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Abstract Several approaches are discussed how to understand the solution of the
Dirichlet problem for the Poisson equation when the Dirichlet data are non-smooth such
as if they are in L2 only. For the method of transposition (sometimes called very weak
formulation) three spaces for the test functions are considered, and a regularity result is
proved. An approach of Berggren is recovered as the method of transposition with the
second variant of test functions. A further concept is the regularization of the boundary
data combined with the weak solution of the regularized problem. The effect of the
regularization error is studied.

The regularization approach is the simplest to discretize. The discretization error is
estimated for a sequence of quasi-uniform meshes. Since this approach turns out to be
equivalent to Berggren’s discretization his error estimates are rendered more precisely.
Numerical tests show that the error estimates are sharp, in particular that the order
becomes arbitrarily small when the maximal interior angle of the domain tends to 2π.
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1 Introduction

The motivation for this paper is to consider the boundary value problem

−∆y = f in Ω, y = u on Γ := ∂Ω, (1.1)

with right hand side f ∈ H−1(Ω) and boundary data u ∈ L2(Γ). We assume Ω ⊂ R2 to
be a bounded polygonal domain with boundary Γ. Such problems arise in optimal control
when the Dirichlet boundary control is considered in L2(Γ) only, see for example the
papers by Deckelnick, Günther, and Hinze, [11], French and King, [12], May, Rannacher,
and Vexler, [17], and Apel, Mateos, Pfefferer, and Rösch, [1]. On the continuous level
we even admit more irregular data.

In Section 2 we analyze several ways how to understand the solution of the boundary
value problem (1.1) for which we cannot expect a weak solution y ∈ H1(Ω). The most
popular method to solve problem (1.1) is the transposition method that goes back to
Lions and Magenes [16] and that is based on the use of some integration by parts. This
formally leads to the very weak formulation: Find y ∈ Y such that

(y,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ V (1.2)

with (w, v)G :=
∫
Gwv denoting the L2(G) scalar product or an appropriate duality

product. The main issue is to find the appropriate trial space Y and test space V . In
the convex case, it turns out that a good choice is Y = L2(Ω) and V = H2(Ω)∩H1

0 (Ω).
This case is investigated by many authors, some of them are mentioned in Subsection
2.1, but we will see that such a choice is not appropriate in the non-convex case (loss
of uniqueness) and present some remedies (enlarged test spaces) in Subsections 2.2 and
2.3. We will further show in Subsection 2.2 that in the correct setting the very weak
solution corresponds to the one obtained by an integral equation technique and hence
has H1/2(Ω) regularity.

The main drawback of the very weak formulation is the fact that a conforming dis-
cretization of the test space should be made by C1-elements. Hence Berggren proposed
in [4] to introduce two new variables, ϕ := −∆v and ζ := ∂nv allowing to perform a
simpler numerical analysis, see Subsection 2.4. In Subsection 2.5 we propose another
method that consists of regularizing the Dirichlet datum u by approximating it by a
sequence of functions uh in H1/2(Γ) using for example an interpolation operator. This
allows to compute a sequence of weak solutions yh ∈ H1(Ω), and we show that they
converge to the very weak solution with an explicit convergence rate.

A negative result about the well-posedness of the weak formulation with L1(Γ)-data
completes the discussion on the continuous level.

Section 3 is devoted to the numerical analysis. We start with Berggren’s numeri-
cal approach and recall his error estimates in Subsection 3.1 for completeness. Next
we perform in Subsection 3.2 a numerical analysis of our regularization approach and
prove error estimates for the piecewise linear approximation on a family of conforming,
quasi-uniform finite element meshes. Notice that it turns out that on the discrete level
Berggren’s approach is a particular case of our regularization strategy. The convergence
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order is 1
2 in the convex case but smaller in the non-convex case. This reduction can be

explained by the singular behaviour of the solution of the dual problem. In our paper
[2] we investigate the singular complement method to remedy the suboptimality of the
standard finite element method in non-convex domains.

Finally, in Section 4 we present numerical tests in order to illustrate that our error
estimates are sharp. The paper ends with some remarks about the three-dimensional
case and about data with different regularity than assumed above.

2 Analysis of the boundary value problem

In this section we analyze several ways how to understand the solution of the boundary
value problem (1.1) for which we cannot expect a weak solution y ∈ H1(Ω).

For keeping the notation succinct we assume that the polygonal domain Ω has at most
one non-convex corner with interior angle, denoted by ω. Let r, θ be the corresponding
polar coordinates and define λ := π/ω. The boundary segments of Ω are denoted by Γj ,
j = 1, . . . , N .

2.1 Method of transposition in convex polygonal domains

The method of transposition goes back at least to Lions and Magenes, [16], and is used
by several other authors including French and King, [12], Casas and Raymond, [6], Dec-
kelnick, Günther, and Hinze, [11], and May, Rannacher, and Vexler, [17]. Since by partial
integration the derivation

(f, v)Ω = −(∆y, v)Ω = (∇y,∇v)Ω for v ∈ H1
0 (Ω)

= (y, ∂nv)Γ − (y,∆v)Ω for v ∈ H2(Ω) ∩H1
0 (Ω)

is valid we get the very weak formulation: Find

y ∈ L2(Ω) : (y,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ H2(Ω) ∩H1
0 (Ω). (2.1)

May, Rannacher, and Vexler, [17], proved the existence of a solution in L2(Ω) in the case
of a convex polygonal domain Ω.

Lemma 2.1. If the domain Ω is convex there exists a unique solution y ∈ L2(Ω) of
problem (2.1) that satisfies the a priori error estimate

‖y‖L2(Ω) ≤ c
(
‖u‖∏N

j=1H
1/2
00 (Γj)′

+ ‖f‖(H2(Ω)∩H1
0 (Ω))

′

)
(2.2)

provided that u ∈
∏N
j=1H

1/2
00 (Γj)

′ and f ∈
(
H2(Ω) ∩H1

0 (Ω)
)′

.

Recall that H
1/2
00 (Γj) is the space of functions whose extension by zero to Γ is in

H1/2(Γ).
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Proof. For being self-contained we sketch here the proof of [17, Lemma 2.1]. The idea is
first to assume more regular data, u ∈ H1/2(Γ), f ∈ H−1(Ω) such that a weak solution
y ∈ H1(Ω) exists, then to show (2.2), and finally to use a standard density argument since

H2(Ω) ∩H1
0 (Ω)

c
↪→ H1

0 (Ω) and H1/2(Γ)
c
↪→ L2(Γ) =

∏N
j=1 L

2(Γj)
c
↪→
∏N
j=1H

1/2
00 (Γj)

′.
The estimate (2.2) is proven by using a duality argument. Due to the convexity of the

domain there exists a solution w ∈ H2(Ω) of the auxiliary problem

−∆w = y in Ω, w = 0 on Γ, (2.3)

such that

‖y‖2L2(Ω) = (y,−∆w)Ω = (f, w)Ω − (u, ∂nw)Γ

≤ c
(
‖u‖∏N

j=1 H
1/2
00 (Γj)′

+ ‖f‖(H2(Ω)∩H1
0 (Ω))

′

)
‖w‖H2(Ω),

where one uses that the mapping H2(Ω) ∩ H1
0 (Ω) →

∏N
j=1H

1/2
00 (Γj), w 7→ ∂nw, is

surjective due to [13, Thm. 1.5.2.8]. The desired estimated (2.2) is then obtained by
using the a priori estimate ‖w‖H2(Ω) ≤ c‖y‖L2(Ω) and by division by ‖y‖L2(Ω).

