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We study the problem of stabilization for the acoustic system with a spatially distributed damping. Imposing various hypotheses on the structural properties of the damping term, we identify either exponential or polynomial decay of solutions with growing time. Exponential decay rate is shown by means of a time domain approach, reducing the problem to an observability inequality to be verified for solutions of the associated conservative problem. In addition, we show a polynomial stabilization result, where the proof uses a frequency domain method and combines a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent.

Introduction

We consider the following system of equations:

       u t + ∇r + α u = 0, in Ω × R + , r t + div u = 0, in Ω × R + , u • n = 0, on Γ × R + , u(0, x) = u 0 (x), r(0, x) = r 0 (x), x ∈ Ω, (1.1)
where Ω is a bounded domain in R d , d = 2, 3, with a smooth boundary Γ, div = ∇• is the divergence operator and α ∈ C ∞ (Ω), with α ≥ 0 on Ω and such that ∃ α -> 0 such that α ≥ α -on ω.

(1.2)

Here ω = ∅ stands for the subset of Ω on which the feedback is active. As usual n denotes the unit outward normal vector along Γ.

The system of equations (1.1) is a linearization of the acoustic equation governing the propagation of acoustic waves in a compressible medium, see Lighthill [START_REF] Lighthill | Waves in fluids[END_REF][START_REF] Lighthill | On sound generated aerodynamically. I. General theory[END_REF][START_REF] Lighthill | On sound generated aerodynamically. II. Turbulence as a source of sound[END_REF], where α u represents a damping term of Brinkman type. This kind of damping arises also in the process of homogenization (see Allaire [START_REF] Allaire | Homogenization of the Navier-Stokes equations and derivation of Brinkman's law[END_REF]), and is frequently used as a suitable penalization in fluid mechanics models, see Angot, Bruneau, and Fabrie [START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous flows[END_REF]. Our main goal is to find sufficient condition on the initial data and the function α so that the solution of (1.1) stabilizes to zero for t → ∞ and, if this occurs, we are interested in the rate of this decay.

Let L 2 (Ω) denote the standard Hilbert space of square integrable functions in Ω. To avoid abuse of notation, we shall write • for the L 2 (Ω)-norm or the L 2 (Ω) d -norm. Denoting H = (L 2 (Ω)) d × L 2 (Ω), we introduce the operator

A = 0 ∇ div 0 : D(A) = ( u, r) ∈ H, (∇r, div u) ∈ H, u.n |Γ = 0 ⊂ H → H, and 
B = √ α 0 ∈ L((L 2 (Ω)) d , H), B * = √ α 0 ∈ L(H, (L 2 (Ω)) d ).
Accordingly, the problem (1.1) can be recast in an abstract form:

Z t (t) + A Z(t) + BB * Z(t) = 0, t > 0, Z(0) = Z 0 , (1.3) 
where Z = ( u, r), or, equivalently,

Z t (t) = A d Z(t), t > 0, Z(0) = Z 0 , (1.4) 
with A d = -A -BB * with D(A d ) = D(A).

It can be shown (see Section 2 below) that for any initial data ( u 0 , r) ∈ D(A) the problem (1.1) admits a unique solution

( u, r) ∈ C([0, ∞); D(A)) ∩ C 1 ([0, ∞); H).
Moreover, the solution ( u, r) satisfies, the energy identity

E(0) -E(t) = t 0 √ α u(s) 2 (L 2 (Ω)) d ds for all t ≥ 0 (1.5) with E(t) = 1 2 ( u(t), r(t)) 2 H , ∀ t ≥ 0, (1.6) 
where we have denoted

( u, r), ( v, p) H = Ω ( u(x). v(x) + r(x)p(x)) dx, ( u, r) H = Ω | u(x)| 2 + r 2 (x) dx.
Using (1.6) and the standard density arguments, we can extend the solution operator for the data ( u 0 , r) ∈ H. Consequently, we associate to the problem (1.1) (or to the abstract Cauchy problems (1.3), (1.4)) a solution (semi)-group that is globally bounded in H.

As the energy E is nonincreasing along trajectories, we want to determine the set of initial data ( u 0 , r 0 ) for which

E(t) → 0 as t → ∞. (1.7)
Such a question is of course intimately related to the structural properties of the function α, notably to the geometry of the set ω on which the damping is effective.

