the domain of the Laplace operator and the use of some Green's formulas are proved in Sect. 4. Finally by the multiplier method with an appropriated combination of different multipliers we prove our stability result.

Well posedness of the problem

The well posedness of problem (1.1) follows from standard semigroup theory.

By setting U = (u, u t ) T ,wehaveU t = (u t , u tt ) T = (u t , △u -a(x)v) T .
Then problem (1.1) can be formally written in the form

⎧ ⎨ ⎩ U t + AU = 0 U(0) = (u 0 , u 1 ) T , (2.1) 
where the operator A is defined by

A(u,v) T = (-v, -△u + av) T ,
with domain

D(A) = ⎧ ⎨ ⎩ (u,v) T ∈ (E(△; L 2 ( )) ∩ H 1 Ŵ D ( )) × H 1 Ŵ D ( ) such that ∂u ∂ν = 0onŴ 1 N and ∂u ∂ν =-(αu + bv) on Ŵ 2 N ⎫ ⎬ ⎭ ,
where

H 1 Ŵ D ( ) = u ∈ H 1 ( ), u = 0onŴ D , and 
E(△; L 2 ( )) = u ∈ H 1 ( ), -△u ∈ L 2 ( ) .
From these definitions, we see that for (u,v) T in D(A) then u belongs to the domain D(△) of △ defined by

D(△) = u ∈ E(△; L 2 ( )) ∩ H 1 Ŵ D ( ) : ∂u ∂ν = 0o nŴ 1 N and ∂u ∂ν ∈ H 1 2 (Ŵ 2 N ) . Indeed as α, b ∈ H s (Ŵ 2 N ), by using Theorem 1.4.4.2 of [9], for u,v ∈ H 1 ( ),w e have γ 0 (αu + bv) ∈ H 1 2 (Ŵ 2
N ) (where γ 0 is the trace operator). Let us now introduce the Hilbert space

H = H 1 Ŵ D ( ) × L 2 ( ) with the norm u v 2 H = ||∇u|| 2 L 2 ( ) + √ αu 2 L 2 (Ŵ 2 N ) +||v|| 2 L 2 ( )
and the natural associated inner product

u v , u * v * = (∇u •∇u * + vv * ) dx + Ŵ 2 N αuu * dσ.
By Green's formula we see that

A u v , u v =-∇v •∇udx+ (-△u + av)v dx - Ŵ 2 N αvudσ = Ŵ 2 N b|v| 2 dŴ(x) + a|v| 2 dx ≥ 0, for all (u,v) T ∈ D(A). Hence A is monotone.
Let us prove that the operator A + λI is surjective for at least one λ>0.

For ( f, g) T ∈ H, we look for (u,v) T ∈ D(A) solution of ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ -v + λu = f in , λv -△u + av = g in , u = 0o n Ŵ D , ∂u ∂ν = 0o n Ŵ 1 N , ∂u ∂ν + αu + bv = 0o n Ŵ 2 N .
(2.2)

Eliminating v = λu -f , it remains to find u ∈ H 1 Ŵ D ( )∩ E(△; L 2 ( )) which verifies ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -△u + (λa + λ 2 )u = g + (a + λ) f in , u = 0o n Ŵ D , ∂u ∂ν = 0o n Ŵ 1 N , ∂u ∂ν + (α + bλ)u = bf on Ŵ 2 N .
(2.

3)

The problem (2.3) admits a unique weak solution by using Lax-Milgram's Lemma. Indeed multiplying the first equation by v ∈ H 1 Ŵ D ( ) and by integrating formally by parts we get

c(u,v) = F(v), ∀v ∈ H 1 Ŵ D ( ), (2.4) 
where the bilinear and continuous form c is given by

c(u,v) = ∇u •∇v + (λa + λ 2 )uv dx + Ŵ 2 N (α + bλ)uv dσ, ∀u,v ∈ H 1 Ŵ D ( ),
while the linear form F is

F(v) = (g + (a + λ) f )v dx + Ŵ 2 N bfv dσ, ∀v ∈ H 1 Ŵ D ( ).
Since c is clearly strongly coercive on H 1 Ŵ D ( ) and F is continuous on H 1 Ŵ D ( ) (because g + (a + λ) f belongs to L 2 ( )), by Lax-Milgram's Lemma, problem (2.4) admits a unique solution u ∈ H 1 Ŵ D ( ). By taking first test functions v ∈ D( ),we recover the first identity of (2.3). This garantees that u belongs to E(△; L 2 ( ). Then using Green's formula (see Theorem 1.5.3.11 of [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF]), we see that u satisfies the third and fourth identities of (2.3). Setting v = λuf ,wehavefoundapair(u,v) T ∈ D(A) solution of (2.2). This shows that the operator A is maximal monotone and therefore -A generates a C 0 semi-group of contractions in H. Consequently, we can state the following existence results.

Theorem 2.1 If (u 0 , u 1 ) belongs to H 1 Ŵ D ( ) × L 2 ( ), then problem (1.

1) has one and only one weak solution u which satisfies u

∈ C([0, ∞), H 1 Ŵ D ( )) ∩ C 1 ([0, ∞), L 2 ( )). Furthermore, if (u 0 , u 1 ) belongs to D(A), then problem (1.1)
has one and only one strong solution u which satisfies (u, u t ) ∈ C([0, ∞), D(A)).

