Virginie Régnier 
email: virginie.regnier@univ-valenciennes.fr
  
Denis Mercier 
email: denis.mercier@univ-valenciennes.fr
  
Virginie Rgnier 
  
Keywords: 2010 Mathematics Subject Classification. Primary: 35Q74, 35B35, 35P20; Secondary: 44A10, 47A10 Timoshenko system, boundary feedback, exponential stability, polynomial stability, Laplace transform, resolvent operator

Denote by ρ, I ρ , EI, κ, ω(x, t) and ϕ(x, t), the mass density, the moment of mass inertia, the rigidity coefficient, the shear modulus of the elastic beam, the lateral displacement at location x and time t and the bending angle at location x and time t respectively. Then (1)-( 5) coincides with the systems in [START_REF] Feng | Nonlinear feedback control of Timoshenko beam[END_REF], [START_REF] Grobbelaar-Van Dalsen | Uniform stability for the Timoshenko beam with tip load[END_REF], [START_REF] He | Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer[END_REF], [START_REF] Vu | Spectral analysis and system of fundamental solutions for Timoshenko beams[END_REF]... with u(x, t) = ω x, κ ρ t , y(x, t) = -ϕ x, κ ρ t , a = (EI)ρ κI ρ , b = ρ I ρ . The same effort to explain the dimensionless expression of the problem is done in [START_REF] Zietsman | A Timoshenko beam with tip body and boundary damping[END_REF] with slightly different notation.

Let (u, y) be a regular solution of system (1)- [START_REF] Ammar-Kodja | Stabilization of the nonuniform Timoshenko beam[END_REF]. Its associated total energy is defined by

E(t) = 1 2 1 0 (|u t | 2 + b -1 |y t | 2 + b -1 a|y x | 2 + |u x + y| 2 )dx. ( 6 
)
Then a classical computation using parts integration gives:

d dt E(t) = -β|y t (1, t)| 2 ≤ 0. (7) 
Hence system (1)-( 5) is dissipative in the sense that its associated energy is non increasing with respect to time.

Let us now mention some known results related to the boundary stabilization of the Timoshenko beam. Kim and Renardy proved the exponential stability of the system under two boundary controls in [START_REF] Kim | Boundary control of the Timoshenko beam[END_REF]. In [START_REF] Ammar-Kodja | Stabilization of the nonuniform Timoshenko beam[END_REF], Ammar-Khodja and his coauthors studied the decay rate of the energy of the nonuniform Timoshenko beam with two boundary controls acting in the rotation-angle equation. Under the equal speed wave propagation condition (that is to say, if a = 1, in our modelization), they established exponential decay results up to an unknown finite dimensional space of initial data. In addition, they showed that the equal speed wave propagation condition is necessary for the exponential stability. In [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF], the system (1)-( 5) was studied but with the boundary condition u(0, t) = 0 instead of u x (0, t) = 0. Under the equal speed condition (a = 1) and if b is outside a discrete set of exceptional values, a polynomial energy decay rate is obtained using a spectral analysis. On the other hand, if √ a is a rational number and if b is outside another discrete set of exceptional values, a polynomial type decay rate is proved to hold using a frequency domain approach. The main goal of this work is to obtain the energy decay rate if √ a is a rational number but without assumptions on b (except (C 1 ) and/or (C 2 ), introduced in Theorem 2.2) and with the boundary condition u x (0, t) = 0 instead of u(0, t) = 0. The result is proved by means of suitable estimates of the resolvent operator norm along the imaginary axis. The technique we choose involves the Laplace transform which is an innovative technical choice to our knowledge.

If

√ a is not a rational number, the obtention of the energy decay rate is reduced to a non trivial number theory problem and we conjecture that the decay rate of the energy in that case is very small. The problem is still open.

2. Well-posedness and strong stability. In this section we study the existence, uniqueness and strong stability of the solution of system (1)- [START_REF] Ammar-Kodja | Stabilization of the nonuniform Timoshenko beam[END_REF]. Since the studied problem is similar to that seen in [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF], for shortness we only give the results. Let us set

Ω = (0, 1), H 1 R (Ω) = {u ∈ H 1 (Ω) : u(1) = 0} and H 1 L (Ω) = {y ∈ H 1 (Ω) : y(0) = 0}.
Define the energy space H as follows

H = H 1 R (Ω) × L 2 (Ω) × H 1 L (Ω) × L 2 (Ω), (8) 
with the inner product defined by

(U, U 1 ) H = 1 0 (vv 1 + b -1 zz 1 + ab -1 y x y 1x + (u x + y)(u 1x + y 1 ))dx, (9) 
for all U = (u, v, y, z),

U 1 = (u 1 , v 1 , y 1 , z 1 ) ∈ H.
Here again a and b are strictly positive constants (as in the introduction).

Remark 1. The norm (U, U )

1 2
H induced by ( 9) is equivalent to the usual norm of H.

For shortness we denote by . the L 2 (Ω)-norm. Now, we define a linear unbounded operator A : D(A) → H by:

D(A) = {U ∈ H : u, y ∈ H 2 (Ω), v ∈ H 1 R (Ω), z ∈ H 1 L (Ω), (b -1 a)y x (1) = βz(1), u x (0)}, ( 10 
) A(u, v, y, z) = v, (u x + y) x , z, ay xx -b(u x + y) , ∀ U = (u, v, y, z) ∈ D(A). (11)
Then we rewrite formally System (1)-( 5) into the evolution equation

U t = AU, U (0) = U 0 , U 0 ∈ H, (12) 
with U = (u, u t , y, y t ).

Proposition 1. The operator A is m-dissipative in the energy space H.

Remark 2. Note that the dissipativeness holds since we can check using integrations by parts:

(AU, U ) H = -β|z(1)| 2 ≤ 0, ∀ U = (u, v, y, z) ∈ D(A). (13) 
Using Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], Theorem 1.4.3), the operator A generates a C 0 -semigroup of contractions e tA on H. Then, we have the following results. 

U ∈ C 0 (R + , D(A) ∩ C 1 (R + , H).
(2) If U 0 ∈ H, then system (12) has a unique weak solution

U ∈ C 0 (R + , H).
Now, we have the following general strong stability result. 5) is strongly stable if and only if the coefficient b satisfies (C 1 ).

= (ak 2 1 -k 2 2 )(k 2 1 -ak 2 2 ) (a + 1)(k 2 1 + k 2 2 ) π 2 , ∀k 1 , k 2 ∈ 1 2 + N, k 2 < k 1 , (C 1 ) b = k 2 π 2 , ∀k ∈ N * . (C 2 ) If a = 1, System (1)-(
If a = 1, System (1)-( 5) is strongly stable if and only if the coefficient b satisfies (C 1 ) and (C 2 ).

Proof. This result is analogous to Theorem 2.4 of [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF]. The proof has to be adapted but since there is no new difficulty in the calculations, we do not give the details here.