In this paper, we characterize the set of initial data for which (1.7) holds in terms of the set ω, and, eventually we obtain some information on the rate of decay. In particular, we establish an observability inequality for the associated conservative system yielding exponential decay and use a frequency domain method, combined with the multiplier technique, to obtain polynomial rate of decay. It is worth-observing that the associated conservative system coincides with the standard linear wave equation, supplemented with the Neumann boundary conditions, where the asymptotic behavior of solutions is relatively well understood.

The paper is organized as follows. Section 2 summarizes some well known facts concerning the acoustic system (1.1). In section 3, we examine the spectral properties of the generator A d and establish a strong stability results. Section 4 addresses the exponential and not exponential stability results. In Section 5, we prove exponential stability for a modified system, with a slightly different damping law, by using an observability strategy. Polynomial stability of the modified system is studied in Section 6.

Preliminaries

We start with a simple observation that the problem (1.1) can be viewed as a bounded (in H) perturbation of the conservative system

u t + ∇r = 0, in Ω × R + , r t + div u = 0, in Ω × R + , (2.8) 
which can be recast as the standard wave equation r t,t -∆r = 0.

Consequently, the basic existence theory for (1.1) derives from that of (2.8).

Moreover, since the boundary Γ as well as the damping coefficient α are smooth, solutions of (1.1) remain smooth as soon as we take u 0 , r 0 smooth and satisfying relevant compatibility conditions as the case may be. In what follows, we may therefore deal with smooth solution, whereas the results for data in H can be obtained by means of density arguments.

Long-time behavior

The operator A d possesses a non-trivial kernel that is left invariant by the evolution, namely, solutions of the "stationary" problem

∇r + α u = 0, ∇ • u = 0, u • n| Γ = 0.
(2.9)

Thus the stationary field u is solenoidal, and, integrating (2.9) over Ω yields u = 0 in supp α, ∇r = 0.

Accordingly, we introduce the space

E = Ker[A d ] = {( u, r) | ∇ • u = 0, u| suppα = 0, u • n| Γ = 0, r = const},
together with its orthogonal complement (in H) denoted H 0 .

It is easy to check that A d ( w, s), ( u, r) H = 0 for any ( w, s) ∈ D(A), ( u, r) ∈ E;

in particular, the solution operator associated to (1.1) leaves both E and H 0 invariant. Consequently, the decay property (1.7) may hold only for the initial data emenating from the set H 0 .

Strong stability

The following observation can be shown by a simple density argument:

Lemma 3.1. The solution ( u, r) of (1.1) with initial datum in D(A d ) satisfies

E ′ (t) = - Ω α | u| 2 dx ≤ 0. (3.10)
Therefore the energy is non-increasing and (1.5) holds for all initial datum in H.

As already shown in the previous section, the strong stability result (1.7) may hold only if we take the initial data

( u 0 , r 0 ) ∈ H 0 = Ker[A d ] ⊥ .
There are several ways how to show (1.7), here we make use of the following result due to Arendt and Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF]: Theorem 3.2. Let (T (t)) t≥0 be a bounded C 0 -semigroup on a reflexive space X. Denote by A the generator of (T (t)) and by σ(A) the spectrum of A. If σ(A) ∩ iR is countable and no eigenvalue of A lies on the imaginary axis, then lim t→+∞ T (t)x = 0 for all x ∈ X.

In view of this theorem we need to identify the spectrum of A d lying on the imaginary axis.

First we look at the point spectrum. whence u| suppα = 0, and, consequently, u, r solve (3.11) with α = 0. In particular, we get -∆r = λ 2 r, ∇r • n| Γ = 0, r| suppα = 0, and, by unique continuation for elliptic problems, we get r = 0.

In accordance with Lemma 3.3 and the discussion in the previous section, λ = 0 is the only possibly eigenvalue of A d on the imaginary axis.

Next, we show that A d has no continuous spectrum on the imaginary axis, except eventually zero.

Lemma 3.4. Suppose that |ω| > 0. If λ is a non-zero real number, then iλ belongs to the resolvent set ρ(A d ) of A d .
Proof. In view of Lemma 3.3 it is enough to show that iλI -A d is surjective.