Stabilization result

We define the energy of problem (1.1)by

E(t) := 1 2 ⎛ ⎜ ⎜ ⎝ u 2 t (x, t) +|∇u(x, t)| 2 dx + Ŵ 2 N α|u(x, t)| 2 dσ dt ⎞ ⎟ ⎟ ⎠ . (3.1) 
Now, we give the following exponential stability of problem (1.1). [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF][START_REF] Komornik | Exact controlabillity and stabilization-The multiplier method[END_REF][START_REF] Martinez | Boundary stabilization of the wave equation in almost star-shaped domain[END_REF][START_REF] Moussaoui | Singularités des solutions du problème mêlé, contrôlabilité exacte et stabilisation frontière[END_REF].

For our future purposes we recall the following fundamental result which is proved in [START_REF] Komornik | Exact controlabillity and stabilization-The multiplier method[END_REF]: Lemma 3.3 [START_REF] Komornik | Exact controlabillity and stabilization-The multiplier method[END_REF] Let E : R + -→ R + be a non-increasing function such that there exists a constant T > 0 independent of t which verifies

+∞ t E(s)ds ≤ TE(t), ∀ t ≥ 0. (3.2) Then E(t) ≤ E(0)e (1-t T ) , ∀ t ≥ T. (3.3)

Some technical results

Our first goal is to state some regularity results for any element of D(△). For that purpose, let us recall that the standard crack singularity S j associated with the crack σ j with crack tip S j is defined by

S j (r j ,θ j ) = r 1 2 j cos θ j 2 ,
where (r j ,θ j ) are polar coordinates centred at S j such that θ j = 0or2π on the crack σ j . For further purposes we also fix a radial cut-off function j equal to 1 near S j and such that j is equal to zero outside a ball B(S j ,ε j ) with a small enough ε j in order that j is equal to zero near ∂ \σ j .

Lemma 4.1 There exists α 0 > 0(small enough and depending on ) such that any u ∈ D(△) admits the splitting

u = u R + n j=1 c j (u) j S j ,
where c j (u) ∈ R and u R belongs to W 2, p ( ), with p = 4 3 + α * for all α * ∈ (0,α 0 ).

Proof It suffices to apply Corollary 4.4.3.8 of [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF] (see Remarks 4.4.4.15 and 4.4.4.15 of [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF]) with p ≤ 2 such that

1 2 < 2 - 2 p < π ω m ,
where ω m is the maximal angle between the Dirichlet edges of Ŵ D , the Neumann edges of Ŵ 2 N and the edges between Ŵ 1 N and Ŵ 2 N (that is < 2π due to our assumptions). Note that the trivial embedding

H 1 ( ) ֒→ W 1, p ( ), ∀ p ≤ 2,
implies, via a trace theorem, the embedding

H 1 2 (E)֒ → W 1-1 p , p (E), ∀ p ≤ 2, for any edge E of Ŵ 2 N . ⊓ ⊔ Lemma 4.2 Fo r a l l u , z ∈ D(△) we have △uz dx =-∇u •∇zdx+ Ŵ ∂u ∂ν zdσ. (4.1)
Proof According to the previous lemma, we have

u = u R + n j=1 c j (u) j S j , (4.2) 
z = z R + n j=1 c j (z) j S j , (4.3) 
with c j (u), c j (z) ∈ R, and u R , z R in W 2, p ( ) for any p = 4 3 +α * for all α * ∈ (0,α 0 ) where α 0 > 0 is small enough. But we notice that for α * < 2 3 , the Sobolev embedding theorem yields

W 2, p ( ) ֒→ W 1,q ( ),
for all p ≤ q ≤ q 0 := 8+6α * 2-3α * . We further see that the conjuguate p ′ > 1o f p (i.e.

1 p + 1 p ′ = 1
) is smaller than q 0 , consequently we get

W 2, p ( ) ֒→ W 1, p ′ ( ).
But Theorem 1.4.5.3 of of [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF] implies that

j S j ∈ W 1, p ′ ( ), ∀ j = 1,...,n.
These two properties implies that

D(△)֒ → W 1, p ′ ( ).
This embedding allows to use the standard Green's formula

△u R zdx =-∇u R •∇zdx+ Ŵ ∂u R ∂ν zdσ. (4.4)
For the singular part of u, for an arbitrary j = 1,...,n we write

△( j S j )zdx = lim ε→0 j,ε △( j S j )zdx,
where j,ε = \ B(S j ,ε).

Since j S j is regular in j,ε , we can apply Green's formula and obtain

j,ε △( j S j )zdx =- j,ε ∇( j S j ) •∇zdx + Ŵ\B(S j ,ε) ∂ ∂ν ( j S j )zdσ (4.5) - 1 2 ε 1 2 2π 0 cos θ j 2 z(ε, θ j ) dθ j .
Let us show that the last term tends to zero as ε tends to 0. Indeed using (4.3), we may write

ε 1 2 2π 0 cos θ j 2 z(ε, θ j ) dθ j = ε 1 2 2π 0 cos θ j 2 z R (ε, θ j ) dθ j + εc j (z) 2π 0 cos 2 θ j 2 dθ j .
Since W 2, p ( ) ֒→ C( ¯ ), z R (ε, θ j ) can be uniformly estimated in ε and therefore

lim ε→0 ε 1 2 2π 0 cos θ j 2 z(ε, θ j ) dθ j = 0.
Coming back to (4.5) and passing to the limit in ε → 0, we find that

△( j S j )zdx =-∇( j S j ) •∇zdx (4.6) + Ŵ ∂ ∂ν ( j S j )zdσ.
The identities (4.4) and (4.6) lead to (4.1). ⊓ ⊔ Remark 4. [START_REF] Brossard | Boundary stabilization of elastodynamic systems, II. The case of a linear feedback[END_REF] The identity (4.1) of the previous Lemma is well-known (see Theorem 1.5.3.11 of [START_REF] Grisvard | Elliptic problems in non smooth domains[END_REF]) but the difference stays on the assumption on v and on the fact that in the right-hand side an integral can be used instead of a duality bracket.

