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Abstract. In this paper, we study the indirect boundary stabilization of the
Timoshenko system with only one dissipation law. This system, which models

the dynamics of a beam, is a hyperbolic system with two wave speeds. Assum-

ing that the wave speeds are equal, we prove exponential stability. Otherwise,
we show that the decay rate is of exponential or polynomial type. Note that

the results hold without the technical assumptions on the coefficients coming

from the multiplier method: a sharp analysis of the behaviour of the resol-
vent operator along the imaginary axis is performed to avoid those artificial

restrictions.

1. Introduction. In this paper we study the boundary stabilization of the follow-
ing Timoshenko system :

utt − (ux + y)x = 0 in (0, 1)× (0,∞), (1)

ytt − ayxx + b(ux + y) = 0 in (0, 1)× (0,∞), (2)

ux(0, t) = y(0, t) = u(1, t) = 0 in (0,∞) (3)

with the following initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), y(x, 0) = y0(x), yt(x, 0) = y1(x) in (0, 1) (4)

and the boundary dissipation law

b−1ayx(1, t) = −βyt(1, t) in (0,∞), (5)

where a, b and β are strictly positive constants.
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In this problem the functions u and y denote, respectively, the transverse displace-
ment of the beam and the rotation angle of the filament.

Denote by ρ, Iρ, EI, κ, ω(x, t) and ϕ(x, t), the mass density, the moment of mass
inertia, the rigidity coefficient, the shear modulus of the elastic beam, the lateral
displacement at location x and time t and the bending angle at location x and time
t respectively. Then (1)-(5) coincides with the systems in [11], [12], [15], [33]... with

u(x, t) = ω

(
x,

√
κ

ρ
t

)
, y(x, t) = −ϕ

(
x,

√
κ

ρ
t

)
, a =

(EI)ρ

κIρ
, b =

ρ

Iρ
. The same

effort to explain the dimensionless expression of the problem is done in [35] with
slightly different notation.

Let (u, y) be a regular solution of system (1)-(5). Its associated total energy is
defined by

E(t) =
1

2

∫ 1

0

(|ut|2 + b−1|yt|2 + b−1a|yx|2 + |ux + y|2)dx. (6)

Then a classical computation using parts integration gives:

d

dt
E(t) = −β|yt(1, t)|2 ≤ 0. (7)

Hence system (1)-(5) is dissipative in the sense that its associated energy is non
increasing with respect to time.

Let us now mention some known results related to the boundary stabilization of
the Timoshenko beam. Kim and Renardy proved the exponential stability of the
system under two boundary controls in [17]. In [5], Ammar-Khodja and his co-
authors studied the decay rate of the energy of the nonuniform Timoshenko beam
with two boundary controls acting in the rotation-angle equation. Under the equal
speed wave propagation condition (that is to say, if a = 1, in our modelization), they
established exponential decay results up to an unknown finite dimensional space of
initial data. In addition, they showed that the equal speed wave propagation con-
dition is necessary for the exponential stability.
In [8], the system (1)-(5) was studied but with the boundary condition u(0, t) = 0
instead of ux(0, t) = 0. Under the equal speed condition (a = 1) and if b is outside a
discrete set of exceptional values, a polynomial energy decay rate is obtained using
a spectral analysis. On the other hand, if

√
a is a rational number and if b is outside

another discrete set of exceptional values, a polynomial type decay rate is proved
to hold using a frequency domain approach.
The main goal of this work is to obtain the energy decay rate if

√
a is a rational

number but without assumptions on b (except (C1) and/or (C2), introduced in The-
orem 2.2) and with the boundary condition ux(0, t) = 0 instead of u(0, t) = 0. The
result is proved by means of suitable estimates of the resolvent operator norm along
the imaginary axis. The technique we choose involves the Laplace transform which
is an innovative technical choice to our knowledge.

If
√
a is not a rational number, the obtention of the energy decay rate is reduced to

a non trivial number theory problem and we conjecture that the decay rate of the
energy in that case is very small. The problem is still open.
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2. Well-posedness and strong stability. In this section we study the existence,
uniqueness and strong stability of the solution of system (1)-(5). Since the studied
problem is similar to that seen in [8], for shortness we only give the results. Let us
set

Ω = (0, 1), H1
R(Ω) = {u ∈ H1(Ω) : u(1) = 0} and H1

L(Ω) = {y ∈ H1(Ω) : y(0) = 0}.

Define the energy space H as follows

H = H1
R(Ω)× L2(Ω)×H1

L(Ω)× L2(Ω), (8)

with the inner product defined by

(U,U1)H =

∫ 1

0

(vv1 + b−1zz1 + ab−1yxy1x + (ux + y)(u1x + y1))dx, (9)

for all U = (u, v, y, z), U1 = (u1, v1, y1, z1) ∈ H.

Here again a and b are strictly positive constants (as in the introduction).

Remark 1. The norm (U,U)
1
2

H induced by (9) is equivalent to the usual norm of
H.