Hence given a vector f , p ∈ H, we look for ( u, r) ∈ D(A d ) such that

(iλI -A d ) ( u, r) = f , p . (3.12) 
By the definition of A d , we obtain

iλ u + ∇r + α u = f , iλ r + div u = p.
Assuming that u and r exist we can write

u = 1 iλ + α (-∇r + f ). (3.13)
Inserting this expression in the second identity we obtain the differential equation in r:

iλ r -div 1 iλ + α ∇r = p -div 1 iλ + α f in Ω, ∇r • n| Γ = 0. (3.14)
Multiplying this identity by a test function s ∈ H 1 (Ω), integrating in Ω and using formal integration by parts we get the problem:

Ω iλrs + 1 iλ + α ∇r • ∇s dx = F (s), ∀s ∈ H 1 (Ω), (3.15) 
where

F (s) = Ω ps + 1 iλ + α f • ∇s dx.
We use the Fredholm alternative by splitting the left-hand side of (3.15) into its principal part

a p (r, s) = Ω 1 iλ + α ∇r • ∇sdx,
and its lower order term

a 0 (r, s) = iλ Ω rsdx.
The principal part is a continuous sesquilinear coercive form on H 1 m (Ω),

H 1 m (Ω) = {v ∈ H 1 (Ω), Ω v dx = 0}; hence it induces an isomorphism A p from H 1 m (Ω) into (H 1 m (Ω)) ′ . The mapping A 0 from H 1 m (Ω) into (H 1 m (Ω)) ′
induces by a 0 is clearly given by iλI and is therefore compact.

Consequently by the Fredholm alternative, A

p + A 0 is an isomorphism from H 1 m (Ω) into (H 1 m (Ω)) ′ if and only if it is injective. But the injectivity of A p + A 0 is equivalent to the injectivity of iλI -A d . Indeed let r ∈ H 1 m (Ω) be such that (A p + A 0 )r = 0 or equivalently such that Ω iλrs + 1 iλ + α ∇r • ∇s dx = 0, ∀s ∈ H 1 m (Ω). (3.16)
Since r is of mean zero, this identity remains valid for all s ∈ H 1 (Ω). Hence by taking s ∈ D(Ω) we find that iλ rdiv 1 iλ + α ∇r = 0 in Ω.

(3.17)

By taking s = r in (3.16), we find

Ω iλ|r| 2 + 1 iλ + α |∇r| 2 dx = 0.
By taking the real part of this identity, we find that

α|∇r| 2 = 0 in Ω.
This implies that ∇r = 0 in ω.

Hence by (3.17), r = 0 in ω and by the Holmgren uniqueness theorem we deduce that r = 0.

In conclusion A p + A 0 is an isomorphism from H 1 m (Ω) into (H 1 m (Ω)) ′ which implies that there exists a unique solution r ∈ H 1 m (Ω) of Ω iλrs + 1 iλ + α ∇r • ∇s dx = F (s), ∀s ∈ H 1 m (Ω),
As F (1) = 0, we deduce that r ∈ H 1 m (Ω) is solution of (3.15) and relation (3.12) holds.

These Lemmas and Theorem 3.2 leads to Corollary 3.5. Let ( u, r) be the unique semi-group solution of the problem (1.1) emanating from the initial data ( u 0 , r 0 ) ∈ H. Let P E be the orthogonal projection onto the space E = Ker[A d ] in H, and let ( w, s) = P E ( u 0 , r 0 ).

Then ( u, r)(t, •) -( w, s) H → 0 as t → ∞.

Exponential stability

Now, we may ask, under some conditions on the damping coefficient, the convergence in Corollary 3.5 is exponential in time. 

( u, r)(t, •) H ≤ exp(-Lt) ( u 0 , r 0 ) H , L > 0, whenever Ω r 0 dx = 0.
Proof. According to [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] (see also [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF]), the exponential stability of the system (1.1) is equivalent that the undamped system, i.e.

         φ t + ∇p = 0, in Ω × R + , p t + div φ = 0, in Ω × R + , φ • n = 0, on Γ × R + , φ(0, x) = φ 0 (x), p(0, x) = p 0 (x), x ∈ Ω, (4.1) 
satisfies the following inequality: There exist positive real numbers T, C such that

T 0 Ω α(x) φ(x, t) 2 dxdt ≥ C ( φ 0 , p 0 ) 2 (L 2 (Ω) d ×L 2 (Ω) (4.2) ∀ ( φ 0 , p 0 ) ∈ (L 2 (Ω)) d × L 2 (Ω) such that Ω p 0 dx = 0.
Since this estimate is well-defined in the energy space, it holds if and only if it holds for strong solutions.