Now given u ∈ D(△), we are interested in z ∈ H 1 ( ) solution of ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ △z = 0i n , z = 0o n Ŵ D , ∂z ∂ν = 0o n Ŵ 1 N , z = u on Ŵ 2 N . (4.7) This is equivalent to z = ω + u, where ω ∈ V := {w ∈ H 1 ( ) : w = 0onŴ D ∪ Ŵ 2 N } solution of ∇ω •∇w dx =-∇u •∇w dx, ∀w ∈ V.
This means that ω ∈ V is a weak solution of the problem

⎧ ⎨ ⎩ △ω =-△u in ω = 0o n Ŵ D ∪ Ŵ 2 N , ∂ω ∂ν = 0o n Ŵ 1 N .
In other words, ω belongs to

D(△ Dir ) ={v ∈ E(△; L 2 ( )) ∩ V : ∂u ∂ν = 0s u rŴ 1 N }.
Lemma 4.4 There exists α 1 > 0(small enough and depending on ) such that any v ∈ D(△ Dir ) admits the splitting

v = v R + n j=1 c j (u) j S j ,
where c j (v) ∈ R and v R belongs to W 

z R = u R + ω R and c j (z) = c j (u) + c j (ω), ∀ j = 1,...,n, when ω = ω R + n j=1 c j (ω) j S j .
Hence, the identities (4.8) and (4.9) are proved exactly as in Lemma 4.2.

Proof of the main result

For a strong solution u, we can derive (3.1) and by Green's formula (see Lemma 4.2) we obtain

E ′ (t) =-a(x)u 2 t dx - Ŵ 2 N b(x)u 2 t dσ ≤ 0. (5.1)
Then the energy is nonincreasing and furthermore

E(S) -E(T ) = T S a(x)u 2 t dxdt + T S Ŵ 2 N b(x)u 2 t dσ dt, ∀ 0 ≤ S < T. (5.2)
Now we use the piecewise multiplier method (see [START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF]) but adapted to our singular setting. For any extremity S j of a crack, we consider a cut-off function η j , such that η j = 1 near σ j and with support in a neighbourhood of σ j . We also assume that the support of η j does not meet the support of

η i if i = j. Setting m(x) = ⎛ ⎝ 1 - n j=1 η j (x) ⎞ ⎠ (x -x 0 ),
as multiplier we take

M(u)(x) = 2 ⎛ ⎝ n j=1 (x -S j )η j (x) + m(x) ⎞ ⎠ •∇u(x) + u(x). Lemma 5.1 If u is the strong solution of problem (1.1), then u verifies -2 T 0 E(t)dt + T 0 |∇u| 2 n j=1 (x -S j ) •∇η j dxdt - T 0 |∇u| 2 n j=1 (x -x 0 ) •∇η j dxdt -2 T 0 (x k -x 0k ) n j=1 ∂η j ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt-2 T 0 n j=1 (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dxdt - ∂u ∂t M(u) dx T 0 - T 0 ( ∂u ∂t ) 2 n j=1 (x -S j ) •∇η j dxdt + T 0 ∂u ∂t 2 n j=1 (x -x 0 ) •∇η j dxdt - T 0 a(x) ∂u ∂t M(u)dtdx + T 0 Ŵ ⎛ ⎝ n j=1 (x -S j )η j ) + m ⎞ ⎠ • ν( ∂u ∂t ) 2 dσ dt - T 0 Ŵ ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt + T 0 Ŵ N ∂u ∂ν udσ dt +2 T 0 Ŵ ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt + T 0 Ŵ 2 N α|u| 2 dσ dt = 0. (5.3)
Proof We use the multiplier method, namely we multiply (1.1)by M(u) and integrate by parts.

•Transformation of

T 0 -u M(u) dxdt.
For any extremity S j of the crack σ j and u strong solution of problem (1.1), we get

-u η j (x -S j ) •∇udx = ∂u ∂ x i ∂ ∂ x i (η j (x k -S jk ) ∂u ∂ x k )dx - Ŵ ∂u ∂ν η j (x -S j ) •∇udσ = ∂u ∂ x i ∂(x k -S jk ) ∂ x i η j ∂u ∂ x k dx + ∂u ∂ x i ∂η j ∂ x i (x k -S jk ) ∂u ∂ x k dx + η j (x k -S jk ) ∂u ∂ x i ∂ ∂ x i ( ∂u ∂ x k )dx - Ŵ ∂u ∂ν η j (x -S j ) •∇udσ = |∇u| 2 η j dx + (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dx - 1 2 |∇u| 2 div((x -S j )η j )dx + 1 2 Ŵ η j (x -S j ) • ν|∇u| 2 dσ - Ŵ η j ∂u ∂ν (x -S j ) •∇udσ. (5.4) 
Furthermore Green's formula yields