Remark 3. If the coefficient b does not satisfy the required condition(s), the operator A has a finite number of purely imaginary eigenvalues with explicit eigenvectors. In that case we can show the strong and polynomial or exponential stability in the space orthogonal to these eigenvectors that is invariant under the action of A.

3.

Explicit expression for the resolvent. In this section we give an explicit expression of the resolvent (λI -A) -1 and prove some useful estimates. In fact such estimates are useful since later on, we will use a result of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (Theorem 2.4) which involves the norm operator of (λI

-A) -1 with λ = iµ, µ ∈ R. Let U 1 = (u 1 , v 1 , y 1 , z 1 ) ∈ H, we look for a solution U ∈ D(A) of (iµ -A)U = U 1 , µ ∈ R. ( 14 
)
Note that if the conditions (C 1 ) and/or (C 2 ) of Theorem 2.2 hold, Problem [START_REF] Guo | Riesz basis approch to the stabilization of a flexible beam with a tip mass[END_REF] admits an unique solution for all µ ∈ R. If it is not the case, the existence and uniqueness remain true for large enough values of |µ| (see Remark 3).

The explicit expression for the resolvent we give in next Proposition 2 involves the restriction on [0; 1] of the classical convolution product of two functions on R.

Let us recall the definition and establish useful properties.

Lemma 3.1. (A technical lemma) Let ψ ∈ C ∞ ([0, ∞[
) and f in L 2 (0; 1) be two functions and define their convolution product ψ f on [0, 1] by :

(ψ f )(x) = x 0 ψ(x -s)f (s)ds, ∀x ∈ [0; 1]. ( 15 
)
Then the following two properties hold: 1. (ψ f ) ∈ H 1 (0; 1) and its derivative is:

(ψ f ) (x) = x 0 ψ (x -s)f (s)ds + ψ(0)f (x), ∀x ∈ [0; 1]. ( 16 
)
2. If ψ(0) = 0 is also assumed, then (ψ f ) ∈ H 2 (0; 1) and its second derivative is:

(ψ f ) (x) = x 0 ψ (x -s)f (s)ds + ψ (0)f (x), ∀x ∈ [0; 1]. (17) 
Proof.

1. The functions ψ extended by 0 on (-∞, 0) and f extended by 0 on R outside [0, 1] are still called ψ and f respectively. Then the convolution product defined by [START_REF] He | Boundary Output-Feedback Stabilization of a Timoshenko Beam Using Disturbance Observer[END_REF] is extended by the classical convolution product on R i.e by

(ψ f )(x) = R ψ(x -s)f (s)ds, ∀x ∈ R. ( 18 
)
It is well known that (ψ f ) = (ψ ) dist f where (ψ ) dist is the derivative of ψ in the distributional sense. Due to the property of ψ and its extension on R we have (ψ

) dist = ψ + ψ(0)δ 0 ,
where δ 0 is the Dirac distribution at x = 0. The property [START_REF] Huang | Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] follows from this remark. 2. ( 17) is a consequence of [START_REF] Huang | Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[END_REF]. Note that weaker assumptions could be made on ψ for this lemma (ψ ∈ C 2 ([0, 1]) is sufficient) but it will be applied to the functions w i,j in the next Proposition and they belong to

C 2 (R) ∩ C ∞ ([0, ∞[).
Proposition 2. (Explicit expression for the resolvent of the operator) Let a, b and β be strictly positive real numbers and µ a real number. Let the spaces H and D(A) be defined by [START_REF] Bassam | Polynomial stability of the Timoshenko system by one boundary damping[END_REF] and [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. Denote by ±iq j , j = 1, 2 the four distinct roots of the polynomial ∆ defined by

∆(p) := ap 4 + (a + 1)µ 2 p 2 + µ 4 -bµ 2 (19) 
(q 1 and q 2 are positive real numbers depending on a, b and µ and they are supposed to satisfy q 2 (µ) < q 1 (µ), for µ > 0). Define the functions φ, w 11 , w 12 , w 21 , w 22 and Φ on R, by:

   φ(x) = - sin(q 1 x) q 1 + sin(q 2 x) q 2 , x ≥ 0 φ(x) = 0 , x < 0 (20)        w 11 (x) = (µ 2 -b)φ(x) + aφ (x), w 12 (x) = -φ (x), w 21 (x) = b φ (x), w 22 (x) = µ 2 φ(x) + φ (x), (21) 
Φ(µ) =(w 1,1 ) x (1)(b -1 a(w 2,2 ) x (1) -βiµw 2,2 (1) 
)

-w 1,2 (1)(b -1 a(w 2,1 ) xx (1) -βiµ(w 2,1 ) x (1)). ( 22 
)
Then φ belongs to C 2 (R) ∩ C ∞ ([0; +∞)) and

φ(0) = φ (0) = φ (0) = 0, φ (3) (0 + ) = q 2 1 -q 2 2 .
Assume that conditions (C 1 ) and/or (C 2 ) of Theorem 2.2 hold and that |µ| 2 > b, and let

U 1 = (u 1 , v 1 , y 1 , z 1 ) in H, then the solution U = (u, v, y, z) ∈ D(A) of (iµ -A)U = U 1 is given by: u = u p + u r ; v = iµu -u 1 ; y = y p + y r ; z = iµy -y 1 (23) 
where

(f 1 , g 1 , h 1 ) := (-v 1 -iµu 1 , -z 1 -iµy 1 , -y 1 (1)) ∈ L 2 (Ω) × L 2 (Ω) × C, (24) 
     u p (x) = 1 a(q 2 1 -q 2 2 ) [w 1,1 f 1 + w 1,2 g 1 ] y p (x) = 1 a(q 2 1 -q 2 2 ) [w 2,1 f 1 + w 2,2 g 1 ] (25) u r (x) = α 1 w 11 (x) + α 2 w 12 (x) y r (x) = α 1 w 21 (x) + α 2 w 22 (x). ( 26 
)
with

γ 1 = -u p (1), γ 2 = h 1 -b -1 a(y p ) x (1) -βiµy p (1) , (27) 
α 1 =γ 1 b -1 a(w 22 ) x (1) -βiµw 22 (1) Φ(µ) -γ 2 w 12 (1) Φ(µ) , α 2 = -γ 1 b -1 a(w 21 ) xx (1) -βiµ(w 21 ) x (1) Φ(µ) + γ 2 w 11 (1) Φ(µ) . (28) 
The following lemma will be useful to prove the latter proposition.