The method of proof of this lemma will be revisited in Section 2.5, where we start the
discussion of the regularization approach. However, there we will work with different
function spaces such that non-convex domains are included in the theory as well. The
given proof of Lemma 2.1 is even restricted to convex domains since the isomorphism

∆w ∈ L2(Ω), w|Γ = 0 ⇔ w ∈ H2(Ω) ∩H1
0 (Ω)

is used. If the domain is non-convex one loses at least the uniqueness of the solution
y of (2.1). For example, take Ω = {(r cos θ, r sin θ) ∈ R2 : 0 < r < 1, 0 < θ < ω} and
λ = π/ω, then both y1 = rλ sin(λθ) and y2 = r−λ sin(λθ) are harmonic in Ω and y1 = y2

on Γ. Both satisfy (2.1) with f ≡ 0 and g = y1 = y2 on Γ. Hence, one needs a larger
test space in order to rule out y2.

2.2 Method of transposition in general polygonal domains

In a first instance we replace the test space H2(Ω) ∩H1
0 (Ω) by

V := H1
0 (Ω) ∩H1

∆(Ω) with H1
∆(Ω) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)}. (2.4)

Since |v|H1(Ω) ≤ c‖∆v‖L2(Ω), the graph norm in V , that is ‖∆v‖L2(Ω) + |v|H1(Ω), is
equivalent to ‖∆v‖L2(Ω) such that we will use henceforth

‖v‖V = ‖∆v‖L2(Ω).

Furthermore, let us denote by VΓ the space of normal derivatives ∂nv of functions v ∈
V . According to [13, Theorem 1.5.3.10] this space is well-defined and a subspace of∏N
j=1H

1/2
00 (Γj)

′. The natural norm in VΓ is given by

‖g‖VΓ
:= inf {‖v‖V : v ∈ V, ∂nv = g} .
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In particular, we have for v ∈ V that

‖∂nv‖VΓ
≤ ‖v‖V . (2.5)

Since the previous definitions of the spaces V and VΓ are rather formal let us discuss the
structure of these spaces.

Remark 2.2. The spaces V and VΓ can be characterized as follows:

1. If Ω is convex the spaces V and H2(Ω)∩H1
0 (Ω) coincide. However, in non-convex

domains the situation is different. In this case there is the splitting

V =
(
H2(Ω) ∩H1

0 (Ω)
)
⊕ Span{ξ(r) rλ sin(λθ)},

where ξ denotes a smooth cut-off function which is equal to one in the neighborhood
of the non-convex corner. For more details we refer to [14, Sections 1.5, 2.3 and
2.4] and [13, Theorem 4.4.3.7].

2. The mapping H2(Ω)∩H1
0 (Ω)→

∏N
j=1H

1/2
00 (Γj), w 7→ ∂nw, is surjective due to [13,

Thm. 1.5.2.8]. Accordingly, in the convex case VΓ is just
∏N
j=1H

1/2
00 (Γj), whereas

in the non-convex case there holds

VΓ =

 N∏
j=1

H
1/2
00 (Γj)

⊕ Span{ξ(r) rλ−1}.

3. In the non-convex case there is V ↪→ Hs(Ω)∩H1
0 (Ω) for s < 1+λ and VΓ ↪→ Ht(Γ)

for t < λ− 1
2 . This implies

(
Hs(Ω) ∩H1

0 (Ω)
)′
↪→ V ′ and Ht(Γ)′ ↪→ V ′Γ.

Lemma 2.3. Let f ∈ V ′ and u ∈ V ′Γ. Then there exists a unique solution

y ∈ L2(Ω) : (y,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ V (2.6)

with
‖y‖L2(Ω) ≤ ‖u‖V ′Γ + ‖f‖V ′ .

Proof. The proof of this lemma is based on the Babuška–Lax–Milgram theorem. Due
to (2.5) the right hand side of (2.6) defines a linear functional on V . Moreover, the
bilinear form is bounded on L2(Ω)× V . The inf-sup conditions are proved by using the
isomorphism

∆v ∈ L2(Ω), v|Γ = 0 ⇔ v ∈ V.

In particular, we obtain by taking y = ∆v

sup
y∈L2(Ω)

|(y,∆v)Ω|
‖y‖L2(Ω)

≥ (∆v,∆v)Ω

‖∆v‖L2(Ω)
= ‖∆v‖L2(Ω) = ‖v‖V ,
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and by taking the solution v ∈ V of ∆v = y

sup
v∈V

|(y,∆v)Ω|
‖v‖V

≥ (y, y)Ω

‖y‖L2(Ω)
= ‖y‖L2(Ω). (2.7)

The existence of the unique solution y ∈ L2(Ω) of problem (2.6) follows from the standard
Babuška–Lax–Milgram theorem, see for example [3, Theorem 2.1]. The a priori estimate
follows from (2.7), and (2.6) and (2.5),

‖y‖L2(Ω) ≤ sup
v∈V

|(y,∆v)Ω|
‖v‖V

= sup
v∈V

|(u, ∂nv)Γ − (f, v)Ω|
‖v‖V

≤ ‖u‖V ′Γ + ‖f‖V ′ .

Note that if a weak solution y ∈ {v ∈ H1(Ω) : v|Γ = u} exists, then with the help of
the Green formula

(∂nv, χ)Γ = (∇v,∇χ)Ω + (∆v, χ)Ω ∀v ∈ H1
∆(Ω) ⊃ V, ∀χ ∈ H1(Ω), (2.8)

see Lemma 3.4 in the paper [9] by Costabel, it is also a very weak solution. (Set χ = y
and use (∇v,∇y)Ω = (f, v)Ω.)

A possible difficulty with this formulation is that a conforming discretization with a
finite-dimensional space Vh ⊂ V would require the use of C1-functions. This is simple for
one-dimensional domains Ω but requires a lot of degrees of freedom in two (and more)
dimensions.

We finish this subsection with a regularity result.

Lemma 2.4. The unique solution y ∈ L2(Ω) of problem (2.6) with u ∈ L2(Γ) and f = 0
belongs to H1/2(Ω) and to

W̃ 1,2(Ω) := {z ∈ L2(Ω) : δ1/2∇z ∈ L2(Ω)2} (2.9)

where δ(x) is the distance of x to the boundary Γ. Furthermore, there exists a positive
constant c such that

‖y‖H1/2(Ω) + ‖δ1/2∇y‖L2(Ω)2 ≤ c‖u‖L2(Γ). (2.10)

Remark 2.5. The book by Chabrowski, [7], deals exclusively with the Dirichlet problem
with L2 boundary data for elliptic linear equations. The solution is searched there in
the Sobolev space (2.9) but domains of class C1,1 were considered only.