For shortness we denote by ‖ . ‖ the L2(Ω)-norm.
Now, we define a linear unbounded operator A : D(A)→ H by:

D(A) = {U ∈ H : u, y ∈ H2(Ω), v ∈ H1
R(Ω), z ∈ H1

L(Ω), (b−1a)yx(1) = βz(1), ux(0)},
(10)

A(u, v, y, z) =
(
v, (ux + y)x, z, ayxx− b(ux + y)

)
, ∀U = (u, v, y, z) ∈ D(A). (11)

Then we rewrite formally System (1)-(5) into the evolution equation{
Ut = AU,
U(0) = U0, U0 ∈ H,

(12)

with U = (u, ut, y, yt).

Proposition 1. The operator A is m-dissipative in the energy space H.

Remark 2. Note that the dissipativeness holds since we can check using integra-
tions by parts:

<(AU,U)H = −β|z(1)|2 ≤ 0,∀U = (u, v, y, z) ∈ D(A). (13)

Using Lumer-Phillips Theorem (see [26], Theorem 1.4.3), the operator A generates
a C0-semigroup of contractions etA on H. Then, we have the following results.

Theorem 2.1. (Existence and uniqueness)
(1) If U0 ∈ D(A), then system (12) has a unique strong solution

U ∈ C0(R+,D(A) ∩ C1(R+,H).

(2) If U0 ∈ H, then system (12) has a unique weak solution

U ∈ C0(R+,H).

Now, we have the following general strong stability result.
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Theorem 2.2. (Strong stability)
Let (C1) and (C2) be the following conditions:

b 6= (ak21 − k22)(k21 − ak22)

(a+ 1)(k21 + k22)
π2,∀k1, k2 ∈

1

2
+ N, k2 < k1, (C1)

b 6= k2π2,∀k ∈ N∗. (C2)

If a 6= 1, System (1)-(5) is strongly stable if and only if the coefficient b satisfies
(C1).

If a = 1, System (1)-(5) is strongly stable if and only if the coefficient b satisfies
(C1) and (C2).

Proof. This result is analogous to Theorem 2.4 of [8]. The proof has to be adapted
but since there is no new difficulty in the calculations, we do not give the details
here.

Remark 3. If the coefficient b does not satisfy the required condition(s), the opera-
tor A has a finite number of purely imaginary eigenvalues with explicit eigenvectors.
In that case we can show the strong and polynomial or exponential stability in the
space orthogonal to these eigenvectors that is invariant under the action of A.

3. Explicit expression for the resolvent. In this section we give an explicit
expression of the resolvent (λI − A)−1 and prove some useful estimates. In fact
such estimates are useful since later on, we will use a result of [10] (Theorem 2.4)
which involves the norm operator of (λI −A)−1 with λ = iµ, µ ∈ R.
Let U1 = (u1, v1, y1, z1) ∈ H, we look for a solution U ∈ D(A) of

(iµ−A)U = U1, µ ∈ R. (14)

Note that if the conditions (C1) and/or (C2) of Theorem 2.2 hold, Problem (14)
admits an unique solution for all µ ∈ R. If it is not the case, the existence and
uniqueness remain true for large enough values of |µ| (see Remark 3).

The explicit expression for the resolvent we give in next Proposition 2 involves
the restriction on [0; 1] of the classical convolution product of two functions on R.
Let us recall the definition and establish useful properties.

Lemma 3.1. (A technical lemma)
Let ψ ∈ C∞([0,∞[) and f in L2(0; 1) be two functions and define their convolution
product ψ ? f on [0, 1] by :

(ψ ? f)(x) =

∫ x

0

ψ(x− s)f(s)ds,∀x ∈ [0; 1]. (15)

Then the following two properties hold:

1. (ψ ? f) ∈ H1(0; 1) and its derivative is:

(ψ ? f)′(x) =

∫ x

0

ψ′(x− s)f(s)ds+ ψ(0)f(x),∀x ∈ [0; 1]. (16)

2. If ψ(0) = 0 is also assumed, then (ψ ? f) ∈ H2(0; 1) and its second derivative
is:

(ψ ? f)′′(x) =

∫ x

0

ψ′′(x− s)f(s)ds+ ψ′(0)f(x),∀x ∈ [0; 1]. (17)
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Proof. 1. The functions ψ extended by 0 on (−∞, 0) and f extended by 0 on
R outside [0, 1] are still called ψ and f respectively. Then the convolution
product defined by (15) is extended by the classical convolution product on
R i.e by

(ψ ? f)(x) =

∫
R

ψ(x− s)f(s)ds,∀x ∈ R. (18)

It is well known that (ψ ? f)′ = (ψ′)dist ? f where (ψ′)dist is the derivative
of ψ in the distributional sense. Due to the property of ψ and its extension
on R we have

(ψ′)dist = ψ′ + ψ(0)δ0,

where δ0 is the Dirac distribution at x = 0. The property (16) follows from
this remark.

2. (17) is a consequence of (16).
Note that weaker assumptions could be made on ψ for this lemma (ψ ∈ C2([0, 1])
is sufficient) but it will be applied to the functions wi,j in the next Proposition and
they belong to C2(R) ∩ C∞([0,∞[).