Lemma 3.2. (A property of φ)

The function φ defined by [START_REF] Messaoudi | A stability result in a memory-type Timoshenko system[END_REF] satisfies:

aφ (4) + (a + 1)µ 2 φ + µ 2 (µ 2 -b)φ = 0. ( 29 
)
Proof. The successive derivatives of φ are, for any x ≥ 0:

       φ (x) = -cos(q 1 x) + cos(q 2 x) φ (x) = q 1 sin(q 1 x) -q 2 sin(q 2 x) φ (3) (x) = q 2 1 cos(q 1 x) -q 2 2 cos(q 2 x) φ (4) (x) = -q 3 1 sin(q 1 x) + q 3 2 sin(q 2 x). (30) 
Then

aφ (4) + (a + 1)µ 2 φ + µ 2 (µ 2 -b)φ = - aq 4 1 -(a + 1)µ 2 q 2 1 + µ 2 (µ 2 -b) q 1 sin(q 1 x) + aq 4 2 -(a + 1)µ 2 q 2 2 + µ 2 (µ 2 -b) q 2 sin(q 2 x).
Now, by definition, (iq 1 ) and (iq 2 ) are both roots of the polynomial ∆ given by [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF].

Thus aq 4 1 -(a + 1)µ 2 q 2 1 + µ 2 (µ 2 -b) = aq 4 2 -(a + 1)µ 2 q 2 2 + µ 2 (µ 2 -b) = 0. Proof of Proposition 2: Problem (14) is equivalent to find U ∈ D(A) such that        iµu -v = u 1 , iµv -u xx -y x = v 1 , iµy -z = y 1 , iµz -ay xx + by + bu x = z 1 , (31) 
Eliminating v and z we have to find (u, y)

∈ H 2 (Ω) 2 satisfying            (i) µ 2 u + u xx + y x = f 1 , (ii) µ 2 y + ay xx -by -bu x = g 1 , (iii) y(0) = 0, (iv) u x (0) = u(1) = 0, (v) b -1 ay x (1) -βiµy(1) = h 1 , (32) 
where

(f 1 , g 1 , h 1 ) = (-v 1 -iµu 1 , -z 1 -iµy 1 , -y 1 (1)) ∈ L 2 (Ω) × L 2 (Ω) × C.
Step 1: First we check that (u p , y p ) given by ( 25) satisfies the first two equations of [START_REF] Taylor | Boundary control of the Timoshenko beam with variable physical characteristics[END_REF]. Using Lemma 3.1 as well as

w 1,1 (0) = 0, w 1,1 (0) = aφ (3) (0 + ) = a(q 2 1 -q 2 
2 ), w 1,2 (0) = 0 and w 1,2 (0) = 0, it holds:

u p,xx (x) = 1 a(q 2 1 -q 2 2 ) w 1,1 f 1 + w 1,2 g 1 + a(q 2 1 -q 2 2 )f 1 . (33) 
Likewise, using w 2,1 (0) = w 2,2 (0) = 0, it holds:

y p,x (x) = 1 a(q 2 1 -q 2 2 ) w 2,1 f 1 + w 2,2 g 1 . (34) 
Thus

µ 2 u p + u p,xx + y p,x = 1 a(q 2 1 -q 2 2 ) µ 2 w 1,1 + w 1,1 + w 2,1 f 1 + a(q 2 1 -q 2 2 )f 1 + µ 2 w 1,2 + w 1,2 + w 2,2 g 1 . (35) 
Now, φ has been constructed such that

aφ (4) + (a + 1)µ 2 φ + µ 2 (µ 2 -b)φ = 0 which implies µ 2 w 1,1 + w 1,1 + w 2,1 = 0 (see Lemma 3.2). That is why µ 2 u p + u p,xx + y p,x = 1 a(q 2 1 -q 2 2 ) a(q 2 1 -q 2 2 )f 1 = f 1 , since µ 2 w 1,2 + w 1,2 + w 2,2 = 0 (simple calculation).
For the same reasons, after some calculations, the following equation is proved to hold: µ 2 y p + ay p,xx -by p -bu p,x = g 1 .

Step 2: We check that (u r , y r ) given by ( 26) satisfies the following two equations:

(i) µ 2 u + u xx + y x = 0, (ii) µ 2 y + ay xx -by -bu x = 0. ( 36 
)
µ 2 u r + u r,xx + y r,x = µ 2 (α 1 w 11 (x) + α 2 w 12 (x)) + α 1 w (3) 11 (x) + α 2 w 12 (x) + α 1 w 21 (x) + α 2 w 22 (x) = α 1 (µ 2 w 11 (x) + w (3) 11 (x) + w 21 (x)) + α 2 (µ 2 w 12 (x) + w (3) 12 (x) + w 22 (x)) (37)
Then µ 2 u r + u r,xx + y r,x = 0 for the reasons invoked in Step 1 ((3) and µ 2 w 1,2 + w 1,2 + w 2,2 = 0). Likewise (u r , y r ) satisfies the second equation of (36).

From these first two steps, we deduce that (u, y) given by ( 23) satisfies the first two equations of [START_REF] Taylor | Boundary control of the Timoshenko beam with variable physical characteristics[END_REF].

Step 3: Let us now check the boundary conditions of [START_REF] Taylor | Boundary control of the Timoshenko beam with variable physical characteristics[END_REF].

1. At x = 0: y p (0) = 1 a(q 2 1 -q 2 2 ) [w 2,1 f 1 + w 2,2 g 1 ] (0) = 0 by definition of the convolution product. And y r (0) = α 1 w 21 (0) + α 2 w 22 (0) = 0, since φ(0) = φ (0) = 0. Then y(0) = y p (0) + y r (0) = 0. Now u p,x (0) = 1 a(q 2 1 -q 2 2 ) w 1,1 f 1 + w 1,2 g 1 (0) + w 1,1 (0)f 1 (0) + w 1,2 (0)g 1 (0) = 0 since w 1,1 (0) = 0 and w 1,2 (0) = 0.
And u r,x (0) = α 1 w 11 (0) + α 2 w 12 (0) = 0 (cf. the proof of Lemma 3.2). Then u x (0) = u p,x (0) + u r,x (0) = 0. 2. At x = 1: since γ 1 and γ 2 are defined by [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF], the conditions for u and y at x = 1 are satisfied if, and only if (

α 1 , α 2 ) ∈ C 2 is solution of (w 1,1 ) x (1) w 1,2 (1) b -1 a(w 2,1 ) xx (1) -βiµ(w 2,1 ) x (1) b -1 a(w 2,2 ) x (1) -βiµw 2,2 (1) 
α 1 α 2 = γ 1 γ 2 .
(38) Let M (µ) be the matrix of the previous system and Φ defined

Φ(µ) = det(M (µ)) (39) 
then for all µ ∈ R, Φ(µ) = 0, otherwise λ = iµ would not be in the resolvent of A. By definition, the expression of Φ(µ) is given by [START_REF] Messaoudi | On the internal and boundary stabilization of Timoshenko beams[END_REF]. Consequently the solution of (38) is:

α 1 α 2 = 1 Φ(µ) b -1 a(w 2,2 ) x (1) -βiµw 2,2 (1) -w 1,2 (1) -b -1 a(w 2,1 ) xx (1) + βiµ(w 2,1 ) x (1) w 1,1 (1) γ 1 γ 2 .
(40) that is to say α 1 and α 2 are given by [START_REF] Raposo | Exponential stability for the Timoshenko system with two week dampings[END_REF].