As the conservative system (4.2) admits solutions that are constant in time, namely,

u ∈ L 2 (Ω), ∇ • u| Γ = 0, p = 0,
it is clear that exponential stability cannot hold if inf x∈Ω α(x) = 0. Indeed, as α is smooth, we can always find for any δ > 0 small a solenoidal compactly supported function φ 0 in Ω such that α| supp φ 0 ≤ δ.

Consequently, relation (4.2) cannot holds uniformly for any choice of the data.

On the other hand, suppose that α is bounded below away from zero on the whole set Ω. Writing the vector field u as its Helmholtz decomposition

u = H[ u] + ∇ϕ, (4.3) 
where H denotes the standard Helmholtz projection onto the space of solenoidal functions, it is enough to verify the observability criterion (4.2) for φ = ∇ϕ. In such a case, however, the conservative system (4.1) reduces to the standard wave equation and (4.2) is obviously satisfied as the damping acts uniformly on the whole domain Ω (see also Section 5).

Changing the damping law

As we have seen before, system (1.1) is exponentially stable if and only if α is uniformly positive definite. We will show in this section that if we change the feedback law in order to filter the divergence free vector fields, then we will get exponential stability for a quite large set of α.

In view of the Helmholtz decomposition (4.3), denote by P the orthogonal projection on the closed subspace of L 2 (Ω)

d V := ∇ϕ : ϕ ∈ H 1 (Ω) Ω ϕ dx = 0 .
Then in (1.1) we change the damping term α u by P (α P u) and consider the system

       u t + ∇r + P (α P u) = 0, in Ω × R + , r t + div u = 0, in Ω × R + , u.n = 0, on Γ × R + , u(0, x) = u 0 (x), r(0, x) = r 0 (x), x ∈ Ω.
(5.1) Accordingly, we arrive at the system

       ∇ϕ t + ∇r + P (α ∇ϕ) = 0, in Ω × R + , r t + ∆ϕ = 0, in Ω × R + , ∇ϕ • n = 0, on Γ × R + , ϕ(0, x) = ϕ 0 (x), r(0, x) = r 0 (x), x ∈ Ω, (5.2)
where

Ω ϕ 0 dx = Ω r 0 dx = 0.
By virtue of [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] (see also [START_REF] Ammari | Stabilization of second order evolution equations by a class of unbounded feedbacks[END_REF]), the exponential stability of the system (5.2) on V × V is equivalent to the following property of solutions to the undamped system: There exist a positive real number T 0 such that for all T > T 0 , there exists C > 0 such that

T 0 Ω α(x) |∇ψ(x, t)| 2 dxdt ≥ C (∇ψ 0 , p 0 ) 2 (L 2 (Ω) d ×L 2 (Ω) (5.3) 
for any ψ, p satisfying

       ∇ψ t + ∇p = 0, in Ω × R + , p t + ∆ψ = 0, in Ω × R + , ∇ψ • n = 0, on Γ × R + , ψ(0, x) = ψ 0 (x), p(0, x) = p 0 (x), x ∈ Ω, (5.4 
)

ψ 0 ∈ H 1 (Ω), p 0 ∈ L 2 (Ω), Ω ψ 0 dx = Ω p 0 dx = 0.
However, the system (5.4) can be written in the form of a standard wave equation with the Neumann Laplacian: (5.6)

   ψ tt + ∆ψ = 0, in Ω × R + , ∇ψ • n = 0, on Γ × R + , ψ(0, x) = ψ 0 (x), ψ t (0, x) = ψ 1 (x) = -p 0 (x), x ∈ Ω,
Thus we have obtained the following exponential stability result:

Theorem 5.1. The system (5.1) is exponentially stable, meaning,

( u, r)(t, •) H ≤ exp(-Lt) ( u 0 , r 0 ) H for a certain L > 0, whenever u 0 = ∇ϕ 0 , ϕ 0 ∈ H 1 (Ω), Ω ϕ 0 dx = Ω r 0 dx = 0,
if and only if any solution ψ of the wave equation (5.5) satisfies the observability inequality (5.6).

Validity of the observability inequality (5.6) is related to the general discussion in Bardos et al. [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] (see also Zuazua [START_REF] Zuazua | Stability and decay for a class of nonlinear hyperbolic problems[END_REF][START_REF] Zuazua | Exponential decay for the semilinear wave equation with localized damping in unbounded domains[END_REF]). Here we note that (5.6) holds provided ω contains a neighborhood of the whole boundary Γ, in the sense that there exists a neighborhood O of Γ in R d such that Ω ∩ O ⊂ ω. First we notice that by the arguments of section 4 of [START_REF] Martinez | A new method to obtain decay rate estimates for dissipative systems with localized damping[END_REF] with a = 0 and M (u) = m∇u + d- 1 2 u (see estimate (4.10)), where, as usual, m(x) = xx 0 for some x 0 ∈ R d , there exits C > 0 such that for all T > 0, we have

2T E(0) ≤ C(E(0) + T 0 Ω∩O ′ (|ψ t | 2 + |∇ψ| 2 + |ψ| 2 )dxdt, (5.7)
where O ′ is a sufficiently small neighbourhood of the boundary (such that O ′ ⊂ O). On the other hand, fixing a cut-off function η such that η ≡ 1 on O ′ and with a support O, we can write

T 0 Ω∩O ′ |ψ t | 2 dxdt ≤ T 0 Ω η|ψ t | 2 dxdt.
Hence by integration by parts in time, we get

T 0 Ω∩O ′ |ψ t | 2 dxdt ≤ - T 0 Ω ηψ tt ψdxdt + Ω ηψ t ψdx T 0 .
Now using the first identity in (5.5) and an integration by parts in space, we get

T 0 Ω∩O ′ |ψ t | 2 dxdt ≤ T 0 Ω ∇ψ • (∇η ψ)dxdt + Ω ηψ t ψdx T 0 .
Therefore using Leibniz's rule and Cauchy-Schwarz's inequality we obtain that

T 0 Ω∩O ′ |ψ t | 2 dxdt ≤ C 1 T 0 Ω∩O (|∇ψ| 2 + |ψ| 2 )dxdt + C 2 E(0),
for some positive constants C 1 , C 2 independent of T . Inserting this estimate in (5.7) we get

2T E(0) ≤ (C + C 2 )E(0) + C 4 T 0 Ω∩O (|∇ψ| 2 + |ψ| 2 )dxdt, (5.8) 
where C 4 = max{1, C 1 }. To eliminate the last term of this right-hand side we use a compacteness/uniqueness argument. Namely assume that (5.3) does not hold. Then there exists a sequence of (ψ ℓ ) ℓ∈N solution of (5.5) with initial data ψ 0 ℓ and ψ 1 ℓ such that ∇ψ 0 ℓ + ψ 1 ℓ = 1, (5.9) and

T 0 Ω α(x) |∇ψ ℓ (x, t)| 2 dxdt = 1 ℓ .
(5.10)

Since the system (5.5) is conservative, the sequence (ψ ℓ ) is bounded in H 1 (Q T ), where (5.5) with initial data ψ 0 , ψ 1 . But thanks to (5.8) applied to ψ ℓψ ℓ ′ , we deduce that the sequence (ψ ℓ ) ℓ∈N is a Cauchy sequence in H 1 (Q T ). Hence ψ ℓ converges in H 1 (Q T ) to ψ, weak solution of (5.5) and satisfying (5.12)

Q T = Ω × (0, T )). Hence it converges strongly in L 2 (Q T ) to ψ a weak solution (in H 1 (Q T ) of
∇ψ 0 + ψ 1 = 1, ( 5 
Accordingly ∇ψ = 0 in ω × (0, T ), or quivalently ψ(x, t) = ψ(t) in ω × (0, T ).
But again due to the first identity in (5.5),

ψ tt (t) = 0 in ω × (0, T ),
hence there exists two complex numbers a, b such that

ψ(x, t) = at + b in ω × (0, T ). Now consider the difference ψ = ψ -at -b.
Then we see that it a weak solution of (5.5) such that ψ = 0 in ω × (0, T ).

By using Theorem 9.1 of [START_REF] Triggiani | Carleman estimates with no lower-order terms for general Riemann wave equations. Global uniqueness and observability in one shot[END_REF], we deduce that

ψ = 0 on Q T , or equivalently ψ(x, t) = at + b on Q T .
But in our situation ψ 0 belongs to H 1 m (Ω) and therefore ψ(•, t) belongs to H 1 m (Ω), for all t > 0. As a consequence we deduce that

0 = Ω ψ(x, t) dx = (at + b)|Ω|, ∀t > 0.
This imples that a = b = 0 and contradicts (5.11).