Proposition 2. (Explicit expression for the resolvent of the operator)
Let a, b and β be strictly positive real numbers and µ a real number.
Let the spaces H and D(A) be defined by (8) and (10).
Denote by ±iqj , j = 1, 2 the four distinct roots of the polynomial ∆ defined by

∆(p) := ap4 + (a+ 1)µ2p2 + µ4 − bµ2 (19)

(q1 and q2 are positive real numbers depending on a, b and µ and they are supposed
to satisfy q2(µ) < q1(µ), for µ > 0).
Define the functions φ, w11, w12, w21, w22 and Φ on R, by: φ(x) = − sin(q1x)

q1
+

sin(q2x)

q2
, x ≥ 0

φ(x) = 0 , x < 0
(20)


w11(x) = (µ2 − b)φ(x) + aφ′′(x),
w12(x) = −φ′(x),
w21(x) = b φ′(x),
w22(x) = µ2φ(x) + φ′′(x),

(21)

Φ(µ) =(w1,1)x(1)(b−1a(w2,2)x(1)− βiµw2,2(1))

− w1,2(1)(b−1a(w2,1)xx(1)− βiµ(w2,1)x(1)).
(22)

Then φ belongs to C2(R) ∩ C∞([0; +∞)) and

φ(0) = φ′(0) = φ′′(0) = 0, φ(3)(0+) = q21 − q22 .
Assume that conditions (C1) and/or (C2) of Theorem 2.2 hold and that |µ|2 > b,
and let U1 = (u1, v1, y1, z1) in H, then the solution U = (u, v, y, z) ∈ D(A) of
(iµ−A)U = U1 is given by:

u = up + ur; v = iµu− u1; y = yp + yr; z = iµy − y1 (23)

where
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(f1, g1, h1) := (−v1 − iµu1,−z1 − iµy1,−y1(1)) ∈ L2(Ω)× L2(Ω)× C, (24)


up(x) =

1

a(q21 − q22)
[w1,1 ? f1 + w1,2 ? g1]

yp(x) =
1

a(q21 − q22)
[w2,1 ? f1 + w2,2 ? g1]

(25)

{
ur(x) = α1w

′
11(x) + α2w12(x)

yr(x) = α1w
′
21(x) + α2w22(x).

(26)

with

γ1 = −up(1), γ2 = h1 −
(
b−1a(yp)x(1)− βiµyp(1)

)
, (27)

α1 =γ1
b−1a(w22)x(1)− βiµw22(1)

Φ(µ)
− γ2

w12(1)

Φ(µ)
,

α2 =− γ1
b−1a(w21)xx(1)− βiµ(w21)x(1)

Φ(µ)
+ γ2

w11(1)

Φ(µ)
.

(28)

The following lemma will be useful to prove the latter proposition.

Lemma 3.2. (A property of φ)
The function φ defined by (20) satisfies:

aφ(4) + (a+ 1)µ2φ′′ + µ2(µ2 − b)φ = 0. (29)

Proof. The successive derivatives of φ are, for any x ≥ 0:
φ′(x) = − cos(q1x) + cos(q2x)
φ′′(x) = q1 sin(q1x)− q2 sin(q2x)
φ(3)(x) = q21 cos(q1x)− q22 cos(q2x)
φ(4)(x) = −q31 sin(q1x) + q32 sin(q2x).

(30)

Then

aφ(4) + (a+ 1)µ2φ′′ + µ2(µ2 − b)φ = −aq
4
1 − (a+ 1)µ2q21 + µ2(µ2 − b)

q1
sin(q1x)

+
aq42 − (a+ 1)µ2q22 + µ2(µ2 − b)

q2
sin(q2x).

Now, by definition, (iq1) and (iq2) are both roots of the polynomial ∆ given by
(19).
Thus aq41 − (a+ 1)µ2q21 + µ2(µ2 − b) = aq42 − (a+ 1)µ2q22 + µ2(µ2 − b) = 0.

Proof of Proposition 2: Problem (14) is equivalent to find U ∈ D(A) such
that 

iµu− v = u1,
iµv − uxx − yx = v1,
iµy − z = y1,
iµz − ayxx + by + bux = z1,

(31)
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Eliminating v and z we have to find (u, y) ∈ H2(Ω)2 satisfying
(i) µ2u+ uxx + yx = f1,
(ii) µ2y + ayxx − by − bux = g1,
(iii) y(0) = 0,
(iv) ux(0) = u(1) = 0,
(v) b−1ayx(1)− βiµy(1) = h1,

(32)

where (f1, g1, h1) = (−v1 − iµu1,−z1 − iµy1,−y1(1)) ∈ L2(Ω)× L2(Ω)× C.

Step 1: First we check that (up, yp) given by (25) satisfies the first two equations
of (32).
Using Lemma 3.1 as well as w1,1(0) = 0, w′1,1(0) = aφ(3)(0+) = a(q21 − q22),
w1,2(0) = 0 and w′1,2(0) = 0, it holds:

up,xx(x) =
1

a(q21 − q22)

[
w′′1,1 ? f1 + w′′1,2 ? g1

]
+ a(q21 − q22)f1. (33)

Likewise, using w2,1(0) = w2,2(0) = 0, it holds:

yp,x(x) =
1

a(q21 − q22)

[
w′2,1 ? f1 + w′2,2 ? g1

]
. (34)

Thus

µ2up + up,xx + yp,x =
1

a(q21 − q22)

[ (
µ2w1,1 + w′′1,1 + w′2,1

)
? f1

+ a(q21 − q22)f1 +
(
µ2w1,2 + w′′1,2 + w′2,2

)
? g1

]
.