Note that, the existence of γ 1 and γ 2 requires some regularity of u p and y p at x = 1. In fact, due to Lemma 3.1, u p and y p belong to H 2 (0; 1) since

w 11 (0) = w 12 (0) = w 21 (0) = w 22 (0) = 0.
4. First estimates for the resolvent operator norm. This section is devoted to the study of the behaviour of Φ(µ) as µ → +∞ (see [START_REF] Messaoudi | On the internal and boundary stabilization of Timoshenko beams[END_REF] for the definition of Φ(µ)). More precisely we try to find the best real number l such that for µ large enough

µ l |Φ(µ)| ≥ c > 0,
where c is a constant independent of µ. Note that Φ(µ) is the determinant of the matrix M (µ) which involves φ (j) (1), j = 0, ..., 3, where φ is given by (20) and consequently Φ(µ) is oscillating. Hence the basic idea is to isolate the oscillating terms and to get the asymptotic behaviour of their coefficients. By definition, the expression of Φ(µ) is:

Φ(µ) =(w 1,1 ) x (1)(b -1 a(w 2,2 ) x (1) -βiµw 2,2 (1)) -w 1,2 (1)(b -1 a(w 2,1 ) xx (1) + βiµ(w 2,1 ) x (1)). ( 41 
)
Using [START_REF] Messaoudi | Uniform decay in a Timoshenko-type system with past history[END_REF] leads to an expression involving the function φ introduced in (20):

Φ(µ) = b -1 a [(µ 2 -b)φ (1) + aφ (3) (1)][µ 2 φ (1) + φ (3) (1)] + bφ (1)φ (3) (1) , (42) 
Φ(µ) = -βµ [(µ 2 -b)φ (1) + aφ (3) (1)][µ 2 φ(1) + φ (2) (1)] + bφ (1)φ (2) (1)
.

(43) Our idea is to use the Laplace transform. Indeed a straightforward computation gives:

1 a(q 2 1 -q 2 2 ) L(φ)(p) = 1 ∆(p) (44) 
where q 1 and q 2 are defined by [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF] in Proposition 2 and L(φ

)(p) = +∞ 0 e -px φ (x) dx,
for p such that (p) > 0.

Lemma 4.1. (Another expression for Φ) Recall that q 1 and q 2 are defined by [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF] and φ by [START_REF] Messaoudi | A stability result in a memory-type Timoshenko system[END_REF]. Let R and δ(p, µ) be defined by

R(µ) := a(r 2 1 -r 2 2 ), with r 2 j = q 2 j µ 2 (45) δ(p, µ) := (ap 2 + 1)(p 2 + 1) -b/µ 2 = a(p 2 + r 2 1 )(p 2 + r 2 2 ). ( 46 
) Also define J 0 (µ) := µ R(µ) φ(1); J 1 (µ) := 1 R(µ) φ (1); J 2 (µ) = 1 µR(µ) φ (1) 
and

J 3 (µ) := 1 µ 2 R(µ) φ (3) (1). ( 47 
)
Then another expression for the function Φ introduced in Proposition 2 (see [START_REF] Messaoudi | On the internal and boundary stabilization of Timoshenko beams[END_REF]) is:

Φ(µ) = µ 2 R 2 (µ) µ 2 (J 1 + aJ 3 )(b -1 a(J 1 + J 3 ) -iβ(J 0 + J 2 )) -bJ 1 (b -1 aJ 1 -iβJ 0 ) . (48) 
Proof. Calculations.

Lemma 4.2. (Decomposition of a rational fraction) For any n ∈ N, the decomposition of the following rational fraction in C is, for any p ∈ C -{±i}:

1 (p 2 + 1) 2n+2 = 1 (p -i) 2n+2 (p + i) 2n+2 = 2n+2 m=1 A m,n (p -i) m + A m,n (p + i) m ( 49 
)
where A 2n+2,n := (-1) n+1 2 2n+2 , A 2n+1,n := (-1) n+1 (n + 1)i 2 2n+2 and, for any integer k in [2, 2n + 1]:

A 2n+2-k,n := (-1) n+1+k 2n + 1 + k k (i k )2 2n+2+k . ( 50 
)
Moreover, for any n ∈ N and any integer m, such that

1 ≤ m ≤ n: |A m,n | ≤ 1.
Proof. These results are obtained by classical methods for the decomposition of rational fractions. The expression for A 2n+2-k,n is calculated by evaluating at p = i:

1 k! ∂ k p (p -i) 2n+2 1 (p 2 + 1) 2n+2 . ( 51 
)
Lemma 4.3. (Asymptotic behaviour of the functions J k , k = 0; 1; 2; 3 for large values of µ, if a = 1) Assume that a = 1. Let the functions J k , k = 0; 1; 2; 3 be defined by (47) with δ(p, µ) := (p 2 + 1) 2 -b/µ 2 . The two expressions s 1 and s 2 are defined as follows:

s 1 := - 1 √ b sin √ b 2 and s 2 := - 1 2 cos √ b 2 + 1 8 √ b sin √ b 2 . ( 52 
)
It holds:

J 0 (µ) := s 1 µ cos(µ) + s 2 sin(µ) + O 1 µ (53) J 1 (µ) := -s 1 µ sin(µ) + (s 1 + s 2 ) cos(µ) + O 1 µ (54) J 2 (µ) := -s 1 µ cos(µ) -(2s 1 + s 2 ) sin(µ) + O 1 µ (55) J 3 (µ) := s 1 µ sin(µ) -(3s 1 + s 2 ) cos(µ) + O 1 µ (56) 
where O(x) is bounded with x as x tends to 0.

Proof. The Laplace transforms of φ and of its successive derivatives (see [START_REF] Soufyane | Stabilisation de la poutre de Timoshenko[END_REF]) are well-known:

                       L(φ)(p) = - 1 p 2 + q 2 1 + 1 p 2 + q 2 2 = q 2 1 -q 2 2 (p 2 + q 2 1 )(p 2 + q 2 2 ) = R(µ) δ(p/µ, µ) L(φ )(p) = - p p 2 + q 2 1 + p p 2 + q 2 2 = p q 2 1 -q 2 2 (p 2 + q 2 1 )(p 2 + q 2 2 ) = p R(µ) δ(p/µ, µ) L(φ )(p) = p 2 R(µ) δ(p/µ, µ) L(φ (3) )(p) = p 3 R(µ) δ(p/µ, µ)
Recall that R(µ) and δ(p, µ) are defined by ( 45) and (46). Since δ(p, µ) := (p 2 + 1) 2 -b/µ 2 (a = 1), it holds, for µ such that µ 2 > b and p, such that (p) ≥ 2:

1 δ(p, µ) = n≥0 b n µ 2n 1 (p 2 + 1) 2n+2 . ( 57 
)
Recall that we are looking for the asymptotic behaviour of the functions J k , k = 0; 1; 2; 3 for large values of µ. Thus the assumption µ 2 > b is not restrictive.