-u m •∇udx =- 1 2 |∇u| 2 div( m)dx + ∂ m k ∂ x i ∂u ∂ x i ∂u ∂ x k dx + 1 2 Ŵ m • ν|∇u| 2 dσ - Ŵ ∂u ∂ν m •∇udσ,
and hence

T 0 -u M(u) dx =- T 0 |∇u| 2 div ⎡ ⎣ n j=1 (x -S j )η j ) + m ⎤ ⎦ dxdt + 2 T 0 ∂ m k ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt +2 T 0 |∇u| 2 n j=1 η j dxdt +2 T 0 n j=1 (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dxdt + T 0 |∇u| 2 dxdt 13 + T 0 Ŵ ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt - T 0 Ŵ N ∂u ∂ν udσ dt -2 T 0 Ŵ ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt.
As div m = (xx 0 ) •∇(1 -n j=1 η j ) + 2(1 -n j=1 η j ), we may write

- T 0 |∇u| 2 div ⎡ ⎣ n j=1 (x -S j )η j ) + m ⎤ ⎦ dxdt =-2 T 0 |∇u| 2 dxdt - T 0 |∇u| 2 n j=1 (x -S j ) •∇η j dxdt + T 0 |∇u| 2 n j=1 (x -x 0 ) •∇η j dxdt, and 2 
T 0 ∂ m k ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt = 2 T 0 (x k -x 0k ) n j=1 ∂η j ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt + 2 T 0 ⎛ ⎝ 1 - n j=1 η j ⎞ ⎠ |∇u| 2 dxdt.
These identities lead to

T 0 -u M(u) dx =-2 T 0 |∇u| 2 dxdt - T 0 |∇u| 2 n j=1 (x -S j ) •∇η j dxdt + T 0 |∇u| 2 n j=1 (x -x 0 ) •∇η j dxdt +2 T 0 (x k -x 0k ) n j=1 ∂η j ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt + 2 T 0 (1 - n j=1 η j )|∇u| 2 dxdt +2 T 0 |∇u| 2 n j=1 η j dxdt 14 +2 T 0 n j=1 (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dxdt + T 0 |∇u| 2 dxdt + T 0 Ŵ ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt - T 0 Ŵ N ∂u ∂ν udσ dt -2 T 0 Ŵ ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt,
and after some elementary calculations, we obtain [START_REF] Brossard | Stabilisation frontiére du systéme élastodynamique dans un polygone plan[END_REF] (but excluded here), we would get

T 0 -u M(u) dx =- T 0 |∇u| 2 n j=1 (x -S j ) •∇η j dxdt + T 0 |∇u| 2 n j=1 (x -x 0 ) •∇η j dxdt +2 T 0 (x k -x 0k ) n j=1 ∂η j ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt +2 T 0 n j=1 (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dxdt + T 0 |∇u| 2 dxdt + T 0 Ŵ ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt - T 0 Ŵ N ∂u ∂ν udσ dt -2 T 0 Ŵ ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt. (5.5) ⊓ ⊔ Remark 5.2 In the case Ŵ 2 N ∩ Ŵ D ={ s 1 , s 2 } treated in
T 0 -u M(u) dx ≥- T 0 |∇u| 2 n j=1 (x -S j ) •∇η j dxdt + T 0 |∇u| 2 n j=1 (x -x 0 ) •∇η j dxdt +2 T 0 (x k -x 0k ) n j=1 ∂η j ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt +2 T 0 n j=1 (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dxdt + T 0 |∇u| 2 dxdt + T 0 Ŵ ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt - T 0 Ŵ N ∂u ∂ν udσ dt -2 T 0 Ŵ ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt. •Transformation of T 0 ∂ 2 u ∂t 2 M(u) dxdt.
Integrating by parts in time, we have

T 0 η j ∂ 2 u ∂t 2 (x -S j ) •∇udtdx = η j ∂u ∂t (x -S j ) •∇udx T 0 - T 0 η j (x k -S jk ) ∂u ∂t ∂ ∂t ∂u ∂ x k dtdx = η j ∂u ∂t (x -S j ) •∇udx T 0 + 1 2 T 0 ∂u ∂t 2 div(η j (x -S j ))dxdt - 1 2 T 0 Ŵ η j (x -S j ) • ν ∂u ∂t 2 dσ dt,
and then

T 0 ∂ 2 u ∂t 2 m •∇udtdx = ∂u ∂t m •∇udx T 0 - T 0 m k ∂u ∂t ∂ ∂t ∂u ∂ x k dtdx = ∂u ∂t m •∇udx T 0 + 1 2 T 0 ( ∂u ∂t ) 2 div mdxdt - 1 2 T 0 Ŵ m • ν ∂u ∂t 2 dσ dt. Similarly T 0 ∂ 2 u ∂t 2 M(u)dtdx = ∂u ∂t M(u) dx T 0 + T 0 ( ∂u ∂t ) 2 div ⎡ ⎣ n j=1 (x -S j )η j ) + m ⎤ ⎦ dxdt - T 0 ( ∂u ∂t ) 2 dxdt - T 0 Ŵ n j=1 (x -S j )η j ) + m • ν( ∂u ∂t ) 2 dσ dt,
and