Thus we have shown the following: Corollary 5.2. Suppose that inf x∈Γ α(x) > 0.

Then the system (5.1) is exponentially stable in the sense specified in Theorem 5.1.

Polynomial stability

In this section we show that system (1.1) is polynomially stable if ω contains a neighborhood of the whole boundary Γ as in Corollary 5.2.

This result is based on the following result stated in Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Bátkai | Polynomial stability of operator semigroups[END_REF][START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF] for weaker variants). Lemma 6.1. A C 0 semigroup e tL of contractions on a Hilbert space such that

ρ(L) ⊃ iβ β ∈ R ≡ iR, (6.1) 
satisfies ||e tL U 0 || ≤ C t -1 l ||U 0 || D(L) , ∀U 0 ∈ D(L), ∀t > 1,
as well as

||e tL U 0 || ≤ C t -1 ||U 0 || D(L l ) , ∀U 0 ∈ D(L l ), ∀t > 1,
for some constant C > 0 and for some positive integer l if and only if

lim sup |β|→∞ 1 β l (iβ -L) -1 < ∞. (6.2) 
Lemma 6.2. Assume that ω contains a neighborhood of the whole boundary Γ.

Then the resolvent of the operator of A d satisfies condition (6.2) with l = 3.

Proof. We use a contradiction argument, i.e., we suppose that (6.2) is false with some l ≥ 0. Then there exist a sequence of real numbers β n → +∞ and a sequence of vectors

Z n = ( u n , r n ) ⊤ in D(A d ) with Z n H = 1, (6.3) 
and

β l n (iβ n -A d )Z n H → 0 as n → ∞. (6.4) 
From the definition of A d this last property is equivalent to

β l n (iβ n u n + ∇r n + α u n ) =: f n → 0 in L 2 (Ω) d , (6.5) 
and

β l n (iβ n r n + div u n ) =: g n → 0 in L 2 (Ω). (6.6) 
As usual, taking the inner product of (6.4) with Z n , using (6.3) and the dissipativeness of A d , we find

Ω α | u n | 2 dx = ℜ((iβ n -A d )Z n , Z n ) = o(β -l n ), (6.7) 
where, here and hereafter,

a n = o(b n ) means that lim n→∞ a n b n = 0.
We multiply (6.5) by u n , integrate in Ω and use (6.3) to find

Ω (iβ n | u n | 2 + ∇r n • u n + α| u n | 2 ) dx = o(β -l n ).
Using (6.7) and integrating by parts we obtain

Ω (iβ n | u n | 2 -r n div u n ) dx = o(β -l n ).
Using (6.6) (and (6.3)) we get

iβ n Ω (| u n | 2 -|r n | 2 ) dx = o(β -l n ).
This shows that

u n 2 -r n 2 = o(β -(l+1) n ). (6.8) 
The identity (6.5) implies that

∇r n = β -l n f n -(iβ n + α) u n , (6.9) 
and therefore

∇r n = O(β n ), (6.10) 
where, here and hereafter, a n = O(b n ) means that there exists C > 0 independent of n such that a n ≤ Cb n for n large enough.

By (6.9), we also have

Ω α |∇r n | 2 dx ≤ 2 Ω α|iβ n + α| 2 | u n | 2 dx + 2β -2l n Ω α | f n | 2 dx.
Hence, for l ≥ 2, by using (6.7) we find that

Ω α |∇r n | 2 dx = o(β 2-l n ). (6.11) 
Now we notice that (6.5) and (6.7) imply that

iβ n u n + ∇r n = h n := β -l n f n -α u n , (6.12) 
with

h n = o(β -l/2 n
). (6.13)

We use the Helmholtz decomposition

h n = ∇ϕ n + χ n , (6.14) 
∇ϕ n 2 Ω + χ n 2 Ω = h n 2 to deduce that ϕ n 2 1,Ω + χ n 2 Ω = o(β -l n ). (6.15)
The identities (6.12) and ( 6 At this stage we use the multiplier method to find some properties on s n . First we multiply (6.21) by -is n and integrate in Ω to obtain due to (6.19) and (6.22)