For any n ∈ N, the decomposition is, for any p ∈ C -{±i}:

1 (p 2 + 1) 2n+2 = 1 (p -i) 2n+2 (p + i) 2n+2 = 2n+2 m=1 A m,n (p -i) m + A m,n (p + i) m (58) ⇒ 1 (p 2 + 1) 2n+2 = 2n+2 m=1 A m,n L x m-1 (m -1)! e ix (p) + A m,n L x m-1 (m -1)! e -ix (p) 
(59) where A m,n is given in Lemma 4.2 for any integer n ≥ 0 and any integer m such that 1 ≤ m ≤ 2n + 2. Now, µ is fixed such that µ 2 > b. Then, for any p such that (p) ≥ 2:

L(φ)(p) = R(µ) δ(p/µ, µ) = R(µ) µ n≥0 L b n µ 2n 2n+2 m=1 (µx) m-1 (m -1)! A m,n e iµx + A m,n e -iµx (p) = R(µ) µ n≥0 b n µ 2n 2n+2 m=1 ∞ x=0 e -px A m,n e iµx + A m,n e -iµx (µx) m-1 (m -1)! dx.
Moreover, for a fixed µ such that µ 2 > b and p such that (p) ≥ max{2; |µ| + 1}:

n≥0 b n µ 2n 2n+2 m=1 ∞ x=0 e -px A m,n e iµx + A m,n e -iµx (µx) m-1 (m -1)! dx ≤ n≥0 b n µ 2n 2n+2 m=1 ∞ x=0 2e -(p)x (|µ|x) m-1 (m -1)! dx ≤ n≥0 b n µ 2n ∞ x=0 2e -(p)x ∞ m=1 (|µ|x) m-1 (m -1)! dx = n≥0 b n µ 2n ∞ x=0 2e (|µ|-(p))x dx ≤ 2 n≥0 b n µ 2n < +∞. ( 60 
)
Thus, by Fubini/Tonelli Theorems, the integral and the summation can be interchanged. That is to say, for a fixed µ such that µ 2 > b and p such that (p) ≥ max{2; |µ| + 1}:

1 δ(p, µ) = n≥0 b n µ 2n 1 (ap 2 + 1) n+1 (p 2 + 1) n+1 . ( 71 
)
For any n ∈ N, the decomposition is, for any p ∈ C -{±i; ± i √ a }:

1 (ap 2 + 1) n+1 (p 2 + 1) n+1 = n+1 m=1 B m,n (p -i) m + B m,n (p + i) m + C m,n p -i √ a m + C m,n p + i √ a m . (72) 
Using the same arguments as in the proof of Lemma 4.3, it holds: The first two rational fractions of the sum (71) are decomposed in R for the sake of simplicity:

J 0 (µ) = n≥0 n+1 m=1 b n (m -1)!µ 2n-m+1 B m,n e iµ + B m,n e -iµ + C m,n e i √ a µ + C m,n e -i
1 (ap 2 + 1)(p 2 + 1) = 1 a -1 1 p 2 + 1/a - 1 p 2 + 1 (74) 1 (ap 2 + 1) 2 (p 2 + 1) 2 = 1 (a -1) 2 1 (p 2 + 1/a) 2 + 1 (p 2 + 1) 2 - 2a a -1 1 p 2 + 1/a + 2a a -1 1 p 2 + 1 . (75) 
Now, for n = 0, the decomposition in C is, for any p ∈ C -{±i; ± i √ a }:

1 (ap 2 + 1)(p 2 + 1) = B 1,0 p -i + B 1,0 p + i + C 1,0 p -i √ a + C 1,0 p + i √ a = i(B 1,0 -B 1,0 ) p 2 + 1 + 1 √ a i(C 1,0 -C 1,0 ) p 2 + 1/a . ( 76 
)
Thus, identifying with the decomposition (74),

B 1,0 = B 1,0 and -2 (B 1,0 ) = 1 1 -a . Likewise C 1,0 = C 1,0 and -2 (C 1,0 ) = √ a a -1 .
If n = 1, the decomposition in C is, for any p ∈ C -{±i; ± i √ a }:

1 (ap 2 + 1) 2 (p 2 + 1) 2 = B 2,1 (p -i) 2 + B 2,1 (p + i) 2 + C 2,1 p -i √ a 2 + C 2,1 p + i √ a 2 + B 1,1 p -i + B 1,1 p + i + C 1,1 p -i √ a + C 1,1 p + i √ a . ( 77 
)
After calculations and identification with the decomposition (75):

B 2,1 = B 2,1 = - 1 4(a -1) 2 . Likewise C 2,1 = C 2,1 = - a 4(a -1) 2 .
Hence the asymptotic behaviour of J 0 . Then, the following functions are derived iteratively to obtain the behaviour of J 1 , J 2 and J 3 :

√ a sin • √ a -sin(•) and b 2(a -1) 2 a cos • √ a + cos(•). Proposition 3. (Asymptotic behaviour of the characteristic "polynomial" Φ if a = 1)
Assume that a = 1. Then ∃C > 0, such that ∃M > 0, ∀µ ≥ M :

|Φ(µ)| ≥ Cµ 2 . ( 78 
)
where Φ is defined by (48).

Proof. Using (48) with a = 1 leads to:

Φ(µ) = µ 2 R 2 (µ) • [b -1 µ 2 (J 1 + J 3 ) 2 -J 2 1 ] = 4µ 2 (J 1 + J 3 ) 2 -4bJ 2 1 Φ(µ) = βµ 2 R 2 (µ) • [-µ 2 (J 1 + J 3 )(J 0 + J 2 ) + bJ 0 J 1 ]
where R 2 (µ) = 4b/µ 2 (cf. (45)). Then Lemma 4.3 leads to:

Φ(µ) 4µ 2 = 4s 2 1 cos 2 (µ) - b 4 sin 2 (µ) + O 1 µ (79) 
and

Φ(µ) 4µ 2 = -b(4 + b)βs 2 1 cos(µ) sin(µ) + O 1 µ . ( 80 
)
Thus

|Φ(µ)| 2 16µ 4 s 4 1 = 16 cos 2 (µ) - b 4 sin 2 (µ) 2 +(4+b) 2 b 2 β 2 cos 2 (µ) sin 2 (µ)+O 1 µ . (81) |Φ(µ)| 2 16µ 4 s 4 1 = 16 1 + b 4 2 -(4 + b) 2 b 2 β 2 cos 4 (µ) + (4 + b) 2 b 2 β 2 -8b 1 + b 4 cos 2 (µ) + b 2 + O 1 µ (82) 
Let us denote by f the function defined on R, by:

f (x) := 1 + b 4 2 (1 -b 2 β 2 )x 2 + 1 + b 4 b 2 β 2 1 + b 4 - b 2 x + b 2 16 . ( 83 
)
Our aim is to prove that there exists C > 0 such that f (x) ≥ C > 0, for any

x ∈ [0; 1]. First notice that f (0) = b 2 16
> 0 and f (1) = 1 > 0. In the following, β is chosen to be equal to 1. If it is not, changing the value of b so that (5) still holds is always possible. Now we separate the different cases:

• Case b = 1: in that case, f is an affine function and f can not take negative values on the interval [0; 1], since it is strictly positive at 0 and at 1. • Case b > 1: the coefficient of x 2 is strictly negative. Thus f (x) is larger than the minimum of f (0) and f (1). • Case 0 < b < 1: the coefficient of x 2 is strictly positive.