Proof of Lemma 2.4. In a first step, we use an integral representation and some prop-
erties of the layer potentials to get a solution with the appropriate regularity. Theorem
4.2 of Verchota’s paper [24] shows that the operator 1

2I + K, K being the boundary
double layer potential, is an isomorphism from L2(Γ) into itself (see also Corollary 4.5
of [19]). According to the trace property for the double layer potential K (see Section 1
and Corollary 3.2 of [24]), there exists a unique harmonic function z such that

z → u a.e. in nontangential cones
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with the notation from [24], and is given by

z = K(1
2I +K)−1u. (2.11)

But due to the above mentioned isomorphism property and Theorem 1 of Costabel’s
paper [9] (and its following Remark), we obtain that

‖z‖H1/2(Ω) ≤ c‖u‖L2(Γ). (2.12)

Note that Theorems 5.3, 5.4 and Corollary 5.5 of the paper [15] by Jerison and Kenig
also yield

‖δ1/2∇z‖L2(Ω)2 ≤ c‖u‖L2(Γ). (2.13)

The second step is to show that z is the very weak solution, hence by uniqueness, we
will get y = z. The regularity of y and the estimate (2.10) follow from our first step.
For that last purpose, we use a density argument. Indeed let un ∈ H1(Γ) be a sequence
of functions such that

un → u in L2(Γ), as n→∞. (2.14)

Consider zn = K(1
2I +K)−1un and let yn ∈ L2(Ω) be the unique solution of (2.6) with

boundary datum un and right hand side f = 0 (that is in H1(Ω)). Then by the estimate
(2.12) and Lemma 2.3, we get

yn → y in L2(Ω), as n→∞,
zn → z in H1/2(Ω), as n→∞.

Furthermore by Theorem 5.15 of [15] zn satisfies

γzn = un on Γ,

where γ is the trace operator from H1(Ω) into H1/2(Γ). Hence we directly deduce that
yn = zn and by the above convergence property we conclude that y = z.

Corollary 2.6. The unique solution y ∈ L2(Ω) of problem (2.6) with u ∈ L2(Γ) and

f ∈ H−1(Ω) belongs to H1/2(Ω) and to W̃ 1,2(Ω) from (2.9). There exists a positive
constant c such that

‖y‖H1/2(Ω) + ‖δ1/2∇y‖L2(Ω)2 ≤ c
(
‖u‖L2(Γ) + ‖f‖H−1(Ω)

)
.

2.3 Method of transposition employing weighted Sobolev spaces

Alternatively to the space H1
∆(Ω) ∩H1

0 (Ω), one can use the test space

V 2,2
β (Ω) ∩H1

0 (Ω), β > 1− π

ω
,
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in the non-convex case, where V 2,2
β (Ω) is a weighted Sobolev space of the class

V k,p
β (Ω) :=

{
v ∈ D′(Ω) : ‖v‖

V k,pβ (Ω)
<∞

}
,

‖v‖p
V k,pβ (Ω)

:=
∑
|α|≤k

∫
Ω
|rβ−k+|α|Dαv|p,

(2.15)

where we use standard multi-index notation. For later use we also introduce

L2
β(Ω) := V 0,2

β (Ω).

First derivatives of V 2,2
β (Ω)-functions belong to V 1,2

β (Ω) by definition. The trace space

of V 1,2
β (Ω) is

∏N
j=1 V

1/2,2
β (Γj), see [18, Lemma 1.2] or [20, Theorem 1.31]. In the next

lemma, we will use the spaces

Vβ :=

{
V 2,2
β (Ω) ∩H1

0 (Ω) for ω > π,

H2(Ω) ∩H1
0 (Ω) for ω < π,

Yβ :=

{
L2
−β(Ω) for ω > π,

L2(Ω) for ω < π,

for β ∈ (1− π
ω , 1]. We endow Vβ with the V 2,2

β (Ω)-norm for ω > π and the H2(Ω)-norm

for ω < π, as well as Yβ with the L2
−β(Ω)-norm for ω > π and the L2(Ω)-norm for ω < π.

Remark 2.7. Let us discuss the definition of the space Vβ and the restriction of the
weight β to the interval (1− π

ω , 1] in the non-convex case:

1. We require β ∈ (1− π
ω , 1] in order to have the isomorphism

∆v ∈ L2
β(Ω), v|Γ = 0 ⇔ v ∈ Vβ. (2.16)

2. It is possible to use the test space V 2,2
β (Ω) ∩ H1

0 (Ω) in convex domains as well.
However, this implies a loss of information about the solution since this test space
is smaller than H2(Ω) ∩H1

0 (Ω) due to the fact that the weight β can be negative.

3. Note that V
1/2,2
β (Γj) ↪→ L2(Γj) for β ≤ 1

2 . This implies L2(Γ) =
(∏N

j=1 L
2(Γj)

)′
↪→(∏N

j=1 V
1/2,2
β (Γj)

)′
. This means that L2-boundary data are included in the fol-

lowing discussion if β ≤ 1
2 .

Lemma 2.8. Let β ∈ (1 − π
ω , 1] and assume that f ∈ V ′β and u ∈

(∏N
j=1 V

1/2,2
β (Γj)

)′
.

Then there exists a unique solution

y ∈ Yβ ↪→ L2(Ω) : (y,∆v)Ω = (u, ∂nv)Γ − (f, v)Ω ∀v ∈ Vβ (2.17)

with

‖y‖Yβ ≤ c
(
‖f‖V ′β + ‖u‖(∏N

j=1 V
1/2,2
β (Γj)

)′
)
.
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Proof. The convex case was already treated in Lemma 2.1, hence we focus on the non-
convex case. We proceed as in Lemma 2.3. The right hand side of (2.17) defines a
continuous functional on Vβ. Furthermore, the bilinear form is bounded on Yβ × Vβ,

|(y,∆v)Ω| ≤ ‖r−βy‖L2(Ω) ‖rβ∆v‖L2(Ω) ≤ ‖y‖Yβ ‖v‖Vβ .

