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BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS
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We construct classical solutions to the nonlinear Maxwell system with periodic boundary conditions which blow up in H(curl). A similar result is shown on the full space. Our construction is based on an analysis of a shock wave in one space dimension.

Introduction and main results

The Maxwell system

∂ t D(t) = curl H(t), ∂ t H(t) = -curl E(t), (1.1) 
div

D(t) = 0, div B(t) = 0 (1.2)
is one of the fundamental equations of physics (which is still poorly understood analytically in the nonlinear case). One has to complement (1.1) and (1.2) by material laws that connect the electric fields E and D, as well as the magnetic ones B and H. We focus on materials without magnetic response (as appearing in optics) and look at the case H = B. Moreover, we only treat instantaneous material relations where D is given as a pointwise function of E. This class of problems fits to the theory of quasilinear hyperbolic systems, cf. [START_REF] Benzoni-Gavage | Multidimensional Hyperbolic Partial Differential Equations[END_REF], [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions[END_REF] or [START_REF] Serre | Hyperbolicity of the nonlinear models of Maxwell's equations[END_REF]. There is a great variety of other material laws which are retarded in time, see [START_REF] Babin | Nonlinear Maxwell equations in inhomogeneous media[END_REF] and [START_REF] Roach | Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics[END_REF], or which are given by additional coupled ordinary or partial differential equations, see [START_REF] Ammari | Global existence and regularity of solutions to a system of nonlinear Maxwell equations[END_REF], [START_REF] Dumas | Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations[END_REF], [START_REF] Jochmann | Asymptotic behavior of the electromagnetic field for a micromagnetism equation without exchange energy[END_REF] and [START_REF] Joly | Global solutions to Maxwell equations in a ferromagnetic medium[END_REF], for instance. For the physical background we refer to, e.g., [START_REF] Busch | Periodic nanostructures for photonics[END_REF] or [START_REF] Moloney | Nonlinear Optics[END_REF]. In our analysis we concentrate on conservative systems such as (1.1) and (1.2) without conductivity and given currents or charges.

For rather general instantaneous nonlinear material laws, the Cauchy problem for (1.1) and (1.2) on R 3 is locally wellposed due to standard results on quasilinear hyperbolic systems if one works in H 3 (R 3 ) (or H s (R 3 ) for s > 5/2), see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], [START_REF] Benzoni-Gavage | Multidimensional Hyperbolic Partial Differential Equations[END_REF] or [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions[END_REF]. Nothing seems to be known in lower regularity. The situation on domains is more delicate since one typically has characteristic boundary conditions. Here the general theory only yields result in even higher regularity, see e.g. [START_REF] Guès | Problème mixte hyperbolique quasi-linéaire caractéristique[END_REF]. For the Maxwell equations itself partial results were established in [START_REF] Picard | Local existence of solutions of impedance initialboundary value problem for non-linear Maxwell equations[END_REF]. Again on R 3 one knows at least for certain nonlinearities of Kerr type (1.5) that small initial data in H k (R 3 ) (for large k ∈ N) lead to global smooth solutions, see [START_REF] Racke | Lectures on Nonlinear Evolution Equations. Initial Value Problems[END_REF]. On the other hand, shock solutions on R 3 are present for the Kerr nonlinearity, see [START_REF] Aregba-Driollet | Kerr-Debye relaxation shock profiles for Kerr equations[END_REF]. Here the first derivative blows up only pointwise and these solutions do not belong to L 2 (R 3 ). As a result, global existence in H(curl) × H(curl) is not ruled out so far.

In this paper, we construct a classical solution (E 0 , B 0 ) whose curl blows up in L 2 for the Maxwell system on a cube with periodic or certain mixed boundary conditions. This solution is essentially given by a shock solution for a one-dimensional subproblem whose compactly supported initial data were chosen in such way that the first derivative of the solution explodes in L 2 (R) in finite time. To transfer this result to R 3 , one has to localize (E 0 , B 0 ) since these fields only depend on one space variable. The analysis of the localized solution requires a local uniqueness result for (1.1) and (1.2) which does not seem to be available in H(curl) × H(curl). As a result, we obtain blow-up on R 3 only within a smaller class of solutions, see Theorem 1.4. Our results apply to a large class of nonlinearities described below, where we impose no, respectively very mild, assumptions on their behavior at infinity.