The sign of the discriminant is also the sign of:

∆(b) 1 + b 4 2 := b 2 1 + b 4 - b 2 2 -(1 -b 2 ) b 2 4 = b 4 1 + b 4 2 -b 3 = b 3 b 1 + b 4 2 -1 . (84) 
Now, the sign of ∆(b) is that of the function g defined on [0; 1] by the expression g(t) := t 3 + 4t -4.

The only real root of g is t 0 :

= 3 2 1 + √ 40 3 √ 3 + 3 2 1 - √ 40 3 √ 3 < 1. Then ∆(b) < 0, ∀b ∈ (0; t 2 0 ), ∆(b) ≥ 0, ∀b ∈ [t 2 0 ; 1). (85) If b ∈ (0; t 2 0
), the function f has no root in [0; 1] and the required property is satisfied since the coefficient of x 2 is strictly positive. If b ∈ (t 2 0 ; 1), the function f has two real roots. The product of these roots is

P := b 2 (b 2 + 4)(1 -b 2 )
> 0 and their sum is

S := 1 (1 + b/4)(1 -b 2 ) b 2 -b 2 1 + b 4 .
The function b → (b 2 + 4b -2) is non-negative on (x 2 0 ; 1). Thus both roots of f are non-positive and the minimum value of f on [0; 1] is b 2 /16. At last, if b = t 2 0 , the function f has a unique root x 0 which satisfies 2x 0 = S < 0. Thus the minimum value of f on [0; 1] is also b 2 /16. To conclude, we have proved that there exists C > 0 such that f (x) ≥ C > 0, for any x ∈ [0; 1]. (86)

• Assume that c and d are both odd numbers.

Then ∃C > 0, such that ∃M > 0, ∀µ ≥ M :

|Φ(µ)| ≥ Cµ 3 . (87) 
Proof. Let us denote by Ψ the function defined on R by:

Ψ(µ) := Φ(µ) µ 4 R 2 (µ) . (88) 
• The contrapositive is proved: assume that, there exists a sequence (µ n ) n which tends to +∞ with n and which satisfies Ψ(µ n ) = o(1), that is to say that Ψ(µ n ) tends to 0 as n tends to +∞. Then b -1 a(J

1 (µ n ) + aJ 3 (µ n ))(J 1 (µ n ) + J 3 (µ n )) = o(1)
as well (cf. ( 48)). Now the symmetric matrix A defined by

A :=    1 a + 1 2 a + 1 2 a    is orthogonally diagonalizable. Denoting by λ 2 > 0 > λ 1 the two eigenvalues of A (the determinant of A is -(1/4)(a -1) 2 < 0), it holds: min(|λ 1 |, |λ 2 |) • (J 2 1 + J 2 3 ) ≤ |(J 1 + aJ 3 )(J 1 + J 3 )| ≤ max(|λ 1 |, |λ 2 |) • (J 2 1 + J 2 3
). (89) where J 1 and J 3 depend on µ and (89) holds for all µ in R.

Thus Ψ(µ n ) = o(1) ⇒ J 1 (µ n ) = o(1); J 3 (µ n ) = o(1).

Using (68) and (70), Ψ(µ

n ) = o(1) ⇒ cos(µ n ) = o(1); cos µ n √ a = o(1).
There exists (k n ; l n ) in Z 2 such that

µ n = k n π + π 2 + o(1) and µ n √ a = l n π + π 2 + o(1).
Here again, o(1) is a function which tends to 0 when n tends to ∞. Then, writing √ a as the irreducible fraction c/d:

k n π + π 2 + o(1) = c d l n π + π 2 + o(1) ⇒ (2k n + 1)d = (2l n + 1)c + o(1).
Now, since (2k n + 1)d and (2l n + 1)c are both integer numbers, o(1) must vanish and there exists (k; l) ∈ N 2 , such that

√ a = c d = 2k + 1 2l + 1 . (90) 
Note that there exists an infinity of such couples (k; l) ∈ Z 2 . Indeed, (90) implies

k = c -d + 2cl 2d .
Since c and d are both supposed to be odd integer numbers, ∃p ∈ Z, c -d = 2p thus k = p + cl d which is equivalent to dk -cl = p. Bezout's Theorem gives an infinity of solutions to this equation.

The conclusion is

: if c or d is even, ∃K > 0, such that ∃L > 0, ∀µ ≥ L, |Ψ(µ)| ≥ K. Since r 2 1 := q 2 1 /µ 2 = 1 2a a + 1 + 1 µ
(a -1) 2 µ 2 + 4ab and since r 2 2 has the same expression except for the sign before the square root, the asymptotic behaviour of R(µ) for large values of µ is given by:

R(µ) = a(r 2 2 -r 2 1 ) = - 1 µ (a -1) 2 µ 2 + 4ab = -|a -1| + o(1)
Hence the first result with C = (a -1) 2 K. • Assume that c and d are both odd numbers and that there exists a sequence (µ n ) n which tends to +∞ with n and which satisfies Ψ(µ

n ) = o 1 µ n , that
is to say that µ n Ψ(µ n ) tends to 0 as n tends to +∞.

In particular Ψ(µ n ) = o(1) and that still implies cos(µ n ) = o(1) and cos µ n √ a = o(1) as in the first part of the proof. Thus the limit of sin µ n √ a is ±1.

Then, using the imaginary part of Φ(µ n ) (cf. (48)) and (67) to (70):

β(J 1 + aJ 3 )(J 0 + J 2 ) = o 1 µ n = β cos(µ n ) + b 2(1 -a) sin(µ n ) µ n + o 1 µ 2 n × 1 √ a sin µ n √ a + o 1 µ n (91) ⇒ cos(µ n ) = - b 2(1 -a) sin(µ n ) µ n + o 1 µ n . ( 92 
) Now cos(µ n ) = o(1) ⇒ ∃k n ∈ Z, µ n = k n π + π 2 + e(µ n ), with e(µ n ) = o(1).
Note that the sequence (k n ) has nothing to do with that of the first part of the proof. Inserting this expression into (92) and using classical trigonometric formulas for the cosine and sine of a sum, as well as sin(kπ + π/2) = (-1) k , lead to:

-(-1) kn (e(µ n ) + o(e(µ n ))) = (-1) kn b 2(-1 + a)πk n + o 1 k n ( 93 
)
µ n = k n π + π 2 - b 2(-1 + a)k n π + o 1 k n . (94) 
Likewise, starting from the real part of Φ(µ n ) (cf. (48)), ∃l n ∈ Z:

µ n √ a = l n π + π 2 - √ ab 2(-1 + a)πl n + o 1 l n . ( 95 
)
Here again the sequence (l n ) has nothing to do with that of the first part of the proof. The comparison between (94) and (95) allows to write

k n + 1 2 - √ a l n + 1 2 = o(1) i.e. k n = - 1 2 + 1 2 √ a + l n √ a + o(1).
In fact, since √ a is supposed to be a rational number, o(1) = 0 (cf. first part of the proof) and

k n = - 1 2 + 1 2 √ a + l n √ a which implies k n π + π 2 = √ a l n π + 2 or k n = √ al n .
At last (94)-( 95) is

(1 + a)b 2(-1 + a)k n π = o 1 k n which is impossible.
The conclusion is: if c and d are both odd, ∃K > 0, such that ∃L > 0, ∀µ ≥ L, |Ψ(µ)/µ| ≥ K.