The inf-sup conditions for the bilinear form are proved by using the isomorphism (2.16),
in particular ‖v‖Vβ ≤ c‖∆v‖L2

β(Ω); we obtain by taking y = r2β∆v

sup
y∈Yβ

|(y,∆v)Ω|
‖y‖Yβ

≥ (rβ∆v, rβ∆v)Ω

‖r2β∆v‖L2
−β(Ω)

=
‖∆v‖2

L2
β(Ω)

‖∆v‖L2
β(Ω)

≥ c−1‖v‖Vβ ,

and by taking the solution v ∈ Vβ of ∆v = r−2βy with ‖v‖Vβ ≤ c‖∆v‖L2
β(Ω) = c‖y‖L2

−β(Ω)

sup
v∈Vβ

|(y,∆v)Ω|
‖v‖Vβ

≥ (r−βy, r−βy)Ω

c‖y‖L2
−β(Ω)

= c−1‖y‖L2
−β(Ω). (2.18)

The existence of the unique solution y ∈ L2
−β(Ω) of problem (2.17) follows now from

the standard Babuška–Lax–Milgram theorem, see for example [3, Theorem 2.1]. The
a priori estimate is obtained with (2.18) and (2.17),

‖y‖Yβ ≤ c sup
v∈Vβ

|(y,∆v)Ω|
‖v‖Vβ

= c sup
v∈Vβ

|(u, ∂nv)Γ − (f, v)Ω|
‖v‖Vβ

.

This ends the proof since we already noticed that the enumerator defines a continuous
functional on Vβ.

2.4 Berggren’s approach

Berggren’s approach [4] avoids test functions in H1
∆(Ω) ∩H1

0 (Ω) in an explicit way. It
can be explained as if we substitute ϕ := −∆v and ζ := ∂nv in (2.6),

y ∈ L2(Ω) : (y, ϕ)Ω = −(u, ζ)Γ + (f, v)Ω ∀ϕ ∈ L2(Ω). (2.19)

The relationship between ϕ ∈ L2(Ω) and both v ∈ V and ζ ∈ VΓ can be expressed by
the weak formulation of the Poisson equation,

v ∈ V : (∇v,∇ψ)Ω = (ϕ,ψ)Ω ∀ψ ∈ H1
0 (Ω) (2.20)

and a reformulation of the Green formula (2.8) in the form

ζ ∈ VΓ : (ζ, χ)Γ = (∇v,∇χ)Ω − (ϕ, χ)Ω ∀χ ∈ H1(Ω) \H1
0 (Ω). (2.21)

Note that Berggren’s formulation is not a system with three unknown functions since
the second and third equations compute actions on the test function ϕ. Indeed, let
S : L2(Ω) → V and F : L2(Ω) → VΓ be the solution operators of (2.20) and (2.21),
respectively, defined by Sϕ := v and Fϕ := ζ, then we could also write

y ∈ L2(Ω) : (y, ϕ)Ω = −(u, Fϕ)Γ − (f, Sϕ)Ω ∀ϕ ∈ L2(Ω)

instead of (2.19).

9



Lemma 2.9. Berggren’s formulation (2.19), (2.20), (2.21) is equivalent to the formula-
tion (2.6).

Proof. We first assume that y ∈ L2(Ω) satisfies (2.6) and show (2.19)–(2.21). For any
ϕ ∈ L2(Ω) let v be the variational solution of −∆v = ϕ defined by (2.20), hence v ∈ V
and ζ := ∂nv ∈ VΓ. Based on the formula (2.8), we obtain (2.21). With (2.6) we finally
get also (2.19).

Let now y satisfy (2.19)–(2.21). Since ϕ ∈ L2(Ω) we get from (2.20) that v ∈ V .
Moreover, we obtain ζ = ∂nv ∈ VΓ from (2.21). Hence equation (2.19) becomes

−(y,∆v)Ω = −(u, ∂nv)Γ + (f, v)Ω ∀v ∈ V

due to the isometry between L2(Ω) and V .

Remark 2.10. Berggren used the regularity v ∈ H3/2+ε(Ω) with some ε > 0 which
implies ζ ∈ Hε(Γ). However, he did not consider the maximal domain of the elliptic
operator, i.e., v ∈ V and ζ ∈ VΓ. But with the explanations of Subsection 2.2 these
regularities should be obvious. Thus the result of Lemma 2.9 is slightly more general
than that of Berggren.

2.5 The regularization approach

A further idea is to regularize the boundary data and then to apply standard methods.
This approach has already been considered within the proof of Lemma 2.1. In contrast,
we do not use the isomorphism

∆w ∈ L2(Ω), w|Γ = 0 ⇔ w ∈ H2(Ω) ∩H1
0 (Ω),

which can only be employed in case of convex domains, but the isomorphism

∆v ∈ L2(Ω), v|Γ = 0 ⇔ v ∈ V.

This allows us to apply the regularization approach in the non-convex case as well.
Moreover, we propose two different strategies how the regularized Dirichlet boundary
data can be constructed in an explicit way. Thereby we will be able in Subsection 3.2
to calculate approximate solutions of the regularized problems based on a finite element
method. For the data we assume henceforth u ∈ L2(Γ) and f ∈ H−1(Ω). This is not
only for simplicity but also due to the fact that already for Dirichlet boundary data in
L2(Γ) the convergence rates of the approximate solutions in Subsection 3.2 tend to zero
as the maximal interior angle tends to 2π.

We start with general convergence results for the regularized solutions. To this end
let uh ∈ H1/2(Γ) be a sequence of functions such that

lim
h→0
‖u− uh‖L2(Γ) = 0.

Let now yh ∈ Y h
∗ := {v ∈ H1(Ω) : v|Γ = uh} be the variational solution,

yh ∈ Y h
∗ : (∇yh,∇v)Ω = (f, v)Ω ∀v ∈ H1

0 (Ω). (2.22)

10



Lemma 2.11. Let u ∈ L2(Γ) and f ∈ H−1(Ω). Then the limit y := lim
h→0

yh exists,

belongs to L2(Ω), and is the very weak solution, that means it satisfies (2.6).

Proof. First we show that yh is a Cauchy sequence in L2(Ω). From (2.22) and Green’s
formula, we have for any v ∈ V ,

(f, v)Ω = (∇yh,∇v)Ω = −(yh,∆v)Ω + (yh, ∂nv)Γ,

(f, v)Ω = (∇yh′ ,∇v)Ω = −(yh
′
,∆v)Ω + (yh

′
, ∂nv)Γ.

Hence due to yh = uh and yh
′

= uh
′

on Γ, we deduce that

(yh − yh′ ,∆v)Ω = (uh − uh′ , ∂nv)Γ ∀v ∈ V. (2.23)

Now for any z ∈ L2(Ω), let vz ∈ V be such that

∆vz = z, (2.24)

that clearly satisfies

‖∂nvz‖L2(Γ) ≤ c‖vz‖Hs(Ω) ≤ c‖z‖L2(Ω) (2.25)

with some s ∈
(

3
2 , 1 + λ

)
, s ≤ 2. Finally, we obtain with (2.23) and (2.25)

‖yh − yh′‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(yh − yh′ , z)Ω

‖z‖L2(Ω)
= sup

z∈L2(Ω),z 6=0

(uh − uh′ , ∂nvz)Γ

‖z‖L2(Ω)

≤ ‖uh − uh′‖L2(Γ) sup
z∈L2(Ω),z 6=0

‖∂nvz‖L2(Γ)

‖z‖L2(Ω)
= c‖uh − uh′‖L2(Γ).