To make use of subproblems in one space dimension, we look at scalar type material laws D = Φ(E)E for a given function Φ : R 3 → R and thus on the nonlinear Maxwell system

∂ t [Φ(E(t))E(t)] = curl B(t), ∂ t B(t) = -curl E(t), (1.3 
)

div[Φ(E(t))E(t)] = 0, div B(t) = 0 (1.4)
An important special case is the Kerr model with

Φ(x) = 1 + a |x| 2 (1.5)
for some a > 0, see [START_REF] Busch | Periodic nanostructures for photonics[END_REF] or [START_REF] Moloney | Nonlinear Optics[END_REF]. In Examples 2.1 and 3.1 we treat more general versions of (1.5). The one-dimensional version of (1.3) reads as

∂ t b(u) = ∂ x v, ∂ t v = ∂ x u, (u(0, x), v(0, x)) = (u 0 (x), v 0 (x)) (1.6)
In (1.6) the function b has to satisfy the following hypotheses.

Assumption 1.1. The map b belongs to C 2 (R, R), there exist numbers w -< 0 < w 0 < w + such that b > 0 on J := (w -, w + ), the function q ∈ C(J, R) given by

q(s) := b (s) 2b (s) 3/2 , s ∈ J,
has a global maximum at s = w 0 , q is C 1 near w 0 , and q(s) > 0 for 0 < s ≤ w 0 .

We point out that there are no assumptions on the behavior of b at infinity. In particular, b could become constant or linear. We now state our basic blow-up result about (1.6), which we prove in Section 2.

Theorem 1.2 (1D case). Let Assumption 1.1 be true. Then there exist compactly supported initial data

(u 0 , v 0 ) ∈ C 1 (R, R 2 ) and a C 1 solution (u, v) to Problem (1.6) on [0, t * ) × R for some t * ∈ (0, ∞) which is compactly supported in x for each t and satisfies ∂ x u(t, •) L 2 (R) → +∞ as t → t - * .
In the proof one actually sees that this blow-up occurs for a large class of initial functions. We mainly require that the slope of the 'electric part' attains its positive maximum at x = 0, see (2.10) and (2.12). The blow-up solutions in the following two results are modifications of those from Theorem 1.2.

In three space dimensions we first look at the cube

Q M = [-M, M ] 3
for some M > 0 with outer unit normal ν. Besides periodic boundary condition we treat the mixed conditions (BC) given as (i) E • ν = 0 and B × ν = 0 for x 3 = ±M ;

(ii) E × ν = 0 and B • ν = 0 on the rest of the boundary.

Here (ii) are the usual conditions for perfectly conducting boundaries, while (i) corresponds to a perfect magnetic conductor. Though there is no real material with the behavior in (i), it is used as a symmetry boundary condition in numerical computations.

Theorem 1.3 (3D boundary value problem).

Assume that b(s) := Φ(s, 0, 0)s for s ∈ R fulfills Assumption 1.1. Consider the Cauchy problem for (1.3) and (1.4) on the cube Q M with the boundary conditions (BC) or with periodic boundary conditions, where M > 0 is sufficiently large. Then there exist initial data

(E 0 0 , B 0 0 ) in C 1 (Q M , R 6 ) satisfying (1.4
) and the respective boundary conditions and a corresponding

C 1 solution (E 0 , B 0 ) on [0, t * ) × Q M for some t * ∈ (0, ∞) such that curl E 0 (t, •) L 2 (Q M ) → +∞ as t → t - * .
This and the following theorem are shown in Section 3. For our result on R 3 , we also assume that Φ(E) = β(|E|) for a function β ∈ C 2 ([0, ∞), R) and let b(s) := sβ(|s|) for s ∈ R. We define the symmetric matrix

A 0 (y) = β(|y|)I 3×3 + β (|y|)|y| -1 yy (1.7)
for y ∈ R 3 \ {0} and A 0 (0) = β(0)I 3×3 . Our asumptions will imply that this matrix is positive definite with a uniform lower bound. For C 1 solutions the equation (1.3) can be equivalently rewritten as the symmetric hyperbolic system

A 0 (E)∂ t E = curl B, ∂ t B = -curl E. (1.8)
The space of functions

ϕ ∈ L 2 (R 3 , R 3 ) such that curl ϕ ∈ L 2 (R 3 , R 3 ) is called H(curl).
It is a Hilbert space when endowed with the natural norm.