T 0 ∂u ∂t 2 div ⎡ ⎣ n j=1 (x -S j )η j ) + m ⎤ ⎦ dxdt = 2 T 0 ∂u ∂t 2 dxdt + T 0 ( ∂u ∂t ) 2 n j=1 (x -S j ) •∇η j dxdt - T 0 ∂u ∂t 2 n j=1 (x -x 0 ) •∇η j dxdt, it then follows that T 0 ∂ 2 u ∂t 2 M(u)dtdx = ∂u ∂t M(u) dx T 0 + T 0 ∂u ∂t 2 n j=1 (x -S j ) •∇η j dxdt - T 0 ∂u ∂t 2 n j=1 (x -x 0 ) •∇η j dxdt+ T 0 ∂u ∂t 2 dxdt - T 0 Ŵ ⎛ ⎝ n j=1 (x -S j )η j + m ⎞ ⎠ • ν ∂u ∂t 2 dσ dt. (5.6)
We deduce the requested identity from (5.5) and (5.6).

Setting

I 1 = T 0 |∇u| 2 n j=1 (x -S j ) •∇η j dxdt - T 0 |∇u| 2 n j=1 (x -x 0 ) •∇η j dxdt -2 T 0 (x k -x 0k ) n j=1 ∂η j ∂ x i ∂u ∂ x i ∂u ∂ x k dxdt -2 T 0 n j=1 (x k -S jk ) ∂u ∂ x i ∂η j ∂ x i ∂u ∂ x k dxdt - ∂u ∂t Mdx T 0 - T 0 ∂u ∂t 2 n j=1 (x -S j ) •∇η j dxdt + T 0 ∂u ∂t 2 n j=1 (x -x 0 ) •∇η j dxdt - T 0 a(x) ∂u ∂t M(u)dtdx
and

I 2 = T 0 Ŵ ⎛ ⎝ n j=1 (x -S j )η j + m ⎞ ⎠ • ν ∂u ∂t 2 dσ dt - T 0 Ŵ ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt + T 0 Ŵ N ∂u ∂ν udσ dt + 2 T 0 Ŵ ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt + T 0 Ŵ 2 N α|u| 2 dσ dt, by Lemma 5.1, we get 2 T 0 E(t)dt = I 1 + I 2 .
We now need to estimate appropriately I 1 and I 2 .

The values of I 2 on Ŵ D , Ŵ 1 N and Ŵ 2 N , are respectively

I 2 (Ŵ D ) = T 0 Ŵ D (x -x 0 ) • ν|∇u| 2 dσ dt + T 0 Ŵ D ⎛ ⎝ n j=1 (x -S j )η j + m ⎞ ⎠ • ν ∂u ∂t 2 dσ dt ≤ 0, I 2 (Ŵ 1 N ) = 0,
and

I 2 (Ŵ 2 N ) = T 0 Ŵ 2 N ⎛ ⎝ n j=1 (x -S j )η j + m ⎞ ⎠ • ν ∂u ∂t 2 dσ dt - T 0 Ŵ 2 N ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ • ν|∇u| 2 dσ dt + T 0 Ŵ 2 N ∂u ∂ν udσ dt + 2 T 0 Ŵ 2 N ∂u ∂ν ⎡ ⎣ m + n j=1 η j (x -S j ) ⎤ ⎦ •∇udσ dt + T 0 Ŵ 2 N α|u| 2 dσ dt.
Remark 5.3 If the cracks are not straight we cannot garantee that I 2 (Ŵ 1 N ) = 0, in the same manner if Ŵ D meets one crack, then I 2 (Ŵ D ) is no more non positive.

Lemma 5.4 Let u be a strong solution of problem (1.1).

There exist C > 0 and ε 0 > 0 such that for every ε ∈]0,ε 0 [

I 2 (Ŵ 2 N ) ≤ ε T 0 E(t)dt + C ε ⎛ ⎜ ⎜ ⎝ E(0) + T 0 Ŵ 2 N α|u| 2 dσ dt ⎞ ⎟ ⎟ ⎠ , ∀T > 0.
(5.7)

Proof Set m = m + n j=1 η j (x -S j ), then I 2 (Ŵ 2 N ) = T 0 Ŵ 2 N -m • ν|∇u| 2 + m • ν ∂u ∂t 2 -αu + b ∂u ∂t M(u) dσ dt + T 0 Ŵ 2 N α|u| 2 dσ dt. On Ŵ 2 N ,wehave m • ν(x) = ⎛ ⎝ 1 - n j=1 η j (x) ⎞ ⎠ (x -x 0 ) • ν(x) + n j=1 η j (x)(x -S j ) • ν(x),
and we deduce by the hypotheses (1.3) and (1.4), that there exists a constant m 0 > 0 such that

m • ν(x) ≥ m 0 , ∀x ∈ Ŵ 2 N .
By using Young's inequality, we obtain

I 2 (Ŵ 2 N ) ≤ T 0 Ŵ 2 N ||m|| ∞ + ||b|| ∞ ||m|| 2 ∞ b ε + ||b|| ∞ b 2ε ∂u ∂t 2 + εu 2 dσ dt + T 0 Ŵ 2 N 2ε -m • ν) |∇u| 2 dσ dt
where C is a positive constant. The previous estimate for ε< m 0 2 , allows to deduce that

I 2 (Ŵ 2 N ) ≤ T 0 Ŵ 2 N ||m|| ∞ + ||b|| ∞ ||m|| 2 ∞ b ε + ||b|| ∞ b 2ε ∂u ∂t 2 + εu 2 dσ dt + C ε T 0 Ŵ 2 N α|u| 2 dσ dt.
As b is uniformly positive definite, there exists a constant c 1 > 0 such that

T 0 Ŵ 2 N ||m|| ∞ + ||m|| ∞ b ε + b 2ε ∂u ∂t 2 dσ dt ≤ c 1 ε T 0 Ŵ 2 N b ∂u ∂t 2 dσ dt ≤- c 1 ε T 0 E ′ (t)dt ≤ c 1 ε E(0).
By applying Poincaré's inequality, we get

ε Ŵ 2 N u 2 dσ ≤ c 2 ε |∇u| 2 dx ≤ 2c 2 εE(t),
where c 2 is a positive constant independent of t. These three estimates imply (5.7). ⊓ ⊔ For all j, we consider a cut-off function η j such that η j = 1insuppη j with support in a neighbourhood of supp η j . By setting O = n j=1 supp η j and O ′ = n j=1 supp η j , we have the following result:

Lemma 5.5 Let u be a strong solution of (1.1). Then, there exists C > 0 such that for all T > 0

T 0 O |∇u| 2 dxdt ≤ C ⎡ ⎢ ⎢ ⎣ E(0) + T 0 O ′ ⎛ ⎜ ⎜ ⎝ ∂u ∂t 2 + u 2 ⎞ ⎟ ⎟ ⎠ dxdt + T 0 O ′ ∩Ŵ 2 N ∂u ∂t 2 dσ dt + T 0 O ′ ∩Ŵ 2 N u 2 dσ dt ⎤ ⎥ ⎥ ⎦ .
(5.8)

Proof Multiplying (1.1)by η j u and integrate by parts, we obtain

A = T 0 -△u η j udxdt = T 0 ∇u •∇( η j u)dxdt - T 0 Ŵ ∂u ∂ν η j udσ dt = T 0 u∇u •∇ η j dxdt + T 0 |∇u| 2 η j dxdt - T 0 Ŵ ∂u ∂ν η j udσ dt = T 0 |∇u| 2 η j dxdt - 1 2 T 0 u 2 △ η j dxdt - T 0 Ŵ ∂u ∂ν η j udσ dt + 1 2 T 0 Ŵ u 2 ∂ η j ∂ν dσ dt = T 0 |∇u| 2 η j dxdt - 1 2 T 0 u 2 △ η j dxdt + T 0 Ŵ 2 N ((αu + bu t ) η j u + 1 2 u 2 ∂ η j ∂ν )dσ dt. B = T 0 ∂ 2 u ∂t 2 η j udxdt = ∂u ∂t η j udx T 0 - T 0 ∂u ∂t 2 η j dxdt and C = T 0 a ∂u ∂t η j udxdt.
Adding A, B and C, and summing on j, we obtain

T 0 |∇u| 2 n j=1 η j dxdt = 1 2 T 0 u 2 △ ⎛ ⎝ n j=1 η j ⎞ ⎠ dxdt - ∂u ∂t n j=1 η j udx T 0 + T 0 ∂u ∂t 2 η j dxdt - T 0 a ∂u ∂t η j udxdt + T 0 Ŵ 2 N -(αu + bu t ) η j u - 1 2 u 2 ∂ η j ∂ν dσ dt.
Hence by Young's and Cauchy-Schwarz's inequalities, we obtain (5.8).

⊓ ⊔

In order to obtain the requested integral inequality, we need to estimate the terms

T 0 O ′ u 2 dxdt and T 0 O ′ ∩Ŵ 2 N u 2 dσ dt in (5.8
), as well as the term

T 0 Ŵ 2 N
α|u| 2 dσ dt in (5.7). For that purposes, we prove the following Lemmas. Lemma 5.6 Let u be a strong solution of problem (1.1). Then there exists a positive constant C such that for all T > 0 and ε ∈ (0, 1), we have

T 0 au 2 dxdt ≤ C ε ⎛ ⎜ ⎜ ⎝ E(0) + T 0 Ŵ 2 N αu 2 dσ dt ⎞ ⎟ ⎟ ⎠ + ε T 0 E(t)dt.
(5.9)

Proof For all t ≥ 0, consider the problem: find z = z(t) solution of

⎧ ⎨ ⎩ △z = au in z = 0o n Ŵ D , ∂z ∂ν = 0o n Ŵ N .
This problem admits the weak formulation: let z ∈ H 1 Ŵ D ( ) be the unique solution of

∇z •∇w dx =-auw dx, ∀w ∈ H 1 Ŵ D ( ).
(5.10)

Taking w = z in (5.10) we obtain

|∇z| 2 dxdt =-auzdx.
By Cauchy-Schwarz's and Poincaré's inequalities, this implies that

|∇z| 2 dxdt ≤ C 1 au 2 dx ≤ C 2 E(t).
In particular, again using Poincaré's inequality and a trace theorem, we get

||z|| 2 L 2 ( ) ≤ C 3 || √ au|| 2 L 2 ( ) ≤ C 4 E(t), (5.11) ||z|| 2 L 2 (Ŵ 2 N ) ≤ C 5 || √ au|| 2 L 2 ( ) ≤ C 6 E(t).
(5.12) Differentiating (5.10) with respect to t, z ′ is solution of the problem

⎧ ⎨ ⎩ △z ′ = au ′ in z ′ = 0o n Ŵ D , ∂z ′ ∂ν = 0o n Ŵ N , (5.13) 
then the above considerations lead to 

||z ′ || 2 L 2 ( ) ≤ c 1 au ′2 dx ≤-c 1 E ′ (t). ( 5 
E(t)dt - C 1 2ε T 0 E ′ (t)dt ≤ C 1 2ε E(0) + ε T 0 E(t)dt. T 0 Ŵ 2 N b ∂u ∂t zdσ dt ≤ 1 2ε T 0 Ŵ 2 N b( ∂u ∂t ) 2 dtdσ + ε b ∞ T 0 Ŵ 2 N z 2 dtdσ ≤ 1 2ε E(0) + Cε T 0 E(t)dt. T 0 a ∂u ∂t zdxdt ≤ a ∞ 2ε T 0 a ∂u ∂t 2 dxdt + ε T 0 z 2 dxdt ≤ C ⎛ ⎝ 1 ε E(0) + ε T 0 E(t)dt ⎞ ⎠ . - ∂u ∂t zdx T 0 =- ∂u ∂t (T )z(T )dx + ∂u ∂t (0)z(0)dx ≤ 1 2ε u 2 t (T )dx+ε z 2 (T )dx+ 1 2ε u 2 t (0)dx + ε z 2 (0)dx ≤ CE(0). T 0 Ŵ 2 N αuzdσ dt ≤ α ∞ 2ε Ŵ 2 N T 0 αu 2 dσ dt + ε T 0 Ŵ 2 N z 2 dσ dt ≤ C ⎛ ⎜ ⎜ ⎝ 1 ε Ŵ 2 N T 0 αu 2 dσ dt + ε T 0 E(t)dt ⎞ ⎟ ⎟ ⎠ .
These five estimates in (5.16) lead to (5.9). ⊓ ⊔ Lemma 5.7 Let u be the strong solution of problem (1.1). Then there exist a positive constant C and ε 0 > 0 small enough such that for all T > 0 and ε ∈]0,ε 0 [, we have

T 0 O ′ ∩Ŵ 2 N u 2 dσ dt ≤ C ε 5 ⎛ ⎜ ⎜ ⎝ E(0) Ŵ 2 N T 0 αu 2 dσ dt ⎞ ⎟ ⎟ ⎠ + ε T 0 E(t)dt.
(5.17)

Proof By a trace theorem in O ′ , there exists C > 0 such that

O ′ ∩Ŵ 2 N u 2 dσ ≤ C u 2 H 3 4 (0 ′ )
. Now using an interpolation inequality (see for instance Theorem 1.4.4.3 of 7), we deduce that there exists K > 0 such that

O ′ ∩Ŵ 2 N u 2 dσ ≤ C ε 2 u 2 H 1 (0 ′ ) + K 2 ε -6 u 2 L 2 (0 ′ ) ,
for all ε>0. Setting η = Cε 2 , we find that

O ′ ∩Ŵ 2 N u 2 dσ ≤ η O ′ |∇u| 2 dx + Cη -3 u 2 L 2 (0 ′ ) ,
for all η ∈ (0, 1). Integrating this expression in (0, T ) and using Lemma 5.6 (estimate (5.9)), we obtain

T 0 O ′ ∩Ŵ 2 N u 2 dσ dt ≤ η T 0 E(t)dt+Cη -3 ⎛ ⎜ ⎜ ⎝ C ε ⎛ ⎜ ⎜ ⎝ E(0)+ Ŵ 2 N T 0 αu 2 dσ dt ⎞ ⎟ ⎟ ⎠ +ε T 0 E(t)dt ⎞ ⎟ ⎟ ⎠ ,
for all η ∈ (0, 1) and all ε ∈ (0, 1). This estimate is trivially equivalent to

T 0 O ′ ∩Ŵ 2 N u 2 dσ dt ≤ η + Cε η 3 T 0 E(t)dt + C εη 3 E(0),
for all η ∈ (0, 1) and all ε ∈ (0, 1). By chosing ε such that

Cε η 3 = η, or equivalently ε = C -1 η 4 , we obtain T 0 O ′ ∩Ŵ 2 N u 2 dσ dt ≤ 2η T 0 E(t)dt + C η 5 ⎛ ⎜ ⎜ ⎝ E(0) + Ŵ 2 N T 0 αu 2 dσ dt ⎞ ⎟ ⎟ ⎠ ,
for all η ∈ (0, 1) small enough. This proves (5.17) by renaming 2η = ε. ⊓ ⊔ Lemma 5.8 Let u be the strong solution of problem (1.1). Then there exists a positive constant C such that for all T > 0 and ε ∈]0, 1[, we have

T 0 Ŵ 2 N αu 2 dσ dt ≤ C ε E(0) + ε T 0 E(t)dt.
(5.18)

Proof We proceed as in [START_REF] Komornik | Exact controlabillity and stabilization-The multiplier method[END_REF] but here by taking into account the presence of cracks. Namely for all t ≥ 0, we consider z = z(t) ∈ H 1 ( ) solution of (see section 4)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ △z = 0i n z = 0o n Ŵ D , ∂z ∂ν = 0o n Ŵ 1 N , z = u on Ŵ 2 N . (5.19) This is equivalent to z = ω + u, where ω ∈ V ={w ∈ H 1 ( ) : w = 0onŴ D ∪ Ŵ 2 N } solution of ∇ω •∇w dx =-∇u •∇w dx, ∀w ∈ V.
This identity is equivalent to ∇z •∇w dx = 0, ∀w ∈ V.

( Let us now show that z also satisfies

f • zdx =- Ŵ z ∂v f ∂ν dŴ, ∀ f ∈ L 2 ( ), (5.22) 
where v f ∈ V is the unique solution of

∇v f •∇wdx = f wdx, ∀w ∈ V.
Indeed from (5.20) we may write

∇v f •∇zdx = 0.
As z is solution of (5.19) with u(t) ∈ D(△) and v f belong to D(△ Dir ) by Green's formula (see Corollary 4.5), we deduce that

-△v f zdx + Ŵ z ∂v f ∂ν dŴ = 0.
This proves the identity (5.22) since △v f =-f . In the identity (5.22) taking f = z, we may write for some positive constant K when p = 4 3 + α * . This estimate, a standard trace theorem and the embedding W

|z| 2 dx =- Ŵ z ∂v z ∂ν dŴ =-
1-1 p , p (Ŵ 2 N )֒ → L 2 (Ŵ 2 N ) lead to ∂v z ∂ν L 2 (Ŵ 2 N ) = ∂v zR ∂ν L 2 (Ŵ 2 N ) ≤ K 1 z L 2 ( ) ,
for some positive constant K 1 . Inserting this estimate in (5.23) we arrive at

|z| 2 dx ≤ C 0 Ŵ 2 N |u| 2 dŴ,
where C 0 is a positive constant. Since z ′ is solution of problem (5.19) with u ′ instead of u, the above arguments yield

|z ′ | 2 dx ≤ C 0 Ŵ 2 N |u ′ | 2 dŴ.
Multiplying the first identity of (1.1)byz and integrating on × (0, T ), we obtain Integrating by part in t and using (5.21), we obtain The rest of the proof is as in the proof of Lemma 5.6 using several times (5.2), (5.25), (5.25) and Young's inequality. ⊓ ⊔ Remark 5.9 Lemma 5.7 is only necessary if α is not uniformly bounded from below in O ′ ∩ Ŵ 2 N , but according to our assumption this could occur for instance in the case when int Ŵ D =∅. for all ε small enough. By choosing ε<2, we get

T 0 E(t)dt ≤ C 1 E(0),
where C 1 is a positive constant independent of T . Since our system is invariant by translation we get for all S ≥ 0,

S+T S E(t)dt ≤ C 1 E(S)
and by letting T tend to infinity we have shown that the energy of our system satisfies (3.2). Hence Lemma 3.3 allows us to conclude the exponential stability of (1.1).

forsomes > 1 2

 2 are such that a ≥ 0a.e.in , α ≥ 0a.e.inŴ 2 N , b > b 0 > 0a.e.inŴ 2 N and a > a 0 > 0a.e.inO ∩ ,

2 u 2 N

 22 ∂t 2 -△u + au t zdxdt = 0. (5.15) We now modify the first two terms of this left-hand side. Since u and z belong to the domain D(△) of △, by Lemma 4.2 we have -(5.10) (since u belongs to H 1 Ŵ D ( )) and the boundary conditions satisfied by u, we get αuzdσ dt.For the second term in (5.15) by integrating by parts in time, we directly have

. 20 )

 20 Taking w = zu, we find in particular∇z •∇(zu) dx = 0, or equivalently ∇z •∇udx = ∇z •∇zdx ≥ 0.(5.21)

since z = u on Ŵ 2 N , ∂v z ∂ν = 0onŴ 1 N

 21 and z = 0onŴ D . By Cauchy-Schwarz's inequality we obtain|z| 2 dx ≤ u L 2 (Ŵ 2 N ) ∂v z ∂ν L 2 (Ŵ 2 N ) .(5.23) By Lemma 4.1 we have for all α>0 small enoughv zR W 2, p ( ) ≤ K z L 2 ( ) ,(5.24)

×( 0

 0 ,T ) z(u ′′ -△u + au ′ )dxdt = 0. Applying Green's formula (allowed by Corollary 4.5) and taking into account the boundary conditions in (1.1), we get×(0,T ) (zu ′′ +∇z •∇u + au ′ z)dxdt + Ŵ 2 N ×(0,T ) (αu + bu ′ )udσ dt = 0.

  au ′ zdxdtzu ′ T 0 .

Proof of Theorem 3 . 1 1 2 T 0 E

 31120 By Lemmas 5.4 and 5.8 we haveI 2 = I 2 (Ŵ 2 N ) + I 2 (Ŵ D ) + I 2 (Ŵ 1 N ) ≤ I 2 (Ŵ 2 N ) ≤ C ε E(0) + ε T 0 E(t)dt,29recalling that I 2 (Ŵ D ) ≤ 0 and I 2 (Ŵ 1 N ) = 0. Applying Young's inequality, we obtainI dt ≤ I 1 + I 2 ,hence, from Lemmas 5.1, 5.6 and 5.7 we obtain that there exists C > 0 such that
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