The end of the proof is identical with the end of the proof of the first part. (97)

• Assume that c and d are both odd numbers. Then

sup µ∈R 1 |µ| (iµI -A) -1 < ∞. (98) 
Proving Theorem 5.1 requires the estimation of U H with respect to U 1 H , where U and U 1 are defined by [START_REF] Guo | Riesz basis approch to the stabilization of a flexible beam with a tip mass[END_REF]. The explicit espression for U is given by Proposition 2.

First, let us explicit the functions introduced in that proposition, in particular those defined by [START_REF] Messaoudi | Uniform decay in a Timoshenko-type system with past history[END_REF]. It holds, for x ≥ 0:

max x∈[0,1] |(w 12 * g 1 )(x)| = O(1) • U 1 H max x∈[0,1] |(w 21 * f 1 )(x)| = O(1) • U 1 H Since a(q 2 1 -q 2 2 ) = 2
√ bµ (for a = 1), it holds, for x ∈ [0; 1]:

|u p (x)| ≤ O 1 µ • U 1 H and |y p (x)| ≤ O 1 µ • U 1 H . (102) 
By definition (cf. ( 20)), the function φ vanishes at 0 as well as its first and second derivatives. Then w 11 , w 12 , w 21 and w 22 also vanish at 0. Thus

     u p,x (x) = 1 q 2 1 -q 2 2 [w 11,x * f 1 + w 12,x * g 1 ] y p,x (x) = 1 q 2 1 -q 2 2 [w 21,x * f 1 + w 22,x * g 1 ] (103) 
Now

w 11,x (x) = b + q 2 1 -µ 2 cos(q 1 x) -b + q 2 2 -µ 2 cos(q 2 x) = √ b(q 1 cos(q 1 x) + q 2 cos(q 2 x)) + r 11,x (x) (104) 
where max x∈[0,1] |r 11,x (x)| = O(1). Thus, for x ∈ [0; 1]:

|u p,x (x)| ≤ O(1) • U 1 H and |y p,x (x)| ≤ O(1) • U 1 H . (105) 
Step 2: Estimate of u r and y r given by [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF].

By definition of γ 1 and γ 2 (cf. ( 27)), 

γ 1 = O 1 µ • U 1 H , γ 2 = O(1) • U 1 H . Now,
= O(µ 2 ), using (28) leads to:

α 1 = O(1) Φ(µ) • U 1 H and α 2 = O(µ) Φ(µ) • U 1 H .
It follows from ( 26) and (99) that, for x ∈ [0; 1]:

       |u r (x)| = |α 1 w 11 (x) + α 2 w 12 (x)| ≤ O(µ) |Φ(µ)| • U 1 H |y r (x)| = |α 1 w 21 (x) + α 2 w 22 (x)| ≤ O(µ) |Φ(µ)| • U 1 H (106) and |u r,x (x)| ≤ O(µ 2 ) |Φ(µ)| • U 1 H and |y r,x (x)| ≤ O(µ 2 ) |Φ(µ)| • U 1 H . (107) 
Step 3: Conclusion for the resolvent operator norm.

Using the usual norm on H (which is equivalent to that defined by ( 9)) as well as the above estimates (102), ( 105), ( 106) and (107), there exists a constant C such that:

U H ≤ C•( u p + u p,x + v + y p + y p,x + z ) ≤ O(1) + O(µ 2 ) Φ(µ) • U 1 H .
(108) Recall that v and z are defined by [START_REF] Muñoz Rivera | Timoshenko systems with indefinite damping[END_REF]. The result follows from Proposition 3. 5.2. Proof of Theorem 5.1 in the case a = 1: The proof is similar to the previous one for a = 1. We give less details. The results, for any x ∈ [0; 1], are:

       |(w 11 * f 1 )(x)| ≤ O(µ) • U 1 H |(w 22 * g 1 )(x)| ≤ O(µ) • U 1 H |(w 12 * g 1 )(x)| ≤ O(1) • U 1 H |(w 21 * f 1 )(x)| ≤ O(1) • U 1 H . (109) Since a(q 2 1 -q 2 2 ) = |a -1|µ 2 + O(1)
, both (102) and (105) still hold, for a = 1. The behaviour of γ 1 and γ 2 are still given by γ

1 = O 1 µ • U 1 H , γ 2 = O(1) • U 1 H . Now, since w 22 (1) = O(µ), w 22,x (1) = O(µ 2 ), w 12 (1) = O(1), w 11 (1) = O(µ), w 21,x (1) = O(µ), w 21,xx (1) 
= O(µ 2 ) , using (28) leads to:

α 1 = O(µ) Φ(µ) • U 1 H and α 2 = O(µ) Φ(µ) • U 1 H .
It follows from ( 26) and (99) that, for x ∈ [0; 1]: 

       |u r (x)| = |α 1 w 11 (x) + α 2 w 12 (x)| ≤ O(µ 3 ) |Φ(µ)| • U 1 H |y r (x)| = |α 1 w 21 (x) + α 2 w 22 (x)| ≤ O(µ 2 ) |Φ(µ)| • U 1 H ( 
To conclude:

U H ≤ O(µ 4 ) Φ(µ) • U 1 H . (112) 
The results follow from Proposition 4.

6. Decay rate of the energy. Theorem 6.1. (Decay rate) Assume that √ a ∈ Q. 1. Assume that a = 1 and b satisfies Condition (C 1 ) and (C 2 ). Then there exist positive constants K 1 > 0 and K 2 > 0, such that for all initial U 0 = (u 0 , u 1 , y 0 , y 1 ) ∈ D(A), the energy of the system (1)-( 5) satisfies the following decay rate: • Assume that c or d is even. Then there exist positive constants L 1 > 0 and L 2 > 0, such that for all initial U 0 = (u 0 , u 1 , y 0 , y 1 ) ∈ D(A) the energy of the system (1)-( 5) satisfies the following decay rate: (114) • Assume that c and d are both odd numbers. Then there exists a positive constant M > 0 such that for all initial U 0 = (u 0 , u 1 , y 0 , y 1 ) ∈ D(A) the energy of the system (1)-( 5) satisfies the following decay rate:

E(t) ≤ K 1 e -K2t
E(t) ≤ L 1 e -L2t
E(t) ≤ M t 2 U 0 2 D(A) , ∀t > 0. ( 115 
)
Proof.