(35)

Now, φ has been constructed such that

aφ(4) + (a+ 1)µ2φ′′ + µ2(µ2 − b)φ = 0 which implies µ2w1,1 + w′′1,1 + w′2,1 = 0

(see Lemma 3.2). That is why µ2up + up,xx + yp,x =
1

a(q21 − q22)
a(q21 − q22)f1 = f1,

since µ2w1,2 + w′′1,2 + w′2,2 = 0 (simple calculation).

For the same reasons, after some calculations, the following equation is proved
to hold: µ2yp + ayp,xx − byp − bup,x = g1.

Step 2: We check that (ur, yr) given by (26) satisfies the following two equations:{
(i) µ2u+ uxx + yx = 0,
(ii) µ2y + ayxx − by − bux = 0.

(36)

µ2ur + ur,xx + yr,x = µ2(α1w
′
11(x) + α2w12(x)) + α1w

(3)
11 (x) + α2w

′
12(x)

+ α1w
′′
21(x) + α2w

′
22(x)

= α1(µ2w′11(x) + w
(3)
11 (x) + w′′21(x)) + α2(µ2w′12(x)

+ w
(3)
12 (x) + w′′22(x))

(37)

Then µ2ur + ur,xx + yr,x = 0 for the reasons invoked in Step 1 ((3) and µ2w1,2 +
w′′1,2 + w′2,2 = 0). Likewise (ur, yr) satisfies the second equation of (36).
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From these first two steps, we deduce that (u, y) given by (23) satisfies the first two
equations of (32).

Step 3: Let us now check the boundary conditions of (32).

1. At x = 0: yp(0) =
1

a(q21 − q22)
[w2,1 ? f1 + w2,2 ? g1] (0) = 0 by definition of

the convolution product.
And yr(0) = α1w

′
21(0) + α2w22(0) = 0, since φ(0) = φ′′(0) = 0. Then

y(0) = yp(0) + yr(0) = 0. Now

up,x(0) =
1

a(q21 − q22)

[
w′1,1 ? f1 + w′1,2 ? g1

]
(0)+w1,1(0)f1(0)+w1,2(0)g1(0) =

0 since w1,1(0) = 0 and w1,2(0) = 0.
And ur,x(0) = α1w

′′
11(0) + α2w

′
12(0) = 0 (cf. the proof of Lemma 3.2). Then

ux(0) = up,x(0) + ur,x(0) = 0.
2. At x = 1: since γ1 and γ2 are defined by (27), the conditions for u and y at
x = 1 are satisfied if, and only if (α1, α2) ∈ C2 is solution of

(
(w1,1)x(1) w1,2(1)

b−1a(w2,1)xx(1)− βiµ(w2,1)x(1) b−1a(w2,2)x(1)− βiµw2,2(1)

)(
α1

α2

)
=

(
γ1
γ2

)
.

(38)
Let M(µ) be the matrix of the previous system and Φ defined

Φ(µ) = det(M(µ)) (39)

then for all µ ∈ R, Φ(µ) 6= 0, otherwise λ = iµ would not be in the resolvent
of A. By definition, the expression of Φ(µ) is given by (22).
Consequently the solution of (38) is:(
α1

α2

)
=

1

Φ(µ)

(
b−1a(w2,2)x(1)− βiµw2,2(1) −w1,2(1)

−b−1a(w2,1)xx(1) + βiµ(w2,1)x(1) w1,1(1)

)(
γ1
γ2

)
.

(40)
that is to say α1 and α2 are given by (28).

Note that, the existence of γ1 and γ2 requires some regularity of up and
yp at x = 1. In fact, due to Lemma 3.1, up and yp belong to H2(0; 1) since
w11(0) = w12(0) = w21(0) = w22(0) = 0.

4. First estimates for the resolvent operator norm. This section is devoted
to the study of the behaviour of Φ(µ) as µ → +∞ (see (22) for the definition of
Φ(µ)). More precisely we try to find the best real number l such that for µ large
enough

µl|Φ(µ)| ≥ c > 0,

where c is a constant independent of µ. Note that Φ(µ) is the determinant of the
matrix M(µ) which involves φ(j)(1), j = 0, ..., 3, where φ is given by (20) and con-
sequently Φ(µ) is oscillating. Hence the basic idea is to isolate the oscillating terms
and to get the asymptotic behaviour of their coefficients. By definition, the expres-
sion of Φ(µ) is:
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Φ(µ) =(w1,1)x(1)(b−1a(w2,2)x(1)− βiµw2,2(1))

− w1,2(1)(b−1a(w2,1)xx(1) + βiµ(w2,1)x(1)).
(41)

Using (21) leads to an expression involving the function φ introduced in (20):

<Φ(µ) = b−1a
{

[(µ2 − b)φ′(1) + aφ(3)(1)][µ2φ′(1) + φ(3)(1)] + bφ′(1)φ(3)(1)
}
,

(42)

=Φ(µ) = −βµ
{

[(µ2 − b)φ′(1) + aφ(3)(1)][µ2φ(1) + φ(2)(1)] + bφ′(1)φ(2)(1)
}
.