Ω (β n s n + 1 β n div ∇s n )s n dx = o(β 1-l/2 n ).
By an integration by part and since the boundary term is zero due to (6.18), we obtain

Ω (β n |s n | 2 - 1 β n |∇s n | 2 ) dx = o(β 1-l/2 n ). (6.23)
Secondly we take a (smooth) real-valued multiplier m ∈ C 2 (Ω) d fixed later on but such that m = 0 on Γ and multiply (6.21) by -im • ∇s n and integrate in Ω to obtain due to (6.20) and (6.22)

Ω (β n s n + 1 β n div ∇s n )m • ∇s n dx = o(β 2-l/2 n ). (6.24)
Now, in a standard way, by means of Green's formula, the first term

I 1 := Ω s n m • ∇s n dx is transformed into I 1 = - Ω ∂ k (s n m k )s n dx + Γ m • n|s n | 2 dσ = -Ī1 - Ω div m|s n | 2 dx,
recalling that m = 0 on the boundary. Hence we have

2ℜI 1 = - Ω div m|s n | 2 dx. (6.25)
In the same manner we have

I 2 := Ω div ∇s n m • ∇s n dx = - Ω ∂ k s n ∂ k (m • ∇s n ) dx (6.26) = - Ω ∂ k s n ∂ k m j ∂ j sn dx -I 3 ,
where

I 3 = Ω ∂ k s n m j ∂ k ∂ j sn dx.
Again an integration by part leads to

I 3 = - Ω ∂ j (∂ k s n m j )∂ k sn dx = -Ī3 - Ω div m|∇s n | 2 dx. Consequently 2ℜI 3 = - Ω div m|∇s n | 2 dx,
and using this expression in (6.26) we find

2ℜI 2 = -2ℜ Ω ∂ k s n ∂ k m j ∂ j sn ) dx (6.27) + Ω div m|∇s n | 2 dx.
Taking the real part of (6.24) and using (6.25) and (6.27) we obtain

-β n Ω div m|s n | 2 dx + 1 β n Ω div m|∇s n | 2 dx - 2 β n ℜ Ω ∂ k s n ∂ k m j ∂ j sn dx = o(β 2-l/2 n
). (6.28) From (6.11) and (6.15), we see that

Ω α|∇s n | 2 dx = o(β 2-l n ), (6.29) 
hence for l > 2, ∇s n tends to zero on ω. This means that we are mainly interested in the behaviour of s n outside ω. Therefore we take for m a function with a support far from the boundary, namely we take

m(x) = η(x)x,
where η is a smooth cut-off function such that

η = 1 on ω c and η = 0 in O ′ ,
where O ′ is a neigbourhood of Γ. Since

∂ k m j = δ jk η + x j ∂ k η, (6.28) becomes -β n Ω (dη + x • ∇η)|s n | 2 dx + 1 β n Ω ((d -2)η + x • ∇η)|∇s n | 2 dx - 2 β n ℜ Ω ∂ k s n ∂ k ηx j ∂ j sn dx = o(β 2-l/2 n ). ( 6 

.30)

Assume that the next estimate

ω |s n | 2 dx 1 2 = o(β 1-l/2 n ) (6.31)
holds. Then combining this estimate with (6.29) in (6.30) we obtain

-β n d Ω η|s n | 2 dx + 1 β n (d -2) Ω η|∇s n | 2 dx = o(β 2-l/2 n ). (6.32) 
Coming back to (6.23) and writting 1 = η + (1η), we get

Ω (β n η|s n | 2 - 1 β n η|∇s n | 2 ) dx = o(β 1-l/2 n ) - Ω (β n (1 -η)|s n | 2 - 1 β n (1 -η)|∇s n | 2 ) dx.
Hence (6.31) and (6.29) lead to .33) This estimate in (6.32) yields

Ω (β n η|s n | 2 - 1 β n η|∇s n | 2 ) dx = o(β 1-l/2 n ) + o(β 3-l n ). ( 6 
Ω η|s n | 2 dx = o(β 1-l/2 n ) + o(β 2-l n ).
By choosing l ≥ 2 and using again (6.31), we arrive at Coming back to our original variables, for r n we have by (6.34) and (6.15) that

Ω |s n | 2 dx = o(β 1-l/2 n ). ( 6 
r n 2 = o(β 1-l/2 n ),
while for u n using (6.16), (6.35) and (6.15)

u n 2 = o(β 1-l/2 n ).
In conclusion for l ≥ 3, r n and u n tend to zero which contradicts (6.3).

It remains to prove (6.31). For that purpose, we first show that the mean of s n on Γ tends to zero. Fix a function h ∈ (C 2 ( Ω)) d such that supp h ⊂ ω and h • n = 1 on Γ. Such a function exists by Lemma I.3.1 of [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] since we assume that Ω has a C 3 -boundary. We then multiply (6.5) by h and integrate in Ω to get

Ω ((iβ n + α) u n + ∇r n )h dx = o(β -l n ).
Hence integrating by parts, we obtain

Ω ((iβ n + α) u n h -r n div h) dx + Γ r n dσ = o(β -l n ). (6.36) 
We still need to transform the term Ω r n div h dx.

By using (6.6) we may write ). (6.38) This estimate and (6.15) leads to (6.31).

This Lemma and Lemmas 3.3 and 3.4 show that the restriction of the operator A d to H 0 satisfies the hypotheses of Lemma 6.1 with l = 3. Therefore we have obtained the next main result. Theorem 6.3. Assume that ω contains a neighborhood of the whole boundary Γ then the system (1.1) with an initial datum ( u 0 , r 0 ) in H 0 ∩ D(A d ), H 0 = Ker[A d ] ⊥ , is polynomially stable, namely there exists C > 0 such that E(t) ≤ Ct -2/3 ( u 0 , r 0 ) 2 D(A d ) , ∀t > 0.

Lemma 3 . 3 .

 33 Suppose that |ω| > 0. If λ is a non-zero real number, then iλ is not an eigenvalue of A d . Proof. Suppose that iλ u + ∇r + α u = 0, iλ r + div u = 0. (3.11) From (3.11) we deduce that iλ Ω (| u| 2 -|r| 2 )dx + Ω α| u| 2 dx = 0;

Theorem 4 . 1 .

 41 If the damping coefficient α is not uniformly positive definite, meaning inf x∈Ω α(x) = 0, then the system (1.1) is not exponentially stable. Conversely, if α is uniformly positive definite, meaning ω = Ω, then the system (1.1) is exponentially stable, specifically,

2 (L 2 (

 22 |∇ψ(x, t)| 2 dxdt ≥ C (∇ψ 0 , ψ 1 ) Ω) d ×L 2 (Ω) .

  |∇ψ(x, t)| 2 dxdt = 0.

  .34) Taking into account (6.23) we getΩ |∇s n | 2 dx = β 2 n Ω |s n | 2 dx + o(β 2-l/2 n ),and (6.34) finally leads toΩ |∇s n | 2 dx = o(β 3-l/2

Ω r n 2 =

 2 div h dx = -i Ω (β -(l+1) n g ndiv u n )div h dx.Again by Green's formula and the fact thatu n • n = 0 on Γ we obtain Ω r n div h dx = -i Ω (β -(l+1) n g n div h + u n • ∇div h) dx.Using this identity in (6.36) we obtainΓ r n dσ = -Ω ((iβ n + α) u n hiβ -(l+1) n g n div hi u n • ∇div h) dx + o(β -l nfor some C > 0 depending only on ω. Hence using (6.37) and (6.11) yields ω |r n | 2 dx 1 o(β 1-l/2 n

  .14) yield iβ n u n + ∇r n = ∇ϕ n + χ n ,As u n is solenoidal, s n is harmonic, and, furthermore sinceu n • n = χ n • n = 0 on Γ,

	Next, by (6.3) and (6.15), one has			
	s n = O(1).		(6.19)
	while (6.10) and (6.15) lead to			
	∇s n = O(β n ).	(6.20)
	Now by (6.6), (6.16) and (6.18) we see that s n satisfies
	iβ n s n -	1 iβ n	div ∇s n = gn	(6.21)
	where			
	gn := β -l n g n -iβ n ϕ n .
	Due to (6.6) and (6.15) we see that			
	gn = o(β 1-l/2 n	).	(6.22)
	or equivalently			
	iβ n u n = -∇s n + χ n ,	(6.16)
	with			
	s n = r n -ϕ n .		(6.17)
	we automatically have			
	∇s n • n = 0 on Γ.	(6.18)
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