Theorem 1.4 (3D problem on R 3 ). Let Φ(E) = β(|E|) for a function β in C 2 ([0, ∞), R) such that b(s) := β(|s|)s for s ∈ R fulfills Assumption 1.1, b (s) ≥ κ and sβ (s) ≤ cβ(s)
for some c, κ > 0 and all s ≥ 0. Consider the Cauchy problem for (1.3) and (1.4) on R 3 . There exist compactly supported initial data

(E c 0 , B c 0 ) in C 1 (R 3 , R 6 ) satisfying (1.4) such that the corresponding local C 1 solution (E c , B c ) can not be continued to a global solution of (1.8) in C([0, ∞), H(curl) × H(curl)) such that curl B is bounded on [0, T ] × R 3 for each T > 0.
As we will see in Example 2.1 and 3.1 the Kerr model (1.5) fulfills the assumptions of the above theorem, even if we modify β(s) = 1 + as 2 to a constant function for large s > 0.

Remark 1.5. Straightforward modifications of our proofs yield the following generalizations. First, if we assume in addition that b belongs to C ∞ (R, R), then one can replace in the above theorems C 1 by C ∞ . Second, Theorem 1.4 is also true for functions Φ as in Theorem 1.3 such that the map Ψ : R 3 → R 3 ; Ψ(x) = Φ(x)x, is an diffeomorphism and its derivative DΨ(x) is symmetric and uniformly positive definite for x ∈ R 3 . The extra conditions on b and β in Theorem 1.4 just ensure these properties of Ψ.

Remark 1.6. Let Φ(E) = β(|E|)E with a function β ∈ C 2 (R, R) as in Theorem 1.4. For Q = R 3 or Q = [-M, M ] 3 as in Theorem 1.3 we define h(s) = s 0 β( √ r)
dr for s ≥ 0 and the 'energy'

E(E, B) = Q 1 2 |B| 2 + β(|E|)|E| 2 -1 2 h(|E| 2 ) dx
for functions on Q such that each summand is integrable. Take maps (E, B) in 

C 1 ([0, T ] × Q, R 6 ) with sufficient decay at ∞ if Q = R 3 ,
E(E, B) = Q 1 2 |E| 2 + 3 4 a |E| 2 + 1 2 |B| 2 dx.
But, these conserved quantities are not strong enough to prevent the blow-up in H(curl) stated in the theorems.

2. The one dimensional case, proof of Theorem 1.2

Let b satisfy Assumption 1.1. For C 1 solutions taking values in J × R, we can rewrite the system (1.6) as

∂ t u v + A(u, v)∂ x u v = 0 with A(u, v) = 0 -b (u) -1 -1 0 (2.1)
on R. For (u, v) ∈ J × R, the matrix A(u, v) has the eigenvalues and eigenvectors

λ 1,2 (u, v) = ±b (u) -1 2 , η 1,2 (u, v) = ∓1 b (u) 1 2
.

These observations are a special case of the analysis in Section 3 of [START_REF] Aregba-Driollet | Kerr-Debye relaxation shock profiles for Kerr equations[END_REF]. In the following we take λ = λ 1 and η = η 1 and drop the index 1. Using the construction in Section 1.4 of [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions[END_REF], we first construct a bounded C 1 solution of (2.1) whose first derivative has a finite time blow-up in the sup-norm. The main step is to show that it even blows up in L 2 if one chooses the initial functions in the right way.

Fix (α, β) ∈ (w 0 , w + ) × R such that q(s) > 0 for 0 < s ≤ α.

Observe that the interval α -J = (α -w

+ , α -w -) contains [0, α]. The C 2 function φ : α -J → J × R φ 1 (s) = α -s, φ 2 (s) = β + s 0 b (α -τ ) 1/2 dτ,
solves the ordinary differential equation

φ (s) = η(φ(s)), s ∈ α -J, φ(0) = (α, β). (2.2) 
For later use, we note the identities

∇λ(φ(s)) • φ (s) = ∇λ(φ(s)) • η(φ(s)) = q(α -s), s ∈ α -J. (2.3) 
Let σ 0 : R → [0, α] be C 1 and equal to α outside a compact set. There is a unique C 1 solution σ of the scalar partial differential equation

∂ t σ(t, x) + λ(φ(σ(t, x)))∂ x σ(t, x) = 0, t ≥ 0, x ∈ R, σ(0, x) = σ 0 (x), x ∈ R, (2.4) 
on a sufficiently small (bounded) time interval [0, t), where σ takes values in α -J. See e.g. Theorems 2.1 and 2.2 of [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions[END_REF]. We now define

u(t, x) v(t, x) = φ(σ(t, x)).
It is easy to check that (u, v) is a C 1 solution of (2.1) on [0, t) × R. We observe that