Since uh converges in L2(Γ), it is a Cauchy sequence and hence also yh is a Cauchy
sequence and converges in L2(Ω) by the completeness of L2(Ω).

From V ⊂ H1
0 (Ω) we obtain by (2.22) and the Green formula (2.8)

(f, v)Ω = (∇yh,∇v)Ω = (∆v, yh)Ω − (∂nv, y
h)Γ

= (∆v, yh)Ω − (∂nv, u
h)Γ ∀v ∈ V.

Since ∆v ∈ L2(Ω) and ∂nv ∈ L2(Γ) we can pass to the limit and obtain that the limit
function y satisfies (2.6).

We can estimate the regularization error by a similar technique.

Lemma 2.12. Let s = 1
2 if Ω is convex and s ∈ [0, λ− 1

2) if Ω is non-convex. Then the
estimate

‖y − yh‖L2(Ω) ≤ c‖u− uh‖H−s(Γ)

holds.
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Proof. We use the approach of the proof of Lemma 2.11 and just replace uh
′

by u and
yh
′

by y to get

(y − yh,∆v)Ω = (u− uh, ∂nv)Γ ∀v ∈ V. (2.26)

Again, for any z ∈ L2(Ω), we let vz ∈ V be such that ∆vz = z but estimate now in a
sharper way

‖∂nvz‖Hs(Γ) ≤ c‖vz‖Hs+3/2(Ω) ≤ c‖z‖L2(Ω) (2.27)

As in the previous proof we get

‖y − yh‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(u− uh, ∂nvz)Ω

‖z‖L2(Ω)

≤ ‖u− uh‖H−s(Γ) sup
z∈L2(Ω),z 6=0

‖∂nvz‖Hs(Γ)

‖z‖L2(Ω)

≤ c‖u− uh‖H−s(Γ).

Actually, the proof is for s > 0 but of course the statement holds when s is decreased.

A choice for the construction of the regularized function uh could be the use of the
L2(Γ)-projection Πhu into a piecewise polynomial space on the boundary (which we call
Y ∂
h in Section 3) or the use of the Carstensen interpolant Chu, see [5]. Namely, if NΓ is

the set of nodes of the triangulation on the boundary, we set

Chu =
∑
x∈NΓ

πx(u)λx,

where λx is the standard hat function related to x and

πx(u) =

∫
Γ uλx∫
Γ λx

=
(u, λx)Γ

(1, λx)Γ
.

The advantages of the interpolant in comparison with the L2-projection are its local
definition and the property

u ∈ [a, b] ⇒ Chu ∈ [a, b],

see [10]; a disadvantage for our application in optimal control is that Chuh 6= uh for
piecewise linear uh. We prove now regularization error estimates for the case that the
regularized function uh is constructed via Chu or Πhu.

Lemma 2.13. If uh is the piecewise linear Carstensen interpolant of u or the L2(Γ)-
projection of u into a space of piecewise linear functions, then there holds

‖u− uh‖H−s(Γ) ≤ chs‖u‖L2(Γ), s ∈ [0, 1]

as well as
‖uh‖L2(Γ) ≤ c‖u‖L2(Γ).
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Proof. The interpolation error estimate and stability result are derived in [5, 10] for
domains. The proofs can be transferred to estimates on the boundary Γ. For the sake
of completeness we sketch these proofs in the Appendix, see Lemma A.2.

In the case of the L2-projection, the second estimate holds with constant one. For the
first estimate, we notice that by using the properties of the L2-projection, we have

(u−Πhu, ϕ)Γ = (u−Πhu, ϕ−Πhϕ)Γ = (u, ϕ−Πhϕ)Γ ≤ ‖u‖L2(Γ)‖ϕ−Πhϕ‖L2(Γ)

≤ ‖u‖L2(Γ)‖ϕ− Chϕ‖L2(Γ) ≤ chs‖u‖L2(Γ)‖ϕ‖Hs(Γ)

where we used Lemma A.2 in the last step. We conclude

‖u− uh‖H−s(Γ) = sup
ϕ∈Hs(Γ),ϕ 6=0

(u−Πhu, ϕ)Γ

‖ϕ‖Hs(Γ)
≤ chs‖u‖L2(Γ).

which is the assertion.

By setting s = 0 in the previous lemma we obtain

‖u− uh‖L2(Γ) ≤ c‖u‖L2(Γ)

for the different choices of the regularized function uh. This means that for u ∈ L2(Γ)
the difference u − uh is uniformly bounded in L2(Γ) independent of h. However, we
require strong convergence in L2(Γ) for u ∈ L2(Γ), i.e.

lim
h→0
‖u− uh‖L2(Γ) = 0.

This is subject of the next lemma. A comparable result for the Ritz-projection can be
found in e.g. [8, Theorem 3.2.3].

Lemma 2.14. Let u ∈ L2(Γ) and let uh be the piecewise linear Carstensen interpolant
of u or the L2(Γ)-projection of u into a space of piecewise linear functions. Then there
holds

lim
h→0
‖u− uh‖L2(Γ) = 0.

Proof. We show the validity of this lemma for the Carstensen interpolant. The conver-
gence result for the L2(Γ)-projection can be proven analogously.

Due to the compact embedding H1(Γ)
c
↪→ L2(Γ) there exists a sequence of functions

un ∈ H1(Γ) such that
lim
n→∞

‖u− un‖L2(Γ) = 0

with
‖un‖H1(Γ) ≤ cn, (2.28)

where the constant cn may depend on n. Thus, for every ε > 0 there is a positive integer
N such that

‖u− un‖L2(Γ) ≤
ε

2
(2.29)
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for n ≥ N . By inserting the function un and its Carstensen interpolant Chun as inter-
mediate functions into the desired term we obtain

‖u− Chu‖L2(Γ) ≤ ‖u− un‖L2(Γ) + ‖un − Chun‖L2(Γ) + ‖Ch(un − u)‖L2(Γ).

The results of Lemma 2.13 and the inequalities (2.28) and (2.29) imply

‖u− Chu‖L2(Γ) ≤ c
(ε

2
+ hcn

)
.

Since for every constant cn there is a parameter hn such that hcn ≤ ε
2 for all h ≤ hn we

arrive at
‖u− Chu‖L2(Γ) ≤ cε

and the desired result follows.

2.6 A negative result

Since the boundary datum u ∈ L2(Γ) ↪→ L1(Γ) is trace of a function w ∈ W 1,1(Ω) an
idea could be to search y = y0 + w with y0|Γ = 0 and

y0 ∈W 1,1
0 (Ω) : (∇y0,∇v)Ω = (f, v)Ω − (∇w,∇v)Ω =: (F, v)Ω ∀v ∈W 1,∞

0 (Ω).