(43)
Our idea is to use the Laplace transform. Indeed a straightforward computation
gives:

1

a(q21 − q22)
L(φ)(p) =

1

∆(p)
(44)

where q1 and q2 are defined by (19) in Proposition 2 and L(φ)(p) =

∫ +∞

0

e−px φ (x) dx,

for p such that <(p) > 0.

Lemma 4.1. (Another expression for Φ)
Recall that q1 and q2 are defined by (19) and φ by (20). Let R and δ(p, µ) be defined
by

R(µ) := a(r21 − r22), with r2j =
q2j
µ2

(45)

δ(p, µ) := (ap2 + 1)(p2 + 1)− b/µ2 = a(p2 + r21)(p2 + r22). (46)

Also define

J0(µ) :=
µ

R(µ)
φ(1); J1(µ) :=

1

R(µ)
φ′(1); J2(µ) =

1

µR(µ)
φ′′(1)

and J3(µ) :=
1

µ2R(µ)
φ(3)(1).

(47)

Then another expression for the function Φ introduced in Proposition 2 (see (22))
is:

Φ(µ) = µ2R2(µ)
[
µ2(J1 + aJ3)(b−1a(J1 + J3)− iβ(J0 + J2))− bJ1(b−1aJ1 − iβJ0)

]
.

(48)

Proof. Calculations.

Lemma 4.2. (Decomposition of a rational fraction) For any n ∈ N, the decompo-
sition of the following rational fraction in C is, for any p ∈ C− {±i}:

1

(p2 + 1)2n+2
=

1

(p− i)2n+2(p+ i)2n+2
=

2n+2∑
m=1

(
Am,n

(p− i)m
+

Am,n
(p+ i)m

)
(49)
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where A2n+2,n :=
(−1)n+1

22n+2
, A2n+1,n :=

(−1)n+1(n+ 1)i

22n+2
and, for any integer k in

[2, 2n+ 1]:

A2n+2−k,n :=

(−1)n+1+k

(
2n+ 1 + k

k

)
(ik)22n+2+k

. (50)

Moreover, for any n ∈ N and any integer m, such that 1 ≤ m ≤ n: |Am,n| ≤ 1.

Proof. These results are obtained by classical methods for the decomposition of
rational fractions. The expression for A2n+2−k,n is calculated by evaluating at
p = i:

1

k!
∂kp

[
(p− i)2n+2 1

(p2 + 1)2n+2

]
. (51)

Lemma 4.3. (Asymptotic behaviour of the functions Jk, k = 0; 1; 2; 3 for large
values of µ, if a = 1)
Assume that a = 1. Let the functions Jk, k = 0; 1; 2; 3 be defined by (47) with
δ(p, µ) := (p2 + 1)2 − b/µ2. The two expressions s1 and s2 are defined as follows:

s1 := − 1√
b

sin

(√
b

2

)
and s2 := −1

2
cos

(√
b

2

)
+

1

8

√
b sin

(√
b

2

)
. (52)

It holds:

J0(µ) := s1µ cos(µ) + s2 sin(µ) +O

(
1

µ

)
(53)

J1(µ) := −s1µ sin(µ) + (s1 + s2) cos(µ) +O

(
1

µ

)
(54)

J2(µ) := −s1µ cos(µ)− (2s1 + s2) sin(µ) +O

(
1

µ

)
(55)

J3(µ) := s1µ sin(µ)− (3s1 + s2) cos(µ) +O

(
1

µ

)
(56)

where O(x) is bounded with x as x tends to 0.

Proof. The Laplace transforms of φ and of its successive derivatives (see (30)) are
well-known:

L(φ)(p) = − 1

p2 + q21
+

1

p2 + q22
=

q21 − q22
(p2 + q21)(p2 + q22)

=
R(µ)

δ(p/µ, µ)

L(φ′)(p) = − p

p2 + q21
+

p

p2 + q22
= p

q21 − q22
(p2 + q21)(p2 + q22)

= p
R(µ)

δ(p/µ, µ)

L(φ′′)(p) = p2
R(µ)

δ(p/µ, µ)

L(φ(3))(p) = p3
R(µ)

δ(p/µ, µ)

Recall that R(µ) and δ(p, µ) are defined by (45) and (46).
Since δ(p, µ) := (p2 + 1)2 − b/µ2 (a = 1), it holds, for µ such that µ2 > b and p,
such that <(p) ≥ 2:
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1

δ(p, µ)
=
∑
n≥0

bn

µ2n

1

(p2 + 1)2n+2
. (57)

Recall that we are looking for the asymptotic behaviour of the functions Jk, k =
0; 1; 2; 3 for large values of µ. Thus the assumption µ2 > b is not restrictive.

For any n ∈ N, the decomposition is, for any p ∈ C− {±i}:

1

(p2 + 1)2n+2
=

1

(p− i)2n+2(p+ i)2n+2
=

2n+2∑
m=1

(
Am,n

(p− i)m
+

Am,n
(p+ i)m

)
(58)

⇒ 1

(p2 + 1)2n+2
=

2n+2∑
m=1

(
Am,nL

[
xm−1

(m− 1)!
eix
]

(p) +Am,nL
[
xm−1

(m− 1)!
e−ix

]
(p)

)
(59)

where Am,n is given in Lemma 4.2 for any integer n ≥ 0 and any integer m such
that 1 ≤ m ≤ 2n+ 2.
Now, µ is fixed such that µ2 > b. Then, for any p such that <(p) ≥ 2:

L(φ)(p) =
R(µ)

δ(p/µ, µ)

=
R(µ)

µ

∑
n≥0

L

[
bn

µ2n

2n+2∑
m=1

(µx)m−1

(m− 1)!