1. To prove (113) and (114), we use the following frequency domain theorem for uniform stability of a C 0 semigroup of contractions on a Hilbert space (cf. [START_REF] Huang | Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]): a C 0 semigroup e tA on a Hilbert space H satisfies e tA ≤ Ce -τ t for some constant C > 0 and for τ > 0 if and only if iR ⊂ ρ(A) and lim sup

|µ|-→∞ (iµI -A) -1 < ∞. ( 116 
)
where ρ(A) denotes the resolvent set of the operator A. Then, Theorems 2.2 and 5.1 imply (113) and (114). 2. To prove (115), we use Theorem 2.4 of [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see also [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]): a C 0 -semigroup of contractions e tA in a Hilbert space H satisfies (118)

E(t) ≤ c t 2/l
Then, Theorems 2.2 and 5.1 imply (115).

Conclusion.

As announced in the introduction, the decay rate of the energy of the solution of (1)-( 5) is given for any rational value of √ a, using an innovative technique. If √ a is irrational the problem is solvable if it is proved that there exists C > 0, such that, for any k ∈ N, |k sin(k) + cos(k)| ≥ C. To our knowledge, the answer to this question is not obvious.

From a result of Lambert, it is known that k sin(k) + cos(k) = 0 for all k ∈ N. And with a formal calculation software we have obtained: For that reason we think that the decay rate (for an irrational value of √ a) is very small and not easy to study.

Theorem 2 . 1 .

 21 (Existence and uniqueness) (1) If U 0 ∈ D(A), then system (12) has a unique strong solution

Theorem 2 . 2 .

 22 (Strong stability) Let (C 1 ) and (C 2 ) be the following conditions: b

  67)-(70), it is enough to compute B 1,0 , B 2,1 , C 1,0 and C 2,1 , since the only interesting terms in the sum are those corresponding to n = 0, m = 1 and n = 1, m = 2. The other terms are of the form 1 µ 1 µ .

Proposition 4 .

 4 (Lower bound for the characteristic "polynomial" Φ, a = 1, √ a in Q) Assume that √ a ∈ Q + -{0; 1}. There exists (c; d) ∈ (N * ) 2 such that c and d are coprime and √ a = c/d. • Assume that c or d is even. Then ∃C > 0, such that ∃M > 0, ∀µ ≥ M : |Φ(µ)| ≥ Cµ 4 .

5 .

 5 Resolvent estimate. Theorem 5.1. (Estimate for the resolvent operator norm) 1. Assume that a = 1. Then sup µ∈R (iµI -A) -1 < ∞. (96) 2. Assume that √ a ∈ Q + -{0; 1}. There exists (c; d) ∈ (N * ) 2 such that c and d are coprime and √ a = c/d. • Assume that c or d is even. Then sup µ∈R (iµI -A) -1 < ∞.

  since w 22 (1) = O(1), w 22,x (1) = O(µ), w 12 (1) = O(1), w 11 (1) = O(1), w 21,x (1) = O(µ), w 21,xx

  110) and|u r,x (x)| ≤ O(µ 4 ) |Φ(µ)| • U 1 H and |y r,x (x)| ≤ O(µ 3 ) |Φ(µ)| • U 1 H .

U 0 2 D

 2 (A) , ∀t > 0. (113) 2. Assume that √ a ∈ Q + -{0; 1} and b satisfies Condition (C 1 ). There exists (c; d) ∈ (N * ) 2 such that c and d are coprime and √ a = c/d.

U 0 2 D

 2 (A) , ∀t > 0.

U 0 2 D

 2 (A) , ∀t > 0 (117) if iR ⊂ ρ(A) and sup µ∈R 1 |µ| l (iµI -A) -1 < ∞.

  min k=1,...,10 6 |k sin(k) + cos(k)| = |3 sin(3) + cos(3)| ≈ 0.566632. But it also holds: |k sin(k) + cos(k)| ≈ 0.183953 for k = 80143857 and |k sin(k) + cos(k)| ≈ 0.0764463 for k = 6167950454. We do not know if there exists, in the literature, an answer to this problem. But from the last two examples we may conjecture that min k∈N |k sin(k) + cos(k)| = 0.
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A m,n e iµx + A m,n e -iµx (µx) m-1 (m -1)! dx.

(61)

For any fixed µ such that µ 2 > b, let us define h on R + by:

Lemma 4.2 implies:

For any fixed µ such that µ 2 > b, the series (2n + 2) b µ 2 n converges. Hence the continuity of h on R + and in particular at x = 1. Thus, (61) means that φ and h are continuous functions on R + and that their Laplace transforms coincide for p, such that (p) ≥ max{2; |µ| + 1}. Thus φ(x) = h(x), for any x > 0 and, in particular at x = 1. That is to say, for any µ such that µ 2 > b:

Only the last two terms of the sum are interesting for the asymptotic behaviour of J 0 i.e. m = 2n + 2 and m = 2n + 1:

Now the first two terms are calculated (the computations for the sums are left to the reader), leading to:

The rest is: R(b, µ) := 2

(66) Hence the result for R(b, µ) and J 0 . Similar computations lead to the asymptotic behaviours (54), ( 55) and (56).

Lemma 4.4. (Asymptotic behaviour of the functions J k , k = 0; 1; 2; 3 for large values of µ, if a = 1) Let the functions J k , k = 0; 1; 2; 3 be defined by (47) with δ(p, µ) := (ap 2 + 1)(p 2 + 1) -b/µ 2 . Assume that a = 1. It holds:

where (x) tends to 0 as x tends to 0.

Proof. Since δ(p, µ) := (ap 2 + 1)(p 2 + 1) -b/µ 2 , it holds, for µ such that µ 2 > b and p, such that (p) ≥ 2:

w 12 (x) = -cos(q 1 x) + cos(q 2 x), w 21 (x) = b (cos(q 1 x) -cos(q 2 x)),

Now q 2 1 :=

Then

Step 1: Estimate of u p and y p given by [START_REF] Muñoz Rivera | Stability of Timoshenko systems with past history[END_REF].

Thus, if a = 1, w 11 (x) = √ b(sin(q 1 x) + sin(q 2 x)) + r 11 (x)

where max x∈[0,1] |r 11 (x)| = O 1 µ .

Then, using [START_REF] Muñoz Rivera | Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability[END_REF], w 11 * f 1 = √ b(sin(q 1 .)+sin(q 2 .)) * (-v 1 -iµu 1 )+r 11 * (-v 1 -iµu 1 ). Moreover, for x ∈ [0; 1]: