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The BEM with graded meshes for the electric field
integral equation on polyhedral surfaces

A. Bespalov* S. Nicaise!

Abstract

We consider the variational formulation of the electric field integral equation on
a Lipschitz polyhedral surface I'. We study the Galerkin boundary element discreti-
sations based on the lowest-order Raviart-Thomas surface elements on a sequence of
anisotropic meshes algebraically graded towards the edges of I'. We establish quasi-
optimal convergence of Galerkin solutions under a mild restriction on the strength
of grading. The key ingredient of our convergence analysis are new componentwise
stability properties of the Raviart-Thomas interpolant on anisotropic elements.

Key words: electromagnetic scattering, electric field integral equation, Galerkin discreti-
sation, boundary element method, Raviart-Thomas interpolation, anisotropic elements,
graded mesh
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1 Introduction

In this paper, we study the Galerkin boundary element method (BEM) on graded meshes
for numerical solution of the electric field integral equation (EFIE) on a Lipschitz polyhe-
dral surface ' in R? (i.e., I' = 99, where Q C R? is a Lipschitz polyhedron). The EFIE
models the scattering of time-harmonic electromagnetic waves at a perfect conductor, and
the Galerkin BEM is widely used in engineering practice for simulation of this physical
phenomenon.

The Galerkin BEM considered in this paper employs divp-conforming lowest-order
Raviart-Thomas surface elements to discretise the variational formulation of the EFIE
(known as Rumsey’s principle). This approach is referred to as the natural BEM for the
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EFIE (there exist other approaches, e.g., based on a stable mixed reformulation of Rum-
sey’s principle, see [16]). Non-coercivity of the bilinear form in Rumsey’s principle (due
to the infinite-dimensional kernel of divr, cf. (Z1])) significantly complicates the conver-
gence analysis of Galerkin schemes. This problem can be overcome by using appropriate
decompositions of vector fields in order to isolate the kernel of divp (we refer to discussion
in [I8, Section 3|, to an abstract theory in |13} 12], and we outline available techniques
for constructing such decompositions in Section M]). These ideas have led to major ad-
vances in the convergence analysis and a priori error analysis of the BEM for the EFIE
on (open and closed) Lipschitz surfaces, see |24 16, [13, [19, [I8] for the h-version of the
BEM and [6], @, [5, [8] for high-order methods (p- and hp-BEM). All these results, however,
assume shape-regularity of the underlying meshes on I'.

It is well-known that convergence rates of the h-BEM with quasi-uniform and shape-
regular meshes are bounded by the poor regularity of solutions to the EFIE on non-smooth
surfaces. For example, on a closed polyhedral surface I' = OS2, the solution may be only
He¢(I')-regular (with a small € > 0 in the case of non-convex polyhedron €, cf. |20, Sec-
tion 4.4.2]), and convergence rate of the h~-BEM is only % + ¢ in this case, whereas in the
case of smooth solutions the lowest-order h-BEM converges with the optimal rate of %
(see |24, Theorem 8.2| and [B, Theorem 2.2|). Taking the cue from the h-BEM results for
the Laplacian (see [28] 27]), we expect that an optimal convergence rate of the h-BEM for
the EFIE can be recovered on the non-smooth surface I, if one employs the meshes that
are appropriately graded towards the edges of I'. These meshes contain highly anisotropic
elements along the edges of I', and none of the results mentioned above is applicable in
this case. Moreover, to the best of our knowledge, the quasi-optimality of the Galerkin
h-BEM with graded meshes for the EFIE has not been studied in the literature, and with
this paper we fill this theoretical gap.

In the next section, we introduce necessary notation and formulate the EFIE in its
variational form. In Section [l we construct graded meshes on I'; introduce the boundary
element space, and formulate the main result of the paper— Theorem B.I}that estab-
lishes quasi-optimal convergence of Galerkin solutions on graded meshes. The proof of
Theorem BT follows the approach suggested in [13] [19], summarised in [I8, Section 9.1],
and extended to a general class of operators in [12 Section 3|. At the heart of this ap-
proach is the decomposition technique described in Section [dl Section [B]is instrumental in
the construction of the corresponding discrete decomposition: here we establish new stabil-
ity properties of the Raviart-Thomas interpolant of low-regular vector fields on anisotropic
elements. In Section [@, we introduce the discrete decomposition and complete the proof
of Theorem [B.I] An essential ingredient here is the projection operator Q; with enhanced
approximation properties (see Proposition [6.1]). The proof of Proposition is given in
Section [7]



2 The electric field integral equation
The variational formulation of the EFIE is posed on the Hilbert space

X = H"(divp,I) := {u € H"*(T'); divpu € H2(I)}.

Here, divr denotes the surface divergence operator, Hr/ *(T) is the dual space of Hﬁ/ (1)

(the tangential trace space of H'(Q) on T', see [14] [I7]), and H~/2(T") is the dual space of
H'Y2(I"). The space X is equipped with its graph norm || - [|x. We refer to [14, [15, 17, 18]
for definitions and properties of H™/2?(divp,I') and other involved trace spaces. We also
recall from [I4], [17] that X is the natural tangential trace space of H(curl, Q2).

In the present article, we use the same notation as in [5], where we recalled definitions of
the full range of Sobolev spaces and differential operators needed for convergence analysis
of the BEM for the EFIE (see Section 3.1 therein). In particular, we use a traditional
notation for the Sobolev spaces (of scalar functions) H*, H* (s € [—1,1]), H{ (s € (0,1])
and their norms on Lipschitz domains and surfaces (see |25, 26]). The norm and inner
product in L?*(D) = H%(D) on a domain or surface D will be denoted by || - [jo.p and
(+,)o.p, respectively. The notation (-, )y p will be used also for appropriate duality pairings
extending the L?(D)-pairing for functions on D.

For vector fields we will use boldface symbols (e.g., u = (u1,us)), and the spaces (or
sets) of vector fields are also denoted in boldface (e.g., H*(D) = (H*(D))? with D C R?).
The norms and inner products in these spaces are defined componentwise. The notation for
the Sobolev spaces of tangential vector fields on I" follows [I4} 15, [I7]. In particular, LZ(T")
denotes the space of two-dimensional, tangential, square integrable vector fields on I'. The
norm and inner product in this space will be denoted by || - ||or and (-, -)or, respectively,
and we will also use (-,-)or for appropriate duality pairings extending the LZ(T)-pairing
for tangential vector fields on I'. The similarity of this notation with the one for scalar
functions should not lead to any confusion, as the meaning will always be clear from the
context .

For a fixed wave number k& > 0 and for a given source functional f € X’ the variational
formulation for the EFIE reads as: find a complex tangential field uw € X such that

a(u,v) = (Uidivru, divp v) — £2(¥u,v) = (f,v) Vv eX. (2.1)

Here, Wy (resp., W) denote the scalar (resp., vectorial) single layer boundary integral op-
erator on I for the Helmholtz operator —A —k?, see [16, Section 4.1] (resp., [I8, Section 5]).

To ensure the uniqueness of the solution to (ZI]) we always assume that k? is not an
electrical eigenvalue of the interior problem in (2.

3 Galerkin BEM on graded meshes. The main result.

For approximate solution of (2.I]) we apply the natural BEM based on Galerkin discreti-
sations with lowest-order Raviart-Thomas spaces on graded meshes.
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First, let us describe the construction of graded meshes on individual faces of I'. Here,
we follow 28], Section 3|. For simplicity, we can assume that all faces of I are triangles. On
general polygonal faces the construction is similar, or one can first subdivide the polygon
into triangles. On a triangular face ' C I', we first draw three lines through the centroid
and parallel to the sides of F. This makes F' divided into three parallelograms and three
trlangles (see Figure [M). Each of the three parallelograms can be mapped onto the unit
square Q = (0,1)2 by a lincar transformation such that the vertex (0,0) of @ is the image
of a vertex of F'. Analogously, each of the three sub-triangles can be mapped onto the unit
triangle T={x=(x1,23); 0<z <1, 0<a <z} C Q such that the vertex (1,1)
of T is the image of the centroid of F'. Next, the graded mesh on Q (and hence on T ) is
generated by the lines

i\ P i
$1:(N) s 1'2:<N) s i,j:O,l,...,N.

Here, 8 > 1 is the grading parameter, and N > 1 corresponds to the level of refinement.
Mapping each cell of these meshes back onto the face F', we obtain a graded mesh of
triangles and parallelograms on F' (see Figure [Ml). Note that the diameter of the largest
element of this mesh is proportional to 3N ~!. Hence, h = 1/N defines the mesh parameter,
and we will denote by 7 = {A} a family of graded meshes A} = {K; UK = T'} generated
on I' by following the procedure described above.

Let us now introduce the boundary element space Xj. It is known that Raviart-Thomas
surface elements provide an affine equivalent family of divp-conforming finite elements
under the Piola transformation, see [I1], Section II1.3]. We will write RT ((K) for the local
lowest-order Raviart-Thomas space on a generic (triangular or quadrilateral) element K,
and we denote by X; = ’R,TO(Ag) the corresponding space of divp-conforming boundary
elements over the graded mesh Af.

The following theorem states the unique solvability and quasi-optimal convergence of

the Galerkin BEM on graded meshes for the EFIE.

Theorem 3.1 There exists hg < 1 such that for any £ € X' and for any graded mesh Ai
with h < hy and € [1,3), the Galerkin boundary element discretisation of (21I) admits
a unique solution v, € X, and the h-version of the Galerkin BEM on graded meshes Ag
converges quasi-optimally, i.e.,

lu—uyl|x < C inf [ju-—v|x, (3.1)
veXy
where the constant C' may depend only on the geometry of I' and the grading parameter [3.

The proof of Theorem [B]] relies on an abstract theory for analysing convergence of
Galerkin discretisations for non-coercive variational problems like (2.I)). This theory was
developed in [13], [19], [I8, Section 9.1], and in [I2 Section 3|. In particular, it follows
from the latter article that in order to prove Theorem [B.Il we need to establish the following
properties:
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Figure 1: Graded mesh on the triangular face F' C T'. The triangular (resp., parallelogram)
block of elements Tr (resp., Q) is the image of the graded mesh on the unit triangle T
(resp., the unit square Q).

(A) the existence of a stable direct decomposition X = V @& W such that a|vyv and
—alwxw are both X-coercive, and a|yxw and a|wxv are both compact;

(B) the existence of the corresponding discrete decomposition X, = V,+W,, W, C W,
that is uniformly stable with respect to the mesh parameter h;

(C) the gap property

v = vallx
sup inf —=
V}LEV}L vev th HX

<e(h) with ¢(h) -0 as h— 0. (3.2)

We will prove Theorem [B.I] by verifying these properties in Sections [l and [6 below.

Remark 3.1 Theorem Bl remains valid if I' is a piecewise plane orientable open surface
(see [13] for the problem formulation and the underlying tangential trace spaces in this case).
The proof repeats the arguments in Sections @ and [0 below by using a specific construction
of the decomposition X =V & W as described in [9, Section 3.

Remark 3.2 If some information about the reqularity of the solution u to (2.1)) is available,
then convergence result of Theorem Bl translates into an a priori error estimate in the



natural X-norm. For scattering problems with sufficiently smooth source functional f (e.q.,
with £ representing the excitation by an incident plane wave), the regqularity of the solution
depends only on the geometry of I'. In particular, nonsmoothness of I leads to singularities
in the solution of the EFIE, severely affecting convergence rates of the h-BEM on shape-
reqular meshes. However, similar to the case of the Laplacian in |28, 27|, by employing
the graded meshes with sufficiently large grading parameter 5 (depending on the strength of
singularities in w) one may hope to recover the optimal convergence rate (i.e., the rate of
the h-BEM on quasi-uniform meshes in the case of a smooth solution). The main question
here is whether the restriction on the grading parameter 8 that guarantees quasi-optimality
of the Galerkin BEM in Theorem 3.1, is sufficient for recovering this optimal convergence.
We will address this issue in the forthcoming article [10].

Throughout the paper, C, C}, etc. denote generic positive constants that are indepen-
dent of the mesh parameter h and involved functions but may depend on the geometry of
I' and the grading parameter 5. We will also write a < b and A ~ B, which means the
existence of generic positive constants C, C, C5 such that « < Cb and C1B < A < (3B,
respectively.

4 Decomposition technique

Let us address property (A) in Section Bl One way to obtain a suitable decomposition is
to employ the LZ(T")-orthogonal Hodge decomposition of X, cf. [15]. In the context of the
h-BEM on shape-regular meshes, this idea was successfully exploited in [16], 24], 19] [13].
However, in the case of non-smooth surfaces, the regularity of surface gradients in the
V-component of the decomposition may be poor, and this causes substantial technical
difficulties in the analysis of the p- and Ap-BEM. For the p-BEM on plane open screens,
a modification of the above strategy was suggested in [6], where we consistently used
the H/2-inner product and proved H~'/2-orthogonality of the Hodge decomposition.
Unfortunately, these ideas do not generalise immediately to closed polyhedral surfaces or
piecewise plane open screens, neither to the hp-BEM with quasi-uniform meshes, cf. [4].
When attempting to use the Hodge decomposition for convergence analysis of the h-BEM
on graded meshes, poor regularity of vector fields in the V-component leads to severe
restrictions on the grading parameter 3.

An alternative technique employs a regularising projection R : X — X to construct a
decomposition of X with enhanced regularity of the V-component (see [23], [I8], Section 3],
and [12], Section 4.3.1]). The projection R is defined by employing the H*(2)-regular vector
potentials from the following lemma.

Lemma 4.1 [2, Section 3| For any bounded Lipschitz domain Q C R3 there exists a
continuous mapping L : curl H(curl, Q) — H'(Q) such that curlL® = & for all ® €
curl H(curl, Q).



Let u € X. The regularising projection R : X — X is defined as follows:
Ru:=((L®) xv)]|r,

where L is from Lemma [4.1 v denotes the unit outward normal to 2, ® := Vw, and
w € H'(Q) is the solution to the problem

—Aw =0 in €,

Vw - v =divru on I

The fact that fz divpudS = 0 for each connected component ¥ of I' guarantees ® &
curl H(curl, Q), and Lemma [£1] can be applied. By using elliptic lifting theorems, trace
theorems, and the continuity of L, we conclude:

3C = C(I') > 0 such that || Ru||H1/2(F) < Cl|divrul| g-1/2qry Vu € X, (4.1)
1

where Hi/2(l") C X is the rotated tangential trace space of H'(Q2) on ' = 99, see |14} [17].
By construction of R, we have on I’

divp Ru = divpu for any u € X, (4.2)

that is R* = R.
Now we can define the decomposition

X=Va&W with V:=RX)cH*T) and W :=(Id - R)(X). (4.3)

Decomposition (£3) was used in [9] to prove unique solvability and quasi-optimal conver-
gence of the hp-BEM with locally variable polynomial degrees on shape-regular meshes.
As we will see in this paper, the same decomposition technique can be used effectively in
the analysis of the h~-BEM on graded meshes.

By (@2) we conclude that W comprises divp-free vector fields. Stability of decompo-
sition (L3) follows from inequality (AI]) and the continuous embedding Hll/ T) = X.
Furthermore, the embedding V < L2(T") is compact by (&) and Rellich’s theorem. Thus,
thanks to the H~Y/2(T")-coercivity (resp., H|"/*(I')-coercivity) of W, (resp. ) (see [I8,
Lemmas 8, 7|), the X-coercivity of a|vxv and a|wxw is proved by the same arguments as
in |13, proof of Theorem 3.4]. The compactness of a|vxw and a|wxv is due to the conti-
nuity of Wy : H11/2(1") — HlL/Q(F) and the compactness of the embedding V — H11/2(F)
(see |18, Lemma 9]). This proves (A).

Before we can define the discrete counterpart of decomposition (4.3]), we need to find
a suitable projector onto the space of Raviart-Thomas surface elements. Stability of the
discrete decomposition will follow from stability properties of the Raviart-Thomas inter-
polation on anisotropic elements, which is the subject of the next section.



5 Raviart-Thomas interpolation on anisotropic
elements

In this section, we establish new stability properties of the Raviart-Thomas interpolant on
anisotropic elements. We will also prove the corresponding interpolation error estimates.
In the context of the finite element method, the analysis of interpolation operators on
anisotropic elements can be found in [3| [I]. For the Raviart-Thomas interpolation (see,
g., |1, Section 3|), the main idea is to study componentwise stability of the interpolant
on a reference element K. For sufficiently regular vector fields, this study relies on the
fact that the standard (scalar) trace operator is well defined for functions in WP(K) for
any p > 1. In our BEM application, however, the stability result is needed for low-regular
vector fields living in fractional Sobolev spaces H*(K) N H(div, K) with 0 < s < 1/2.
For such vector fields, the trace of the normal component only exists in a weak sense.
Therefore, instead of the standard trace argument used in [I], we use Green’s formula (5.3])
and consistently employ the anisotropic seminorms defined below. More precisely, for
s € (0,1/2] we introduce the H*-seminorms of anisotropic type. On the reference square
Q = (0,1)? these are defined as follows:

. / (-, 2)
e / (e, ) By .

These definitions are meaningful for all v € H S(@) due to |25, Theorem 10.2| which yields
that

Hs (0,1) dz,

[ull 4oy = Nlullog + [ulams@) + 4l ans ) (5.1)

On the reference triangle T = {(z1,22); 0 <21 <1, 0 <2y < 21}, the following seminorms

Ly /|u )
0 et / fu(as,

are also well defined for all u € H*(T). Indeed, by Theorem 1.4.3.1 of [2I] there exists a
continuous linear operator (called the extension operator) E : H*(T') — H*((Q) such that

H‘5($2 1 dx27

Hs 0,21) dxl

Eulz =u, Yue H(T).
Hence, applying (5.1)) to Eu, we have

|U|AH18(T) + |U|AH5(T“) S ||u||Hs(f)' (5.2)



We recall that the Raviart-Thomas interpolant IIgru is well-defined for any u € H*(K)
(s > 0) such that divu € L*(K), where K is any triangle or rectangle. Indeed, for such
vector fields the following Green’s formula has a meaning (see, e.g., [7, Lemma 2.1])

(0, Ve)ox + / divug = (u-n,@oox, Vo € H(K), (5.3)
K

with € € (0, s) and n denoting the outward unit normal to K. Hence, taking p € H'~°(K)
such that ¢ = 1 on the edge e C 0K and ¢ = 0 on 0K \e, we can define (u-n, 1), :=

(u - n, @)0,3](- N
In what follows, we will denote by ITlgr the Raviart-Thomas interpolation operator on
the reference element K (K = Q or T).

5.1 The reference square

On the reference square @, we denote by €; and ez the edges parallel to the z-axis, and
by €, and €, the edges parallel to the xo-axis (see Figure ). We recall from [I1] that the
lowest order Raviart-Thomas elements on () are defined as

7'\’,7'0(@) = {(a+cay,b+ dxy)'; a,b,c,d € R},

and that the associated degrees of freedom are given by

/u-nds, 1=1,2,3,4.

X2 ) X2 a
€3
P ~ é\3 ~
e, Q e, . e,
T
€, Xy €, Xy

Figure 2: The reference square @ and the reference triangle T.



~

Theorem 5.1 (i) For allu € H*(Q) with s > 1/2, we have for l =1, 2

[Mrrw)illog S lwllgs): (5.4)
(i) For all u € HY(Q) N H(div, Q) with 0 < s < 1/2, we have for | =1, 2
[(Hrrw)illo g < llwll gy + ‘ul“‘AHfH(@) + [|divullys (mod. 2). (5.5)

Proof. By symmetry, it will suffice to prove both statements for / = 1. One has
Mgru = (a4 cxy,b+dry)"  with a,b,c,d € R.

Hence R
[(Mrru)illy g = lla+czilly g < lal + el

and it remains to estimate |a| and |c|. Observe that
a=—(u-n,1)e and a+c=(u-n,1)g,.

Again by symmetry, it will suffice to estimate (u-n,1)gz,.

~

If u € H*(Q) with s > 1/2, then the trace of u; on €, is well-defined, and

lal = (w0, Doz, | = |(ur, Dol S llwallge-r2y S Nluall g -

This proves statement (i) (for [ = 1).

Now, let us consider u € H*(Q) N H(div, Q) for 0 < s < 1/2. In order to estimate
(u-n,1)pe, in this case, we fix a function ¢ € H'¢(Q), € € (0, s), such that ¢ = 1 on &
and ¢ = 0 on dQ\é;. Then by Green’s formula (5:3) we have

(u-m, 1oz, = (0, V), 5+ /A divap = (u1,019)y 5 + (u2, 020) 5 + /Adivu p.  (5.6)
Q Q
For the term (u1, 01), 5, We first use a standard duality argument,

‘(Uh&l@)o,@‘ < ||“1HH6(@) ||8130HH*5(@)7

and by the continuity property of 8, : H'=5(Q) — H*(Q) (see Theorem 1.4.4.6 of [21])
we find

|(u1, 10)g gl < Nl s @) 191 1<) (5.7)

The term (ug, 2¢), 5 requires more subtle analysis. First by (5.I)) and Fubini’s theorem,

we can write (hereafter, I = (0,1))

(Ug, 02@)0,@ — /0 (Ug(l’l, '), 82@(1’1, '))Ojde (58)
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Now we use a density argument to show that

/(; h(l’l)(l, aQQO(l’l, '))Ojdl'l = O, (59)

for all h € L*(I). Indeed, fix a sequence of smooth function ¢, such that
©n — @ in Hl_e(@) as n — oo.

Then for all x; € 1= (0,1), we have

1
(1L 0sgu(orNor = [ Bopalon,) doa = (a1, 1) = o, 0).
0

~

For any h € L*(I), multiplying this identity by h and integrating the result in x; € (0,1),

we obtain .
| b osenten Nogden = [ hoa— [ b
0 €3 e1

Hence, as n — oo we find that

1
/ B ) (L, Bop(a, )y iy = / he — / he.
0 €3 el

which proves (.9) by recalling that ¢ = 0 on é; and e3.
Coming back to (B.8) and using (5.9), we have

(U2782<P)o,@ - /0 (u2($17 ) = Mp(uz(21,-)), Oaip(1, '))o,fdxl’

where Mz(us(z1,-)) = fol us(x1, x2) drg is the mean of uy(zy,-) on I = (0,1) (clearly

~

M(ug(x1,+)) € L*(I)). At this stage we first use a duality argument and then again
Theorem 1.4.4.6 of |2I] to obtain

1
|(ug, Do)y 5l < /Huz(fﬁa')—Mf(uz(fﬁa')HHE(O,1)||8290($17')HH6(0,1)d561
0

1
< /Huz(fﬁa')—Mf(uz(fﬁa')HHS(OJ)H@(CM,')||H1f(o,l)dxl- (5.10)
0

We use Friedrichs’ inequality to estimate

Jua (1, ) — Mp(ua(@e, ) me01) < [Jua(zr, ) — Ma(ug(zy, )|

H5(0,1) S |ua(z1, ) H#(0,1)-

Using this estimate in (5.10) and applying the Cauchy-Schwarz inequality we arrive at

1
2

1
‘(“2782@0,@‘ S ‘u2|AH§(@)(/O (21, ')H?{lfs(o,l) dm1> : (5.11)

11



The last term on the right-hand side of (5.6) is estimated by applying the Cauchy-Schwarz
inequality:

/@div up < | divully g llellya-

Using this estimate and inequalities (5.7)), (5.11)) in (5.6), we obtain (B.H) (for [ =1). O

~

Corollary 5.1 (i) For allu € H*(Q) with s > 1/2, we have forl =1, 2

||ul - (HRTu)l”(),@ S Iul H5(Q)

~ ~

(ii) For allu € H*(Q) NH(div, Q) with 0 < s < 1/2, we have forl =1, 2

lue — (rra)ill g < lwl @) + |ul+1|AH;+1(c§)+||diV ullyg (mod. 2).

Proof. It is sufficient to prove only statement (ii). For [ = 1, we take u = u—(Mzauy, 0)",

where M@ul = f@ u;. One has
u-— ﬁRTﬁ = u— ﬁRTu, divu = div u,

and
|u1|H1/2(c§) = |a1|H1/2(@) = HalHHl/Q(@)'

The assertion then follows by applying estimate (B.3) to u. The proof is analogous for
l=2. 0

~

Corollary 5.2 Let s € (0,1/2]. For all u € H*(Q) such that divu € R, we have for
1=1,2
| (arwhllog S Il + lrsilagy @ (mod. 2) (5.12)

and

||, — (HRTu)lHO@ < |ul|Hs@) + |ul+1|AHf+1(@) (mod. 2). (5.13)
Proof. Note that the function ¢ € H'(Q) in the proof of Theorem B (ii) can be
chosen to have zero average on @), i.e., f@go = 0. Indeed, if this is not the case then we

fix ¢ € CgO(@) such that f@w = 1, and consider ¢ — (f@ LS Hl_a(@) that has the

~

same values on 8@ as o and also has zero average on (). Then, for divu € R, the last
term on the right-hand side of (5.6)) vanishes, and (5.12)) (resp., (5.13))) follows by the same
arguments as in the proof of Theorem [B.1] (ii) (resp., Corollary 5.1 (ii)). O
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5.2 The reference triangle

On the references triangle f, we denote by €; (resp. €3) the edge on the x;j-axis (resp.,
parallel to the zy-axis), and by e3 the oblique edge (see Figure ). We recall from [11] that
the lowest order Raviart-Thomas elements on 7" are defined as

RT(](f) = {(a’7 b>T + C(.Z‘17x2)—r; a, b7 cE R} )

and that the associated degrees of freedom are given by

/ u-nds, ©=1,2,3.
Theorem 5.2 (i) For all u € H*(T) N H(div,T) with s > 1/2, we have for | =1, 2

[(Mrru)illg 7 < llwl

ey + vl (514
(i) For all u € HY(T) N H(div,T) with 0 < s < 1/2, we have for | =1, 2
(e w)illo 7 S lwll gy + [l gy, 7 + divualgz (mod. 2). (5.15)

Proof. We will prove both statements for [ = 1. The proof is analogous in the case [ = 2.
One has Igru = (a,b) " + c(zy, 72) " with a, b, c € R. Hence

[(Merw)illg 7 = lla + cxilloz < lal + el < fa+cf +2]d].

Observe that
2¢ = div llpru = 2 / divu.

T
By the Cauchy-Schwarz inequality this yields

e S [ldivully 7.

Therefore in order to estimate H(ﬁRTu)lHoj one needs to bound |a 4+ ¢| = [(u-n, 1)z,

~

If u e H*(T) with s > 1/2, then we can use trace theorem to estimate
o+ el = [(u-n, Doz, | = [(ur, Doz | S luall o7

This proves statement (i) (for [ = 1).

Now, let us consider u € H*(T) N H(div,T) for 0 < s < 1/2. In order to estimate
(u-n,1)ps, in this case, we fix a function ¢ € H'%(T), ¢ € (0,s), such that ¢ = 1 on &
and ¢ = 0 on T'\ey. Then by Green’s formula (5.3) we have

(u-n,1)oz = (u, V@)of"‘/AdiVu@ = (u1, 009)g 7 + (2, Dap) 7 + /Adivu p. (5.16)
7 T
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As before (cf. ([B.1)), it is easy to show that

(1, 010)07] S Nl gec 1] e - (5.17)

The term (ug, 02p), 7 is treated as in the case of the reference square except that the

interval T = (0,1) in the xy-variable will be replaced by the interval I(z;) := (0, x;), but
the arguments remain mainly unchanged because x; < 1. More precisely, first by (5.2]) and
Fubini’s theorem, we may write

1
(U2,5280)0,f:/ (uz(z1, ), Oop(@1, *))o1(ar) d1- (5.18)
0

With a property similar to (5.9) we deduce that

1
(s, 8290)0,? = / (U2(5617 ) — Ml(ml)(u2(x17 1)), Oagp(y, '))071@1) dxy,
0

where M) (ua(21,-)) = x% o Lus(y, m2) dxy is the mean of ug(xy,-) on I(zy) = (0,21).
Then a duality argument yields

1
(w2, 020) 7| < / [ua(z1, ) = M) (ua(@, )| a1 020(@1, ) -2 (121)) dw1. (5.19)
0
Using a scaling argument and Friedrichs’ inequality we estimate

|ua(w1, ) — M) (ua(21, ) lae@)y < [Jua(wr, ) — My (ua(zy,-))|
S C|U2($17)

Hs(I(z1))
Hs(I(z1))s (520)

with C' > 0 independent of z; € (0, 1).

For the second factor in the integrand in (5.I9), in order to apply Theorem 1.4.4.6 of
[21] on a fixed domain, we first notice that ¢(z1,-) € Hy (I(z;)) a. e. in (0,1) > ;.
Therefore, for almost all z; € (0,1) there exists a sequence of functions ¢,, € C§°(I(xy)),
n=1,2,..., such that ¢, — ¢(x1,-) in Hy *(I(x1)) as n — oo and

1
/ Opn(x2)dre =0 Yn=1,2,....
0

Using a scaling argument, we deduce that

1 1 a~ ~ 3~
0p, v dxy 1 0P, Udxy
vere(I@n) |Vl sen=(0,1) [UlH=01)
v#0 v#0
As 0@,, has zero average, we can estimate
1y 0P, U dTo
Ha(vOnHH c(I(z1)) < @ : sup fo -
vers(0,1)  |Vlm=0,1)
5£0, [} 9=0
_1 0P, v dx.
S 7 51€ Sup fo “n 2 S 2+€||890n||H
BEH=(0,1) ||U||H5 (0,1)
520, [} =0
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Hence, by Theorem 1.4.4.6 of [2I] we prove that

—5+e ~ —3+e ~
10l -2ty S @12 I Pallmi-e0,1) S 12 |Pulmi-e(0,)-
Mapping back to the interval I(z1) = (0, 1) we have
10¢@nlla—=(1(21)) S [n| 1= (121))-
As n — oo we find
1020 (21, )| -2 (121)) < Chlo(@1, (1)) @ €. on (0,1) 3 zy,

with C > 0 independent of xy.

Using estimates (5.20) and (5.21) in (5.19) we arrive at

Hs(0,21) ||90(x17 ) ||H1*5(071‘1) dr.

}(u%a?@)of} 5/0 [ug(r1, )

Then the Cauchy-Schwarz inequality yields

1 1
2
(2020l 7] S bl ([ otan, Mo dn)

(5.21)

(5.22)

The last term on the right-hand side of (B.10]) is estimated by using the Cauchy-Schwarz

inequality:

/T diva g < [|divull, 7 ¢ ]lo7-

Using this estimate and inequalities (5.17), (5.22) in (5.16]), we obtain (5.I5) (for (=1). O

Corollary 5.3 (i) For allu € HS(T\) N H(div, f) with s > 1/2, we have forl =1, 2

e = (el 7 S Jrl e + 1div ul 7.

(i) For all u € HY(T) N H(div,T) with 0 < s < 1/2, we have for | =1, 2

|w — (Hrru)illg 7 S |w

The proof of this statement is similar to the proof of Corollary 5.1l

He(T) T |Ul+1|AHlsH(f) + [|divully7 (mod. 2).

Counterexample 5.1 Here we provide a counterexample which demonstrates that for low-
reqular vector fields the terms |ul+1|AHf+1(@) in (B.3) and |ul+1|AHf+1(f) in (B.I8) cannot be
omitted. This is in contrast to the case of sufficiently-reqular fields in (5.4) and (B14) (see

also Lemma 3.3 in [1]). In particular, if we assume that
I(Mrrwallo 7 S luall ey + l[divully 2

15
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for allw € H2(T) NH(div, T), then we will arrive at a contradiction. Indeed, inspired by
Example 2.6 of [3], we define on T x (0,1)

v (21, o, x3) = (21 — D)w® (29, x3) with w* (2, x3) = min {1,510glog E} for any € > 0.
T

Here, r = (22+12)2, and e is the Buler number. Taking Vvexv onT (herev = (0,0, —1)),
we find a divergence-free vector field

u (21, 22) = ((1 - l’l)agwa(l’g,()),’wa(l’g,O))T.

Stmple calculations show that ICIRTu€ = (0,1)", and by trace theorem we have

102/l gy = 1w (22, 0l 172y S 1wl (e 0,0))-

Since [|we]| g1 Fy 01y — 0 as € = 0 (see [3, Example 2.6]), we conclude that (u®)y — 0

in H2(T) as ¢ — 0. This seems to contradict (5.23) but not directly because the first
component of u® is not in H%(T). Hence, in order to arrive at a contradiction, we need

to show that if G2Z3) holds for all u € Hz(T) N H(div,T), then v satisfies 23) (with a
constant indepedent of ). Indeed, for a fized e > 0, as w*(-,0) € H'(0,1), we can consider
a sequence of smooth functions w, € C*([0,1]) such that

w, — w(-,0) in H'(0,1) as n — oo.
Then we define
w, (21, 22) = (1 — 1) 0wy (22), wa(z2)) "

One has u,, € H%(f) and divu,, = 0. Moreover, ﬁRTun — ﬁRTu5 as n — oo. Therefore,
applying estimate ([1.23)) to w, and letting n — oo, we conclude that u® satisfies (5.23)).

Remark 5.1 By Counterezampleb.Il we can easily show that a result similar to Lemma 3.3
in [1] for the Nédélec interpolant on the tetrahedron Ty = {(x1, 9, 23) € R3; z; > 0, i =
1,2,3 and 0 < x1 + 29 + 3 < 1} is not valid. In other words, the anisotropic estimate

I(Mxeav)illoz, S vl g,y + lleurl vz, 1=1,2,3
does not hold for all v € H'(Ty) = (Hl(fg))?’.

5.3 Anisotropic elements

In this subsection we will denote the functions on the elements K and K by u and u,
respectively. Analogous notation will be used for coordinates (e.g., x € K and X € K) and

for differential operators (e.g., div and JR/)
First, let us prove the following auxiliary result.
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Lemma 5.1 Let K be the image of the reference element K (I? T or K = @) under
diagonal scaling with matriz B = ("} ), where hy > 0. Then for any v € H~'?*(K) there
holds U2 1

N max {h"", hy'"}

L 1 L TP (524

where U(X) = u(BX), X = (71, 72) € K.

Proof. By the definition of the dual norm

_ (1, V),
[l jy-1/2y = sup _ HHiA
sed/2(R) W aL/2(R)

(5.25)

We now estimate the norm [[0]| g1z gy 10 € H'(K), then diagonal scaling yields

D15 7 = (hah2) ™" [[01[5

101013 & == huhy 1010l ke, 11020113 & = ha ha [|020][5 -
Therefore,
~ mm{h2 h3}
015 ) = 01015 & + 10:312 7 2 h—fi’H 2 ey

and by interpolation between L? and H} we find that

> mln{hl,h2}” || 1
HY2(K) ~ HY2(K) max{hl,h }

Since (4, 0), z = (h1ha) ™" (u,v)o x, We use (B.20) in (5.23) to obtain inequality (5.24). O

Now, we are in a position to prove the stability result and the corresponding error
estimate for the Raviart-Thomas interpolation on anisotropic elements.

9113 v vo e HY2(K). (5.26)

||H1/2(K)

Theorem 5.3 Let K be either the triangle T with vertices (0,0), (h1,0), (hy, h2), or the
rectangle @ with vertices (0,0), (h1,0), (0,hs), (hi,ha), where by > 0. Denote hyayx :=
max {hy, hy}. Then for any u € HY/?(K) with divu € R there holds for | =1, 2

h3 .
2 (s + i+ 10V 0l ) o 2

(5.27)

I(Trrw)fl§ xS lullf x +

hi’lax 3
o = (Tl S 72 (1o + s, + 1000 ) o 2)

e
(5.28)
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Proof. We consider only the case of the triangle, K = T. The proof is similar in the case

K=0Q
We use the Piola transformation to define i € HY2(T) N H(div,T) on the reference
triangle T" as follows:

(%) = hsB'u(BR) with B— (" YY)
0 ho

Then we have

@l = = h3 (hiho) " lwilldr = ha b lud|l§ 1,
~ 12 _ |y (X —ﬁl(A)|2 S
‘UI|H1/Q@) B / / (|71 = )% + |72 — 2 )3/2dxdy

\Ul )—Ul( )|2
= h3(h1ho) // dx dy
1ha) (21 — w12+ hy s — yo]2)3/2

< hl max‘ul‘Hlﬂ(T)?

ey = [ 8@ s 40

— ! /hl [/hﬂl/hl /hﬂl/h1 h%‘“2($17$2) - u2(x17y2)‘2 dxo dys d
- 1 T
0 0 0

hy?|2 — yof? h3

= Jultaley:

Furthermore, the standard properties of the Piola transformation yield

1 1/h 0 = . _ .
i BHRTu( ) = ( /0 2 1/h1) [Igru(x) and divu = hihydivu € R.

HRTH(X) =

Therefore, applying Theorem (ii) and Lemma [B.1] and using the fact that divii € R
(hence, ||divull, 7 =~ [|divul| ;-1/2(7)), we obtain

|(Merw)i |57 = hghahs [|(Merd)s |2 7

S bt (12 5+ 11 a1l sy + 1AV )

3 2
< max h 1

S B+ 2 ey + el )+ 5 ol iV U

Recalling that hp.x = max{hy, ho}, it is easy to see that
h? h1 h3

h max

hy = hg T hyhy

18



and then inequality (5.27) follows (for [ = 1 and K =1T).
Arguing as above and using Corollary 5.3 (ii) instead of Theorem [5.2 (ii) we establish
the error estimate in (5.28) for [ = 1. The proof is analogous in the case [ = 2. O

We can now estimate the L2-error of the Raviart-Thomas interpolation on the graded
mesh Afj on I'. The specific estimate that we need is for H'/2-regular vector fields with
discrete divergence.

Lemma 5.2 For any u € Hll/z(l“) such that divru € divp Xy, there holds

||u — HRTuHO’F 5 h1_5/2 ||ll||H1/2 r (529)
L

)
Proof. Let F be aface of I', and let Tr C F be a triangular block of elements, see Figure[ll
(the arguments are analogous for the parallelogram block of elements Qr). The triangle
Tr is mapped onto the unit triangle T by the affine transformation which is independent
of the mesh parameter h. Let us first establish the error estimate for the Raviart-Thomas
interpolation on the unit triangle 7" partitioned into elements as shown in Figure [l

The graded mesh on 7" comprises the quadrilaterals K;; = I; xI; (i,7 =1,...,N, i > j)
isomorphic to (0, h;) x (0, h;) with h; > h; and the triangles Kj; isomorphic to the triangle
with vertices (0,0), (0, h;), (h;i, h;). Applying error estimates from Theorem on each
element K;; (i > j), we have for [ =1, 2:

N e (|ul|§,1/2(Kij) el e+ ||divu||§,1/2(Kij>) (mod. 2).

Summing these estimates over all elements in T and recalling that h?h}l < h*78 for
1 <4,5 < N, we obtain

N 2
o = Trrul[§ 7 S 2%77 (|“|%11/2<Kz~j> Dl sy F iV “”21/2(1@»)' (5.30)
=1

ij=1
i>j

Note that by standard superposition argument
N N

7
Z Z |u2|ZH21/2(Kij) 5 Z ‘u2($1’ ')‘21/2(071‘1) dzy

i=1 j=1 i=1 71

_ [ : dry = ual? o 2 )l 5.31
- 0 ‘u2(x17')‘H1/2(0,x1) xl_‘u2|AH21/2(f) ~ ||u2||H1/2(f)7 ( . )

and similarly for u;. Hence, using standard superadditivity properties of the H 1/i—semi—
norm and the H~'/2.norm, we deduce from (E30) the following error estimate on 7°:

[u = Tgrulo 7 < A7 <||u||H1/2(f) + | div 11||H71/2(f)) :
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Applying now the Piola transformation associated with the mapping T — f, patching
together all individual blocks of elements on all faces of I', and using the superadditivity
of H'2- and H~'/?-norms (as the functions of subdomains), we obtain

lu — Tgrullor < AP/ (||u||H£/2(F) + HdivFuHH,m(F)) (5.32)

(here and below we use the space H® (I"), s > 0, which is defined in a piecewise fashion by

localisation to each face of I'; with the norm ||u] %{i(r) = > per UlF| %{S(F)).
Inequality (5.29) follows from (5.32) due to the continuity property of divr: HlL/ () —
H=Y2(T") (see |15, Section 4.2]). O

6 Discrete decomposition and the gap property

Following the ideas from [13] and [18, Section 9.1], we can use the Raviart-Thomas inter-
polation operator Ilgy to define the discrete counterparts of V.and W in ([@3)) (e.g., we
can set Vj, := IIrr(R(X},)), where R is the regularised projector introduced in Section H).
However, as it follows from the results in Section B the Raviart-Thomas interpolation of
low-regular vector fields on graded meshes Ag is only stable (with respect to the L%-norm)
when [ < 2. Since the definition of the energy space X for the EFIE involves the dual
space Hr/z(F) with a weaker norm than || - o, we can relax the restriction on the grad-
ing parameter § by employing a different projection onto the boundary element space and
using a duality argument on individual faces of I'. This approach was successfully used by
Hiptmair and Schwab in [24, Section 8] and by Buffa and Christiansen in [13] Section 4.2.2]
in the context of the h-BEM with shape-regular meshes for the EFIE (see [6], 5] for appli-
cations of these ideas to the analysis of the p-BEM and the Ap-BEM with quasi-uniform
meshes). We will demonstrate below that using these techniques together with stability
properties and error estimates for the Raviart-Thomas interpolation on anisotropic ele-
ments, one can design a stable discrete decomposition of the boundary element space on
Ag and prove the corresponding gap property ([B.2]) for any 5 < 3.

The construction of the desired projection operator is technically involved. Therefore,
we formulate here the final result relevant to our discussion and give a detailed proof in
the next section. In the Proposition below, Iy denotes the L?(T')-projection onto the space
of piecewise constant functions over the mesh Aﬁ, and H™"/ 2(T) denotes the dual space of

H'?(T") (with L2(T') as pivot space).

Proposition 6.1 There exists an operator Qp, : H* (I') N H(divr,I') — X, (s > 0) such
that
diVF ©) Qh = H(] ©) diVF, (61)

and for any € > 0

||11 - Qhu||H:1/2(F) 5 h1/2_€||u - HRTuHH(diVF,F) Yue Hs_(F) N H(din, F) (62)
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Thus, the operator Qj, inherits the crucial commuting diagram property (6.1) of the
classical RT-interpolation operator and, at the same time, allows to gain an extra power
of h when estimating the error (u — Qpu) in the dual norm.

Corollary 6.1 For any u € Hll/z(l“) such that divru € divpXy, one has Qpu € X,
divprQpu = divru, and for any € > 0 there holds

Ju Quall =~ Quly vy S K 63
Since || - ||H71/2(F) S ||H’1/2(1“)’ this result immediately follows from Proposition

and Lemma due to the commuting diagram property for Ilgr.

Since RX,, C HlL/Q(F) (see (A1) and divp RX) = divp X, (see ([A2])), the following
definitions are valid thanks to Proposition

Vh = (Qh e} R)Xh, Wh = (Id — Qh e} R)Xh

Using the commuting diagram property (6.1]), we have

divp Qh Ru, = Ho(diVF R llh) @ Ho(dinuh) = divru, Vu, € Xj. (64)

Therefore,
R Qh R=R on Xh, (65)

and hence Qp, o R : X;, — X, is a projection. This fact confirms that X, = V;, & W,,.
Property (6.4) also implies W, € W, and Corollary yields stability of the discrete
decomposition in the following sense: there exists C' = C(I", 5) such that

@D .
||Qh Ruh||x S C || RuhHHi/z(l") S C ||d1Vpuh||H71/2(p) S C ||llh||x ‘v’uh € Xh,

provided that 5 < 3. This verifies property (B) from Section [3
It remains to establish the gap property (C). Inequality ([32) in (C) is another conse-
quence of Corollary [6.Tk

o v =vallx |Rviy —villx @) |Rvi, — QnRvp|lx
sup inf —= <  sup ————= = sup
viEV), VEV ||Vh||X vREV), thHX vpEV) thHX
@ p3/2-8/2—¢ sup | thHHi/z(F) @2]) p3/2-B/2—¢

vRLEV), ||Vh||X

This completes the proof of Theorem [3.11
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7 Proof of Proposition

In this section, we give a constructive proof of Proposition For any u € H* (I') N
H(divr, I') we construct Qju in the Raviart-Thomas spaces on individual faces of I'. Let F
be a single face of I', and let Ag(F ) denote the restriction of the graded mesh Ag onto F.
For the sake of simplicity of notation we will omit the subscript F' for differential operators
over this face, e.g., we will write div for divp. We will also write (-, -) for the L?(F)- and
L?(F)-inner products, and similarly || - || for the corresponding norms of scalar functions
and vector fields. First, let us prove the following auxiliary result.

Lemma 7.1 For any s > 1/2, the Raviart-Thomas interpolation operator gy : H*(F') N
H(div, F) — RT (A} (F)), is L2(F)-stable, i.c., there exists a constant C' > 0 independent
of h such that

[ITrrullo.r < C(|lul

ey + [divullor)  Vu € HY(F) 0 H(div, F). (7.1)

Proof. Similarly to the proof of Lemma [5.2] it is sufficient to establish (Z]) for the unit
triangle T partitioned into elements as shown in Figure [I] (this is because the affine trans-
formations that map triangular blocks of elements T C F' onto T are independent of h).
The graded mesh on T (see Figure[Il) comprises anisotropic quadrilaterals K;; = I; x I;
(¢, = 1,...,N, ¢ > j) isomorphic to (0,h;) x (0,h;) with h; > h; and shape-regular
triangles Kj; isomorphic to the triangle with vertices (0,0), (0, hi), (hs, hs). Using the
Piola transform associated with the mapping K — K (i > j; K =T or Q), we define
ue HS(K ) N H(div, K ). Then, by the standard properties of the Piola transform we have

[Gulle 7 = hi " by lluallg s,y VGG 5z = Aahy lldiv g,

(T [Ig i, = P by | (e )1 [] -
The application of the scaling argument yields:

2 |y (X —ﬁl(A)l2 o
= dx d
(T) / / |x1—y1|2+|x2 Gy
. 2

(h%|zy = |? + by 2wy — yo|?)1Hs

[

. 2s 2

1
~ 12 o -~ =~ \|2
) = / (-, 22)

H‘5(01 d%\Q
hi h2|u1 $1,932) - Ul(y1,$2)| dxy diy d

= h?s_lhj‘u1|124Hf(Kij) (i>j)7
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and analogously,

|U1\AH3(Q = hi_lh?zs ‘“1‘2AH5(KU) (i > 7).

Therefore, applying Theorem (i), we obtain

IMrrw)ilf s, = [Mre@hllfz < @l + Idival, 2
Similarly, applying Theorem 5] (i) and recalling (51I), we have for i > j

I(Mrrwh§re, = hihy (M@l 5 S by @l

H*(Q)

12

piby (12 6 + @1 0y + 112 s )
= ||U1||3,K,L-j + hi® |u1|AHf(K,L-j) + hj |u1|AH§(K,L-j)‘ (7.3)

The estimates analogous to (Z.2)) and (Z3)) are also valid for ||(Ilgru)al|o,x,; With i > j.

Combining the estimates for both components of IIgru over all elements in 7" and
then using the superposition argument as in (5.31]) for anisotropic seminorms and the
superadditivity property of the H'/2-norm, we arrive at the desired result. O

Our construction of the operator Q,, follows the technique used by Hiptmair and Schwab
in the proof of Lemma 8.1 in [24] but relies on stability properties of the Raviart-Thomas
interpolation on graded meshes over individual faces of I'. Given u € H*(F') N H(div, F),
s >0, we consider the following mixed problem: Find (z, f) € H(div, F') x L2(F) such that

(z,v)+ (divv, f) = (u,v) Vv € Hy(div, F),
(div z, g) = (divu,g) Vg€ L3(F), (7.4)
Z-N = u-n on OF.

Here, L2(F) := {v € L*(F); (v,1) = 0}, n is the unit outward normal vector to OF, and
Hy(div, F') ;== {v € H(div, F'); v -n|gr = 0}.

The unique solvability of (.4]) is proved by standard techniques (see [11, Chapter II]).
In fact, it is clear that the pair (u,0) solves (Z.4)).

A conforming Galerkin approximation of problem (7.4)) with Raviart-Thomas elements
on the graded mesh A7 (F) reads as: Find (zp, fr) € Xu(F) x Ry(F) such that

(zp,v) + (divv, fr) = (u,v) Vv € X,(F) N Hy(div, F),
(divzp,g) = (diva,g) Vg€ Ry(F), (7.5)
Zh'fl: HRTu-ﬁ on OF.

Here, X;,(F) denotes the restriction of X; onto the face F', and R,(F) := {g € L*(F);
glx = const, YK € AY(F) and (g,1) = 0}.
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Note that the third equation in (7.H) implies (div(u — z;),1) = 0. Hence, the second
identity in (ZH) holds for any piecewise constant function g € divX,(F). Thus, divzy,
is the L?(F)-projection of divu onto div X, (F). In particular, if divu € div X;,(F) then
divz, = divu.

We now prove the unique solvability of (ZH)). First, for any g, € R,(F) we find a
function ¢ € H}(F') :== {¢p € H'(F); (¢,1) = 0} solving the variational problem

(V$, Vo) = (gn,0) Vo€ HI(F). (7.6)

Applying the standard regularity result for problem (Z.0]) (see, e.g., [22], p. 82]), we conclude
that ¢ € H'*"(F) with some r € (3, Z) (here, w < 27 denotes the maximal internal angle
at the vertices of F'), and

IV ollarry S @l aer ey S llgnll- (7.7)

Therefore, V¢ € H"(F) N Hy(div, F), r > L and the interpolant IlgrV ¢ € X, (F) N

2

Hy(div, ) is well defined and stable, due to Lemma [[Il Moreover, div (IlIgrV ¢) =
Iy (div V ¢) = gn. Hence, using (1) and (7)) we prove the discrete inf-sup condition:

sup (div vy, gn) S (div (IIgrV @), gn)

vheXp(F)nHo (div,F) || Valla@iv,ey  — [|HrrV @l Hdiv,F)
Vh7£0

- gn||*
— C IV 9llarry + |divV @) + [|div (IprV ¢)|]

> Cllgnll Vgn € Ru(F).

This condition along with the property div(X,(F) N Ho(div, F)) = R,(F) ensures ex-
istence, uniqueness, and quasi-optimality of the solution (z, f,) to ([ZH) (see [1I]). In
particular, using the quasi-optimality and recalling that z = u, f = 0, we estimate

u-—z - < inf u—v - 4+ inf —
| rlla@v,r S L | n | (div,F) o I.f — gull
(v —IIrru)-a|p=0

S lu = Hgrul|adiv,F)- (7.8)

We now estimate [[u — z[|g-1/2(p). One has for any € € (0, 3)

|(u =z, W)

Ju— Zh||ﬁ71/2(p) < fla- ZhHI:Ifl/QJrE(F) = sup (7.9)

weH1/2—<(F)\{0} HWHHl/Z*E(F)
For a given w € H'/?27¢(F), we solve the following problem: Find ¢ € H)(F) such that

(Vp,Vo)=—(w,V¢) Voec HY(F). (7.10)
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Similarly to (L), the regularity result for ¢ reads as
2BS Hs/z_e(F)a ||90||H3/2*5(F) S ||f||(H1/2+s(F))f S ||WHH1/2*5(F)7 (7.11)

where f € (H'/2+<(F)) is defined by f(¢) = —(w,V @), V¢ € H/?+<(F).
Then we set
q:=w+ Ve HY?5(F)nHy(div, F). (7.12)

It also follows from (ZI0) that divq = divw + divV ¢ = 0. Furthermore, we have by
(CII)-(Z12) that
||q||H1/2*5(F) S HWHHl/z*E(F) + ||90||H3/2*5(F) S ||W||H1/2*5(F)' (7.13)

We now use (.I2)) and integration by parts to represent the numerator in (Z9) as

(u—1zp,w) = (u—12z,,q) — (u—12,, Vo)
= (u—2y,q) + (div(u—24),0) = (u—24) - 0, )00
Hence, using (74), (Z.3) and recalling that z = u, f = 0, we find for any q; € X,(F)N
Hy(div, F') and arbitrary ¢, € R (F)
((u—zp, w)| = [(u—2p,q—aqs)+ (10— 2 q5)
+ (div (u = zp), ¢ — ¢n) — ((u = Hgru) - 0, 9)o,0r|
= |(u—2zn,q—ay) + (divas, f)
+ (div (u = z1), ¢ — ¢n) — ((u = Hgru) - 0, 9)o,0r|
u =z [|la = anl| + [(divan, fa)| + [|div (u = z)|| [l = @l
+ [[(u = TIgpu) - Q|| g-1+=0r) [|@]| -2 0F)- (7.14)

IA

Let HqR/Tu denote the Raviart-Thomas interpolation operator on the ‘coarse’ quasi-uniform
and shape-regular mesh AZ/ "(F) obtained from the graded mesh A}(F) by patching to-
gether long and thin elements (see Figure [3)). We also denote by Hg/ " the L*(F)-projector
onto the space of piecewise constant functions on Ag/ “(F). Then we set

@y = 1% € X, (F) N Hy(div, F) and @y, i= 09" € Ry, (F).

By the standard properties of the Raviart-Thomas interpolation and the L2-projection
on quasi-uniform and shape-regular meshes, we have

divq, = 1Y "divq = 0, (7.15)
(1)

la = anll S P2 Nlallgecy S 0272 [Wllge—y, (7.16)
I

lo = enll S hllelase—em S BIWlar2-2)- (7.17)
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Figure 3: An example of shape-regular quasi-uniform mesh (thicker lines) obtained by
patching together elements of the graded mesh (thinner lines).

To estimate ||(u —IIgru) - 0f| -1+ (o) We recall that feh(u —Ilgru) - n = 0 for any element
edge e, C OF. Therefore, we can use a standard duality argument to prove (cf. [I3, p. 259])

1—e
(0= Tierw) - 8l rseory S ( max fenl ) (w0 = Trrw) - 820,
€h

Then by interpolation we obtain

||(ll — HRTLI) : ﬁ||H71+8(8F) 5 hl/2—¢ ||(l,1 - HRTu) ’ leH*l/z(aF) 5 hl/2e ||Ll - HRTuHH(dinF)

(7.18)

(here, we also used the continuity of the normal trace operator v — v - ni|gr as a mapping
H(div, F) — H~Y2(0F)).
Furthermore, one has

Im)
lollai-<@r) S llellgsre-—<ry S IWllgre-—<)- (7.19)
Now, using (ZI5)-(7ZI9) in (ZI4) and recalling (Z.8)) we find
|(w =z, w)| S B2 [u = Tgrullagi,e W e g

Using this estimate in ([Z.9) we obtain

lu =zl g2y S Y270 0 — Tprul|ai,m)- (7.20)

26



Now we can prove the desired result.

Proof of Proposition For any u € H* (I')NH(divr, I'), we define Q,u € X, face by
face as Quu|p = z, for any face F' C I, where z;, is a unique (vectorial) solution to (Z.5).
Then the commuting diagram property (6.1]) follows from the second identity in (Z.3]), and

inequality (T.20]) yields estimate (6.2]). O
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