(
Am,ne

iµx +Am,ne
−iµx)] (p)

=
R(µ)

µ

∑
n≥0

bn

µ2n

2n+2∑
m=1

∫ ∞
x=0

e−px
(
Am,ne

iµx +Am,ne
−iµx) (µx)m−1

(m− 1)!
dx.

Moreover, for a fixed µ such that µ2 > b and p such that <(p) ≥ max{2; |µ|+ 1}:

∑
n≥0

bn

µ2n

2n+2∑
m=1

∫ ∞
x=0

∣∣∣∣e−px (Am,neiµx +Am,ne
−iµx) (µx)m−1

(m− 1)!

∣∣∣∣ dx
≤

∑
n≥0

bn

µ2n

2n+2∑
m=1

∫ ∞
x=0

2e−<(p)x
(|µ|x)m−1

(m− 1)!
dx

≤
∑
n≥0

bn

µ2n

∫ ∞
x=0

2e−<(p)x
∞∑
m=1

(|µ|x)m−1

(m− 1)!
dx

=
∑
n≥0

bn

µ2n

∫ ∞
x=0

2e(|µ|−<(p))xdx

≤ 2
∑
n≥0

bn

µ2n

< +∞.

(60)

Thus, by Fubini/Tonelli Theorems, the integral and the summation can be in-
terchanged. That is to say, for a fixed µ such that µ2 > b and p such that
<(p) ≥ max{2; |µ|+ 1}:
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L(φ)(p) :=

∫ +∞

x=0

e−px φ (x) dx

=

∫ ∞
x=0

e−px
R(µ)

µ

∑
n≥0

bn

µ2n

2n+2∑
m=1

(
Am,ne

iµx +Am,ne
−iµx) (µx)m−1

(m− 1)!
dx.

(61)

For any fixed µ such that µ2 > b, let us define h on R+ by:

h(x) :=
R(µ)

µ

∑
n≥0

bn

µ2n

2n+2∑
m=1

(
Am,ne

iµx +Am,ne
−iµx) (µx)m−1

(m− 1)!

=2
R(µ)

µ

∑
n≥0

[
2n+2∑
m=1

bn

µ2n−m+1

xm−1

(m− 1)!
<
(
Am,ne

iµx
)]
.

(62)

Lemma 4.2 implies:∣∣∣∣∣
2n+2∑
m=1

bn

µ2n−m+1

xm−1

(m− 1)!
<
(
Am,ne

iµx
)∣∣∣∣∣ ≤ (2n+ 2)

(
b

µ2

)n
ex. (63)

For any fixed µ such that µ2 > b, the series (2n+ 2)

(
b

µ2

)n
converges. Hence the

continuity of h on R+ and in particular at x = 1.
Thus, (61) means that φ and h are continuous functions on R+ and that their
Laplace transforms coincide for p, such that <(p) ≥ max{2; |µ|+ 1}.
Thus φ(x) = h(x), for any x > 0 and, in particular at x = 1.
That is to say, for any µ such that µ2 > b:

J0(µ) = 2
∑
n≥0

[
2n+2∑
m=1

bn

µ2n−m+1

1

(m− 1)!
<
(
Am,ne

iµ
)]
.

Only the last two terms of the sum are interesting for the asymptotic behaviour of
J0 i.e. m = 2n+ 2 and m = 2n+ 1:

J0(µ) =2
∑
n≥0

[
µ

bn

(2n+ 1)!
<
(
A2n+2,ne

iµ
)

+
bn

(2n)!
<
(
A2n+1,ne

iµ
)]

+2
∑
n≥1

2n∑
m=1

(
b

µ2

)n
µm−1

(m− 1)!
<
(
Am,ne

iµ
)
.

(64)

Now the first two terms are calculated (the computations for the sums are left to
the reader), leading to:

2
∑
n≥0

[
µ

bn

(2n+ 1)!
<
(
A2n+2,ne

iµ
)

+
bn

(2n)!
<
(
A2n+1,ne

iµ
)]

=
∑
n≥0

(
bn

(2n+ 1)!

(−1)n+1

22n+1

)
µ cos(µ) +

∑
n≥0

(
bn

(2n)!

(−1)n+1

22n+1
(n+ 1)

)
sin(µ)

= s1µ cos(µ) + s2 sin(µ).

(65)
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The rest is: R(b, µ) := 2
∑
n≥1

2n∑
m=1

(
b

µ2

)n
µm−1

(m− 1)!
<
(
Am,ne

iµ
)
. Let us prove that

R(b, µ) = O

(
1

µ

)
.

Lemma 4.2 implies:

|R(b, µ)| ≤ 2
∑
n≥1

2n∑
m=1

(
b

µ2

)n
µm−1

(m− 1)!
=
∑
k≥0

(
µ2k

(2k)!
+

µ2k+1

(2k + 1)!