However, bilinear forms a(u, v) : W 1,p
0 (Ω) ×W 1,p′

0 (Ω) → C are investigated in [22, 23]
and it is shown that

∀F ∈W 1,p′(Ω)∗ ∃z ∈W 1,p
0 (Ω) : a(z, v) = (F, v)Ω ∀v ∈W 1,p′

0 (Ω)

holds for p ∈ (1,∞) only since cp →∞ for p→ 1 in the inf-sup condition

cp sup
φ∈W 1,p′

0 (Ω)

(∇z,∇φ)Ω

‖∇φ‖Lp′ (Ω)

≥ ‖∇z‖Lp(Ω) for 1 < p <∞.

3 Discretization of the boundary value problem

Let (Th)h>0 be a family of conforming, quasi-uniform finite element meshes, and intro-
duce the finite element spaces

Yh = {vh ∈ H1(Ω) : vh|T ∈ P1 ∀T ∈ Th}, Y0h = Yh ∩H1
0 (Ω), Y ∂

h = Yh|∂Ω. (3.1)

3.1 Berggren’s approach

Let u ∈ L2(Γ) and f ∈ H−1(Ω). We discretize the formulation (2.19), (2.20), (2.21) in
a straightforward manner,

yh ∈ Yh : (yh, ϕh)Ω = −(u, ζh)Γ + (f, vh)Ω ∀ϕh ∈ Yh,
vh ∈ Y0h : (∇vh,∇ψh)Ω = (ϕh, ψh)Ω ∀ψh ∈ Y0h,

ζh ∈ Y ∂
h : (ζh, χh)Γ = (∇vh,∇χh)Ω − (ϕh, χh)Ω ∀χh ∈ Yh \ Y0h.
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Note that ζh 6= Fϕh and vh 6= Sϕh with F and S from Subsection 2.4, hence it is only
an approximate Galerkin formulation.

Berggren showed in Theorem 5.2 of [4] that this formulation is equivalent with the
standard finite element approximation with L2-projection of the boundary data,

yh ∈ Yh : (∇yh,∇ϕh)Ω = (f, ϕh)Ω ∀ϕh ∈ Y0h, (3.2)

(yh, ϕh)Γ = (u, ϕh)Γ ∀ϕh ∈ Y ∂
h . (3.3)

Note that yh = uh on Γ when u = uh ∈ Y ∂
h . This will be of interest in the discretization

of optimal control problems.
Berggren proved also the following discretization error estimate, see Theorem 5.5 of [4].

Lemma 3.1. Let ω be the maximal interior angle of the domain Ω, and denote by
λ = π/ω the corresponding singularity exponent. Let s′ ∈ (0, 1

2 ] be a real number with
s′ < λ− 1

2 , and let s ∈ [0, s′) be a further real number. Then the error estimate

‖y − yh‖L2(Ω) ≤ c
(
hs‖y‖Hs(Ω) + hs

′‖u‖L2(Γ) + hs
′+1/2‖f‖H−1(Ω)

)
= O(hs)

holds, this means that we have convergence order s,

s = min
{

1
2 , λ−

1
2

}
− ε =

{
1
2 − ε for convex domains,

λ− 1
2 − ε for non-convex domains,

ε > 0 arbitrary.

Note that s→ 0 for ω → 2π.
We will show in the next section that in the convex case the convergence order is 1

2 ,
without ε.

3.2 Regularization approach

We consider a regularization strategy such that uh ∈ Y ∂
h , see Subsection 2.5. Recall that

the corresponding solution yh ∈ Y h
∗ := {v ∈ H1(Ω) : v|Γ = uh} is defined via (2.22). For

a regularization using the L2(Γ)-projection or the Carstensen interpolant we have the
regularization error estimate

‖y − yh‖L2(Ω) ≤ c‖u− uh‖H−s(Γ) ≤ chs‖u‖L2(Γ) (3.4)

with s = 1
2 if Ω is convex and s ∈ [0, λ − 1

2) if Ω is non-convex, see Lemmas 2.12 and
2.13.

The finite element solution yh is now searched in Y∗h := Y h
∗ ∩ Yh and is defined in the

classical way,

yh ∈ Y∗h : (∇yh,∇vh)Ω = (f, vh)Ω ∀vh ∈ Y0h. (3.5)

Note that, if we construct uh by the L2-projection, we recover the Berggren approach
as a special case.
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Lemma 3.2. The finite element error estimate

‖yh − yh‖L2(Ω) ≤ chs
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
holds for s = 1

2 in the convex case and for s < λ− 1
2 in the non-convex case.

Before we prove this lemma we can immediately imply the following final error estimate
for this approach. By the triangle inequality we have

‖y − yh‖L2(Ω) ≤ ‖y − yh‖L2(Ω) + ‖yh − yh‖L2(Ω).

The first term is already treated in (3.4). The second term is treated in Lemma 3.2.

Corollary 3.3. The discretization error estimate

‖y − yh‖L2(Ω) ≤ chs
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
holds for s = 1

2 in the convex case and s ∈ [0, λ− 1
2) in the non-convex case.

Note that the order can be improved if the boundary datum u is more regular, see
Remark 5.3.

Proof of Lemma 3.2. Let Bhu
h ∈ Y∗h be the discrete harmonic extension defined by

(∇Bhuh,∇vh)Ω = 0 ∀vh ∈ Y0h

which satisfies

‖∇Bhuh‖L2(Ω) ≤ c‖uh‖H1/2(Γ) ≤ ch
−1/2‖uh‖L2(Γ) ≤ ch−1/2‖u‖L2(Γ). (3.6)

The first estimate can be cited from [17, Lemma 3.2], the second follows from an inverse
inequality, the third from Lemma 2.13.

Now we notice that

yh = Bhu
h + yh0 as well as yh = Bhu

h + y0h,

where yh0 ∈ H1
0 (Ω) and y0h ∈ Y0h satisfy

(∇yh0 ,∇v)Ω = (f, v)Ω − (∇(Bhu
h),∇v)Ω ∀v ∈ H1

0 (Ω), (3.7)

(∇y0h,∇vh)Ω = (f, vh)Ω − (∇(Bhu
h),∇vh)Ω ∀vh ∈ Y0h. (3.8)

Hence y0h is the Galerkin approximation of yh0 and therefore (since Y0h ⊂ H1
0 (Ω))

(∇(yh0 − y0h),∇vh)Ω = 0 ∀vh ∈ Y0h. (3.9)

By taking v = yh0 in (3.7) (resp. vh = y0h in (3.8)), we see that

‖∇yh0‖2L2(Ω) ≤ ‖f‖H−1(Ω)‖yh0‖H1(Ω) + ‖∇(Bhu
h)‖L2(Ω)‖∇yh0‖L2(Ω),

‖∇y0h‖2L2(Ω) ≤ ‖f‖H−1(Ω)‖y0h‖H1(Ω) + ‖∇(Bhu
h)‖L2(Ω)‖∇y0h‖L2(Ω).

16



By the Poincaré inequality we obtain

‖∇yh0‖L2(Ω) ≤ c
(
‖f‖H−1(Ω) + ‖∇(Bhu

h)‖L2(Ω)

)
,

‖∇y0h‖L2(Ω) ≤ c
(
‖f‖H−1(Ω) + ‖∇(Bhu

h)‖L2(Ω)

)
.

With the help of (3.6) we arrive at

‖∇yh0‖L2(Ω) + ‖∇y0h‖L2(Ω) ≤ c
(
‖f‖H−1(Ω) + h−1/2‖u‖L2(Γ)

)
. (3.10)

Now as before we start with

‖yh0 − y0h‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(yh0 − y0h, z)Ω

‖z‖L2(Ω)
.

Letting again vz ∈ V be such that ∆vz = z, we get

‖yh0 − y0h‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(∇(yh0 − y0h),∇vz)Ω

‖z‖L2(Ω)
,

and therefore thanks to (3.9) we arrive at

‖yh0 − y0h‖L2(Ω) = sup
z∈L2(Ω),z 6=0

(∇(yh0 − y0h),∇(vz − Ihvz))Ω

‖z‖L2(Ω)
,

where Ih is the standard Lagrange interpolation operator. By the Cauchy-Schwarz in-
equality, the well-known estimate

‖vz − Ihvz‖1,Ω ≤ ch1/2+s‖vz‖H3/2+s(Ω) ≤ ch
1/2+s‖z‖L2(Ω),

with s = 1
2 in the convex case and s < λ − 1

2 in the non-convex case, and the estimate
(2.27) we obtain

‖yh0 − y0h‖L2(Ω) ≤ ch1/2+s‖∇(yh0 − y0h)‖L2(Ω).

Using the a priori estimate (3.10), we conclude that

‖yh0 − y0h‖L2(Ω) ≤ chs
(
h1/2‖f‖H−1(Ω) + ‖u‖L2(Γ)

)
.

Note that we have now proved the convergence order 1
2 for Berggren’s approach, in

the convex case.
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Figure 1: Visualization of the exact solution

4 Numerical test

This section is devoted to the numerical verification of our theoretical results. For
that purpose we present an example with known solution. Furthermore, to examine
the influence of the corner singularities, we consider different polygonal domains Ωω

depending on an interior angle ω ∈ (0, 2π). These domains are defined by

Ωω := (−1, 1)2 ∩ {x ∈ R2 : (r(x), ϕ(x)) ∈ (0,
√

2]× [0, ω]},

where r and ϕ stand for the polar coordinates located at the origin. The boundary of Ωω

is denoted by Γω which is decomposed into straight line segments Γj , j = 1, . . . ,m(ω),
counting counterclockwise beginning at the origin. As numerical example we consider
the problem

−∆y = 0 in Ωω,

y = u on Γj , j = 1, . . . ,m(ω).

The boundary datum u is chosen as

u := r−0.4999 sin(−0.4999ϕ) on Γω.

This function belongs to Lp(Γ) for every p < 2.0004. The exact solution of our problem
is simply

y = r−0.4999 sin(−0.4999ϕ),

since y is harmonic. A plot of it can be seen in Figure 1. We solve the problem numer-
ically by using a finite element method with piecewise linear finite elements combined
with either the L2-projection or the Carstensen interpolant of the data on the boundary.
The finite element meshes for the calculations are generated by using a newest vertex
bisection algorithm as described in [21]. The discretization errors for different mesh sizes
and the experimental orders of convergence are given in Tables 1–3 below for interior an-
gles ω ∈ {3π/4, 3π/2, 355π/180}, where the discrete solutions based on the L2-projection
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(a) Using L2-projection: uh = Πhu
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(b) Using Carstensen interpolant: uh = Chu

Figure 2: Visualization of the approximate solutions with h = 1/8

and the Carstensen interpolant are denoted by yh,2 or yh,C , respectively. We note that
the errors are calculated by an adaptive quadrature formula. Apparently, the results are
very much in congruence with the predicted orders. The different numerical solutions
yh,2 and yh,C for ω = 3π/2 and h = 1/8 are displayed in Figure 2a and Figure 2b,
respectively. We see that the infinite boundary value in the origin is replaced by a finite
one. If using the L2-projection of the data, we see also that the zero boundary values at
the edge with θ = 0 are replaced by an oscillating function which is typical for this kind
of regularization. By using the Carstensen interpolant as regularization of the data, this
can be avoided according to the local definition of this interpolation operator. But we
note that these oscillations are a feature of the former regularization approach and do
not disturb the approximation order.

5 Extensions

Remark 5.1. The paper is written for two-dimensional domains. However most results
also hold in the three-dimensional case or can simply be extended to this one. The
most crucial issue is the regularity which we have used for the corresponding adjoint
problem since in three dimensional domains not only corner singularities but also edge
singularities need to be taken into account.

Remark 5.2. We assume f ∈ H−1(Ω) for the discretization error estimates of Corollary
3.3. This is only for simplicity. For defining the very weak solution and the numerical
solution we only need f ∈ (H1

0 (Ω)∩H1
∆(Ω))′ ∩ Y ′0h such that we could admit right hand

sides from L1(Ω) and Dirac measures as well. However, in this case the discretization
error analysis demands an adapted proof, which exceeds the scope of this paper.

Remark 5.3. We assume u ∈ L2(Γ) for simplicity. The case u ∈ Ht(Γ), t > 0, is
also of interest in the analysis of Dirichlet control problems, see [1]. The results can be
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mesh size h # unknowns ‖y − yh,2‖L2(Ωω) eoc ‖y − yh,C‖L2(Ωω) eoc

0.50000 19 0.26142 0.26794
0.25000 61 0.18577 0.49289 0.18973 0.49794
0.12500 217 0.13172 0.49600 0.13426 0.49899
0.06250 817 0.09331 0.49745 0.09497 0.49940
0.03125 3169 0.06605 0.49838 0.06717 0.49965
0.01562 12481 0.04674 0.49902 0.04750 0.49982
0.00781 49537 0.03306 0.49942 0.03359 0.49992
0.00390 197377 0.02338 0.49967 0.02375 0.49998

expected 0.5 0.5

Table 1: Discretization errors and experimental orders of convergence (eoc) for ω = 3π/4.
Expected convergence rate: 1/2

mesh size h # unknowns ‖y − yh,2‖L2(Ωω) eoc ‖y − yh,C‖L2(Ωω) eoc

0.50000 33 0.73622 0.77007
0.25000 113 0.64484 0.19118 0.67086 0.19897
0.12500 417 0.56841 0.18201 0.58915 0.18737
0.06250 1601 0.50328 0.17555 0.52022 0.17950
0.03125 6273 0.44674 0.17194 0.46091 0.17464
0.01562 24833 0.39711 0.16987 0.40920 0.17166
0.00781 98817 0.35330 0.16865 0.36376 0.16982
0.00390 394241 0.31448 0.16793 0.32362 0.16868

expected 0.16667 0.16667

Table 2: Discretization errors and experimental orders of convergence (eoc) for ω = 3π/2.
Expected convergence rate: 1/6

mesh size h # unknowns ‖y − yh,2‖L2(Ωω) eoc ‖y − yh,C‖L2(Ωω) eoc

0.50000 46 1.1049 1.1141
0.25000 159 1.0693 0.04721 1.0732 0.05406
0.12500 589 1.0491 0.02749 1.0513 0.02967
0.06250 2265 1.0367 0.01715 1.0384 0.01782
0.03125 8881 1.0281 0.01207 1.0296 0.01226
0.01562 35169 1.0213 0.00956 1.0228 0.00962
0.00781 139969 1.0154 0.00832 1.0169 0.00834
0.00390 558465 1.0100 0.00771 1.0114 0.00772

expected 0.00704 0.00704

Table 3: Discretization errors and experimental orders of convergence (eoc) for ω =
355π/180, Expected convergence rate: 180/355− 1/2 = 1/142 ≈ 0.007
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improved in this more regular case: With s from Corollary 3.3 we have

‖y − yh‖L2(Ω) ≤ c‖u− uh‖H−s(Γ) ≤ chs+t‖u‖Ht(Γ), t ∈ [0, 1
2 ].

The first step is again the application of Lemma 2.12, while the second can be proved
in analogy to Lemma 2.13. The necessary prerequisites are already provided in Lemma
A.2 and Remark A.3. Furthermore, when we check the proof of Lemma 3.2 we find that
we obtain

‖yh0 − y0h‖L2(Ω) ≤ chs
(
h1/2‖f‖H−1(Ω) + ht‖uh‖Ht(Γ)

)
, t ∈ [0, 1

2 ].

Hence it remains to prove

‖uh‖Ht(Γ) ≤ c‖u‖Ht(Γ), (5.1)

in order to conclude

‖y − yh‖L2(Ω) ≤ chs+t
(
h1/2−t‖f‖H−1(Ω) + ‖u‖Ht(Γ)

)
, t ∈ [0, 1

2 ].

The estimate (5.1) is known for domains and can be proved for t ∈ [0, 1] also for the
boundary Γ by using the inverse inequality and the approximation properties of uh and
the Ritz projection. To this end recall that Γj , j = 1, . . . , N , are the boundary segments

of Γ, and let P jh be the Ritz projection on Y ∂
h |Γj . Then we have

‖uh‖H1(Γ) ≤
N∑
j=1

‖uh − P jhu‖H1(Γj) +
N∑
j=1

‖P jhu‖H1(Γj)

≤ ch−1
N∑
j=1

‖uh − P jhu‖L2(Γj) +

N∑
j=1

‖u‖H1(Γj)

≤ ch−1‖u− uh‖L2(Γ) + ch−1
N∑
j=1

‖u− P jhu‖L2(Γj) + ‖u‖H1(Γ)

≤ c‖u‖H1(Γ),

i. e., we have (5.1) for t = 1. Since we proved (5.1) for t = 0 in Lemma 2.13 we get the
desired result by interpolation in Sobolev spaces.

Appendix: Error estimates for the Carstensen interpolant

Recall from Subsection 2.5 that the piecewise linear Carstensen interpolant is defined
via

Chu =
∑
x∈NΓ

πx(u)λx, πx(u) =

∫
Γ uλx∫
Γ λx

=
(u, λx)Γ

(1, λx)Γ
.

where λx is the standard hat function related to x.
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Lemma A.1. The piecewise linear Carstensen interpolant satisfies the error estimate

‖ϕ− Chϕ‖L2(Γ) ≤ chs‖ϕ‖Hs(Γ), (A.2)

for ϕ ∈ Hs(Γ), s ∈ [0, 1].

Proof. The interpolation error estimate (A.2) is in principle contained in [5], however,
it is there an estimate on a domain such that we sketch the proof here.

For s = 0 this estimate follows from the stability property

‖πx(u)‖L2(ωx) ≤ c‖u‖L2(ωx), (A.3)

where ωx is the support of λx on Γ.
For s = 1 we use that πx(w) = w for all constants w such that

‖u− πx(u)‖L2(ωx) = ‖(u− w)− πx(u− w)‖L2(ωx) ≤ c‖u− w‖L2(ωx) ≤ ch‖u‖H1(ωx)

via the Deny–Lions lemma, see also [10, Lemma 4.3] where the piecewise affine and
Lipschitz continuous transformation of ωx to some reference domain is discussed in detail.
For a boundary edge with end points x1 and x2 we have

‖u− Chu‖L2(e) = ‖(u− πx1(u))λx1 + (u− πx2(u))λx2‖L2(e) ≤ c
2∑
i=1

‖u− πxi(u)‖L2(e).

From these two estimates we obtain (A.2) in the case s = 1. In the remaining case
s ∈ (0, 1) the error estimate (A.2) follows by interpolation of Sobolev spaces.

Lemma A.2. The piecewise linear Carstensen interpolant satisfies the error estimate

‖u− Chu‖H−s(Γ) ≤ chs+t‖u‖Ht(Γ), s ∈ [0, 1], t ∈ [0, 1],

as well as the stability estimate

‖Chu‖L2(Γ) ≤ c‖u‖L2(Γ).

Proof. The second estimate follows directly from the fact that 0 ≤ λx ≤ 1 and the
stability property (A.3).

The first estimate is in principle contained in [10], however, it is there an estimate on
a domain such that we sketch the proof here. First we notice that the definition of πx(u)
is equivalent to (u− πx(u), λx)Γ = 0 and hence we have

(u− πx(u), πx(ϕ)λx)Γ = 0 ∀ϕ ∈ Hs(Γ).

With this identity and with
∑

x λx = 1 we get

(u− Chu, ϕ)Γ = (u
∑
x

λx −
∑
x

πx(u)λx, ϕ)Γ =
∑
x

(u− πx(u), ϕλx)Γ

=
∑
x

(u− πx(u), (ϕ− πx(ϕ))λx)Γ

≤
∑
x

‖u− πx(u)‖L2(ωx)‖ϕ− πx(ϕ)‖L2(ωx)
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where ωx is again the support of λx on Γ. With similar arguments as in the proof of
Lemma A.1 we conclude

(u− Chu, ϕ)Γ ≤ chs+t‖u‖Ht(Γ)‖ϕ‖Hs(Γ).

By the definition of the negative norm,

‖u− Chu‖H−s(Γ) = sup
ϕ∈Hs(Γ),ϕ6=0

(u− Chu, ϕ)Γ

‖ϕ‖Hs(Γ)
,

we obtain the assertion of the lemma.

Remark A.3. Note that this error estimate holds also for the L2-projection,

‖u−Πhu‖H−s(Γ) ≤ chs+t‖u‖Ht(Γ), s ∈ [0, 1], t ∈ [0, 1].

It can be proved similarly by using (u−Πhu, ϕ)Γ = (u−Πhu, ϕ−Πhϕ)Γ.
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