∂ x u = φ 1 (σ)∂ x σ = -∂ x σ. (2.5)
The methods of characteristics yields the implicit formula

σ(t, x) = σ 0 (x -tλ(φ(σ(t, x)))) = σ 0 (y(t, x)), (2.6) 
where

y(t, x) := x -tλ(φ(σ(t, x)) = x -t • b (α -σ(t, x)) -1/2 , (2.7) as long as 1+t∇λ(φ(σ(t, x))) • η(φ(σ(t, x)))σ 0 (x -tλ(φ(σ(t, x)))) = 1 + tσ 0 (x -tλ(φ(σ(t, x))))q(α -σ(t, x)) > 0,
(2.8) see e.g. p.114 of [START_REF] Evans | Partial Differential Equations[END_REF], as well as (2.3). We now set

γ(t) := inf x∈R σ 0 (y(t, x))q(α -σ(t, x)) for t ∈ [0, t).
Let t 0 ∈ R + be the supremum of t ∈ [0, t) such that τ γ(τ ) > -1 for all τ ∈ [0, t]. In the following, we take t ∈ [0, t 0 ) so that the inequality (2.8) is valid for all x ∈ R. Equations (2.6) and (2.3) then imply

∂ x σ(t, x) = σ 0 (x -tλ(φ(σ(t, x)))) 1 -tq(α -σ(t, x))∂ x σ(t, x) , ∂ x σ(t, x) = σ 0 (x -tλ(φ(σ(t, x)))) 1 + tq(α-σ(t, x))σ 0 (x -tλ(φ(σ(t, x)))) = σ 0 (y(t, x)) 1 + tq(α-σ(t, x))σ 0 (y(t, x))
.

In particular, σ and ∂ x σ are bounded on [0, t 0 -δ] × R for each δ ∈ (0, t 0 ]. The blow-up condition in Theorem 2.2 Annex of [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions[END_REF] thus yields t = t 0 . From formula (2.6) we further deduce ∂ x σ(t, x) = σ 0 (y(t, x))∂ x y(t, x) and hence

∂ x y(t, x) = 1 1 + tq(α -σ(t, x))σ 0 (y(t, x)) > 0.
(2.9) (In the case σ 0 (y(t, x)) = 0, we have ∂ x σ(t, x) = 0 and the identity ∂ x y(t, x) = 1 > 0 follows from (2.7).) Using also (2.7), we see that the map x → y(t, x) is a bijection from R to R; let y -1 t : R → R be its inverse. This fact and (2.6) lead to the equation

γ(t) = inf z∈R σ 0 (z)q(α -σ 0 (z)) =: γ 0 for all t < t 0 .
We now fix a C 1 function σ 0 : R → [0, α] which is equal to α outside some compact set and satisfies

σ 0 (0) = α -w 0 , σ 0 (0) = min z∈R σ 0 (z) < 0. (2.10) 
In view of Assumption 1.1, we can determine γ 0 = σ 0 (0)q(w 0 ) and

t 0 = - 1 γ 0 . (2.11) 
Substituting z = y(t, x) and employing (2.9), we deduce from formula (2.6) the identities

∂ x σ(t, •) 2 2 = R |∂ x σ(t, x)| 2 dx = R |σ 0 (y(t, x))∂ x y(t, x)| 2 dx = R |σ 0 (z)| 2 1 + tq(α -σ 0 (z)) σ 0 (z) dz.
We shall employ the expansions

σ 0 (z) = α -w 0 + O(z), σ 0 (z) = σ 0 (0) + o + (z), q(w) = q(w 0 ) -o + (w -w 0 )
where o + (z) denotes any nonnegative function with the property o + (z)/z → 0 as z → 0. Here we used the assumptions that q has a global maximum at w 0 while σ 0 has a global minimum at 0. Hence, (2.11) yields

1 + tq(α -σ 0 (z)) σ 0 (z) = 1 + tγ 0 + t[q(w 0 )o + (z) + o + (z) |σ 0 (0)| -o + (z 2 )] = 1 + tγ 0 + to + (z).
By means of this equality, we arrive at

∂ x σ(t, •) 2 2 = R |σ 0 (z)| 2 1 + tγ 0 + to + (z) dz.
Fix a number δ 0 > 0 such that

|σ 0 (z)| 2 ≥ |σ 0 (0)| 2 2 =: c 0 for all |z| ≤ δ 0 .
For all > 0 there exists a radius δ ∈ (0, δ 0 ) such that 0 ≤ o + (z) ≤ δ for all |z| < δ. 

E(t, x) = 1 β(b -1 (|D(t, x)|)) D(t, x) =: ψ(|D(t, x)|) D(t, x),
where ψ : [0, b(w

+ )] → [0, w + ] is C 2 . Let D 0 0 (x) = Φ(E 0 0 (x))E 0 0 (x) = β(|u 0 (x 2 )|)(u 0 (x 2
), 0, 0). We now introduce the functions D c 0 , B c 0 : R 3 → R 3 by ) for all t because of (1.3) and div D c 0 = div B c 0 = 0. We suppose that Theorem 1.4 was wrong. Then (E c , B c ) can actually be extended to a global solution of (1.8) such that the functions E c (t, •) and B c (t, •) belong to H(curl) and curl B c (t, •) to L ∞ (R 3 ) for each t ≥ 0, and they are locally bounded in the respective spaces. We introduce the maps

D c 0 (x) =   β(|u 0 (x 2 )|)u 0 (x 2 )χ(x 1 )χ(x 3 ) 0 -β(|u 0 (x 2 )|)u 0 (x 2 )χ (x 1 )X(x 3 )   , B c 0 (x) =   -v 0 (x 2 )X(x 1 )χ (x 3 ) 0 v 0 (x 2 )χ(x 1 )χ(x 3 )   . Note that D c 0 (x) and B c 0 (x) vanish if x ∈ [-r 1 , r 1 ] 3 . Moreover, for x ∈ [-r, r]
E = E 0 -E c and B = B 0 -B c on [0, t 0 ) × R 3 . (3.3) 
Our assumptions yield that b (s) = β(s) + sβ (s) ≥ κ > 0 and β(s) ≥ κ > 0 for all s ≥ 0. Therefore the matrix A 0 (y) from (1.7) has the inverse

A 0 (y) -1 = 1 β(|y|) I 3×3 - β (|y|) |y| β(|y|) 2 + |y| 2 β(|y|)β (|y|) yy (3.4)
for each y ∈ R 3 \ {0}, and A 0 (0) -1 = β(0) -1 I 3×3 . These inverses are uniformly bounded since β(s) ≥ κ and sβ (s) ≤ cβ(s) for all s ≥ 0. As a result, the positive definite symmetric matrices a 0 (t, x) := A 0 (E 0 (t, x)) and a c (t, x) (1.8) and that E c (0, •) belongs to L ∞ (R 3 ), we deduce the boundedness of the functions ∂ t E c and E c on [0, t 0 ] × R 3 . It follows that a c and a 0 are bounded on [0, t 0 ) × R 3 , and ∂ t a 0 (t, x) on [0, t 0 -δ] × R 3 for each δ ∈ (0, t 0 ).

:= A 0 (E c (t, x)) have a uniform lower bound η ∈ (0, 1] for (t, x) ∈ [0, t 0 ) × R 3 . Using further that ∂ t E c = a -1 c curl B c by
In view of (1.8), the function (E , B ) satisfies the equation

a 0 ∂ t E = curl B + (a c -a 0 )a -1 c curl B c = curl B + ZE , ∂ t B = -curl E , (3.5) 
for the zero order term ZE := Formula (1.7) implies that the derivative DA 0 (y), y = 0, is bounded on bounded subsets. This fact and the above observations show that M is a uniformly bounded matrix function on [0, t 0 ) × R 3 .

Recall that E (0, •) = B (0, •) = 0 on [-r, r] 3 . Take now r ≥ √ 3M + √ 6t 0 /η. Due to the properties of a 0 and Z, we can apply local uniqueness results for the linear system (3.5), cf. Theorem 4.11 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and its proof, deducing that E = B = 0 and hence E c = E 0 on the truncated cone C = {(t, x) | 0 ≤ t < t 0 , |x| ≤ r -√ 6t/η}. Since the cuboid [0, t 0 ) × [-M, M ] 3 is contained in C, we see that curl E c (t, •) blows up in L 2 (R 3 ) as t → t 0 . This fact contradicts the assumption made before (3.3), and hence Theorem 1.4 is true.

Example 3.1. As in Example 2.1, let γ > 2 and a > 0. Set β 1 (s) = 1 + as γ-1 for s ≥ 0. Alternatively, we modify β 1 to a function β 2 ∈ C 2 ([0, ∞), R) with β 2 ≥ 0 which is constant on [w 2 , ∞) for some w 2 > w 0 , where w 0 > 0 is given by Example 2.1. Define b j (s) = sβ j (s) for s ≥ 0. These functions satisfy the assumptions of Theorem 1.4.

r 1 >

 1 r > 0 with r 1 > M , and has the additional property that∞ -∞ χ(s) ds = 0. The support of X(s) := s -r1 χ(σ) dσ, s ∈ R, is thus contained in [-r 1 , r 1 ].We next define the new fieldD(t, x) = Φ(E(t, x))E(t, x) = β(|E(t, x)|)E(t, x)(3.2)for any given E so that (1.4) reduces to div D = 0, div B = 0. Since b(0) = 0 and b (s) ≥ κ > 0 for s ≥ 0, we have b(s) = sβ(s) ≥ κs and so β(s) ≥ κ for all s ≥ 0. The formula (3.2) then yields |E(t, x)| = b -1 (|D(t, x)|) for all (t, x) ∈ [0, t 0 ) × R. Hence, the transformation in (3.2) has the inverse given by

3

 3 the identities D c 0 (x) = D 0 0 (x) and B c 0 (x) = B 0 0 (x) follow from χ = 1 and χ = 0 on [-a, a]. In addition, on R 3 we can easily compute div D c 0 = div B c 0 = 0. We then define the initial field E c 0 : R 3 → R 3 E c 0 (x) = ψ(|D c 0 (x)|)D c 0 (x). whose support is also contained in [-r 1 , r 1 ] 3 and which coincides with E 0 0 on [-r, r] 3 . Theorem 2.1 of [12] yields a local in time C 1 solution (E c , B c ) of (1.8) having the initial values (E c 0 , B c 0 ). It satisfies the divergence conditions (1.4

1 0

 1 DA 0 (E 0 + s(E c -E 0 ))[E , a -1 c curl B c ] ds.

  say, which solve(1.3) and satisfy (BC) or periodic boundary conditions ifQ = [-M, M ] 3 . It is then easy to check that E(E(t), B(t)) is constant for t ∈ [0, T ]. (See[START_REF] Serre | Hyperbolicity of the nonlinear models of Maxwell's equations[END_REF] for more general material laws.) For the Kerr model one has
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We can then estimate

Because of t 0 = -1/γ 0 in (2.11), it follows lim inf

Since > 0 is arbitrary, equation (2.5) finally implies that lim inf

is compactly supported by construction. On the other hand, we have

for all sufficiently large |x|. If we choose

the function v 0 is then compactly supported as well. This concludes the proof of Theorem 1.2.

Example 2.1. Let γ > 2 and a > 0. Set 3. The three dimensional case, proofs of Theorems 1.3 and 1.4

We begin with the proof of Theorem 1.3. We use the solution (u, v) of the one dimensional problem (1.6) constructed in the previous section. Equations (2.6) and (2.8) imply that the supports of u(t, •) and v(t, •) are contained in an interval (-M, M ) for all times 0 ≤ t < t 0 with t 0 from (2.11), provided M > 0 is chosen large enough. We then define (E 0 (t, x), B 0 (t, x)) = (u(t, x 2 ), 0, 0, 0, 0, v(t, x 2 )).

(3.1)

It is easy to check that these functions solve (1.3) and (1.4) on Q M = [-M, M ] 3 and that they satisfy the boundary conditions (BC) as well as the periodic ones. We set (E 0 0 (x), B 0 0 (x)) = (u 0 (x 2 ), 0, 0, 0, 0, v 0 (x 2 )). Since we have curl

) , the conclusion of Theorem 1.3 follows from Theorem 1.2.

We pass now to the proof of Theorem 1.4. The functions (E 0 , B 0 ) defined in (3.1) solve (1.3) and (1.4) on the whole strip [0, t 0 ) × R 3 ; and the initial data have compact support in the variable x 2 , but not in x 1 and x 3 . We now modify the initial funtions outside a compact set so that they become compactly supported and still satisfy the divergence conditions (1.4). To this end, let χ be a test functions which is equal to 1 on an interval [-r, r], vanishes outside the interval [-r 1 , r 1 ] for some