) ∑
n≥k+1

(
b

µ2

)n
=
∑
k≥0

(
µ2k

(2k)!
+

µ2k+1

(2k + 1)!

)
bk+1

µ2k+2 − bµ2k
=

1

µ2 − b
∑
k≥0

bk+1

(2k)!

+
µ

µ2 − b
∑
k≥0

bk+1

(2k + 1)!
.

(66)
Hence the result for R(b, µ) and J0.
Similar computations lead to the asymptotic behaviours (54), (55) and (56).

Lemma 4.4. (Asymptotic behaviour of the functions Jk, k = 0; 1; 2; 3 for large
values of µ, if a 6= 1)
Let the functions Jk, k = 0; 1; 2; 3 be defined by (47) with
δ(p, µ) := (ap2 + 1)(p2 + 1)− b/µ2. Assume that a 6= 1. It holds:

J0(µ) :=
1

a− 1

(√
a sin

(
µ√
a

)
− sin(µ)

)
− 1

µ

(
b

2(a− 1)2

)(
a cos

(
µ√
a

)
+ cos(µ)

)
+

1

µ
ε

(
1

µ

) (67)

J1(µ) :=
1

a− 1

(
cos

(
µ√
a

)
− cos(µ)

)
+

1

µ

(
b

2(a− 1)2

)(√
a sin

(
µ√
a

)
+ sin(µ)

)
+

1

µ
ε

(
1

µ

) (68)

J2(µ) :=
1

a− 1

(
− 1√

a
sin

(
µ√
a

)
+ sin(µ)

)
+

1

µ

(
b

2(a− 1)2

)(
cos

(
µ√
a

)
+ cos(µ)

)
+

1

µ
ε

(
1

µ

) (69)

J3(µ) :=
1

a− 1

(
−1

a
cos

(
µ√
a

)
+ cos(µ)

)
− 1

µ

(
b

2(a− 1)2

)(
1√
a

sin

(
µ√
a

)
+ sin(µ)

)
+

1

µ
ε

(
1

µ

) (70)

where ε(x) tends to 0 as x tends to 0.

Proof. Since δ(p, µ) := (ap2 + 1)(p2 + 1) − b/µ2, it holds, for µ such that µ2 > b
and p, such that <(p) ≥ 2:
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1

δ(p, µ)
=
∑
n≥0

bn

µ2n

1

(ap2 + 1)n+1(p2 + 1)n+1
. (71)

For any n ∈ N, the decomposition is, for any p ∈ C− {±i;± i√
a
}:

1

(ap2 + 1)n+1(p2 + 1)n+1
=

n+1∑
m=1

( Bm,n
(p− i)m

+
Bm,n

(p+ i)m

+
Cm,n(

p− i√
a

)m +
Cm,n(

p+ i√
a

)m). (72)

Using the same arguments as in the proof of Lemma 4.3, it holds:

J0(µ) =
∑
n≥0

n+1∑
m=1

bn

(m− 1)!µ2n−m+1

[
Bm,ne

iµ +Bm,ne
−iµ

+ Cm,ne
i√
a
µ

+ Cm,ne
− i√

a
µ
]
.

(73)

To get (67)-(70), it is enough to compute B1,0, B2,1, C1,0 and C2,1, since the only
interesting terms in the sum are those corresponding to n = 0, m = 1 and n = 1,

m = 2. The other terms are of the form
1

µ
ε

(
1

µ

)
.

The first two rational fractions of the sum (71) are decomposed in R for the sake of
simplicity:

1

(ap2 + 1)(p2 + 1)
=

1

a− 1

(
1

p2 + 1/a
− 1

p2 + 1

)
(74)

1

(ap2 + 1)2(p2 + 1)2
=

1

(a− 1)2

( 1

(p2 + 1/a)2
+

1

(p2 + 1)2

− 2a

a− 1

1

p2 + 1/a
+

2a

a− 1

1

p2 + 1

)
.

(75)

Now, for n = 0, the decomposition in C is, for any p ∈ C− {±i;± i√
a
}:

1

(ap2 + 1)(p2 + 1)
=
B1,0

p− i
+
B1,0

p+ i
+

C1,0

p− i√
a

+
C1,0

p+ i√
a

=
i(B1,0 −B1,0)

p2 + 1
+

1√
a

i(C1,0 − C1,0)

p2 + 1/a
.

(76)

Thus, identifying with the decomposition (74), B1,0 = B1,0 and −2=(B1,0) =
1

1− a
.

Likewise C1,0 = C1,0 and −2=(C1,0) =

√
a

a− 1
.

If n = 1, the decomposition in C is, for any p ∈ C− {±i;± i√
a
}:
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1

(ap2 + 1)2(p2 + 1)2
=

B2,1

(p− i)2
+

B2,1

(p+ i)2
+

C2,1(
p− i√

a

)2 +
C2,1(

p+ i√
a

)2
+
B1,1

p− i
+
B1,1

p+ i
+

C1,1

p− i√
a

+
C1,1

p+ i√
a

.

(77)

After calculations and identification with the decomposition (75):

B2,1 = B2,1 = − 1

4(a− 1)2
.

Likewise C2,1 = C2,1 = − a

4(a− 1)2
.

Hence the asymptotic behaviour of J0. Then, the following functions are derived

iteratively to obtain the behaviour of J1, J2 and J3:
√
a sin

(
·√
a

)
− sin(·) and

b

2(a− 1)2

(
a cos

(
·√
a

))
+ cos(·).

Proposition 3. (Asymptotic behaviour of the characteristic ”polynomial” Φ if
a = 1)

Assume that a = 1. Then ∃C > 0, such that ∃M > 0,∀µ ≥M :

|Φ(µ)| ≥ Cµ2. (78)

where Φ is defined by (48).

Proof. Using (48) with a = 1 leads to:{
<Φ(µ) = µ2R2(µ) · [b−1µ2(J1 + J3)2 − J2

1 ] = 4µ2(J1 + J3)2 − 4bJ2
1

=Φ(µ) = βµ2R2(µ) · [−µ2(J1 + J3)(J0 + J2) + bJ0J1]

where R2(µ) = 4b/µ2 (cf. (45)). Then Lemma 4.3 leads to:

<Φ(µ)

4µ2
= 4s21

(
cos2(µ)− b

4
sin2(µ)

)
+O

(
1

µ

)
(79)

and

=Φ(µ)

4µ2
= −b(4 + b)βs21 cos(µ) sin(µ) +O

(
1

µ

)
. (80)

Thus

|Φ(µ)|2

16µ4s41
= 16

(
cos2(µ)− b

4
sin2(µ)

)2

+(4+b)2b2β2 cos2(µ) sin2(µ)+O

(
1

µ

)
. (81)

|Φ(µ)|2

16µ4s41
=

(
16

(
1 +

b

4

)2

− (4 + b)2b2β2

)
cos4(µ)

+

(
(4 + b)2b2β2 − 8b

(
1 +

b

4

))
cos2(µ) + b2 +O

(
1

µ

) (82)

Let us denote by f the function defined on R, by:
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f(x) :=

(
1 +

b

4

)2

(1− b2β2)x2 +

(
1 +

b

4

)(
b2β2

(
1 +

b

4

)
− b

2

)
x+

b2

16
. (83)

Our aim is to prove that there exists C > 0 such that f(x) ≥ C > 0, for any
x ∈ [0; 1].

First notice that f(0) =
b2

16
> 0 and f(1) = 1 > 0.

In the following, β is chosen to be equal to 1. If it is not, changing the value of b so
that (5) still holds is always possible.

Now we separate the different cases:

• Case b = 1: in that case, f is an affine function and f can not take negative
values on the interval [0; 1], since it is strictly positive at 0 and at 1.

• Case b > 1: the coefficient of x2 is strictly negative. Thus f(x) is larger than
the minimum of f(0) and f(1).

• Case 0 < b < 1: the coefficient of x2 is strictly positive.
The sign of the discriminant is also the sign of:

∆(b)(
1 +

b

4

)2 :=

(
b2
(

1 +
b

4

)
− b

2

)2

− (1− b2)
b2

4
= b4

(
1 +

b

4

)2

− b3

= b3

[
b

(
1 +

b

4

)2

− 1

]
.

(84)

Now, the sign of ∆(b) is that of the function g defined on [0; 1] by the
expression g(t) := t3 + 4t− 4.

The only real root of g is t0 := 3

√√√√2

(
1 +

√
40

3
√

3

)
+ 3

√√√√2

(
1−
√

40

3
√

3

)
< 1. Then

∆(b) < 0,∀b ∈ (0; t20), ∆(b) ≥ 0,∀b ∈ [t20; 1). (85)

If b ∈ (0; t20), the function f has no root in [0; 1] and the required property
is satisfied since the coefficient of x2 is strictly positive.
If b ∈ (t20; 1), the function f has two real roots. The product of these roots is

P :=
b2

(b2 + 4)(1− b2)
> 0 and their sum is

S :=
1

(1 + b/4)(1− b2)

(
b

2
− b2

(
1 +

b

4

))
.

The function b 7→ (b2 + 4b− 2) is non-negative on (x20; 1). Thus both roots of
f are non-positive and the minimum value of f on [0; 1] is b2/16.
At last, if b = t20, the function f has a unique root x0 which satisfies 2x0 =
S < 0. Thus the minimum value of f on [0; 1] is also b2/16.

To conclude, we have proved that there exists C > 0 such that f(x) ≥ C > 0,
for any x ∈ [0; 1].

Proposition 4. (Lower bound for the characteristic ”polynomial” Φ, a 6= 1,
√
a in

Q)
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Assume that
√
a ∈ Q+−{0; 1}. There exists (c; d) ∈ (N∗)2 such that c and d are

coprime and
√
a = c/d.

• Assume that c or d is even. Then ∃C > 0, such that ∃M > 0,∀µ ≥M :

|Φ(µ)| ≥ Cµ4. (86)

• Assume that c and d are both odd numbers.
Then ∃C > 0, such that ∃M > 0,∀µ ≥M :

|Φ(µ)| ≥ Cµ3. (87)

Proof. Let us denote by Ψ the function defined on R by:

Ψ(µ) :=
Φ(µ)

µ4R2(µ)
. (88)

• The contrapositive is proved: assume that, there exists a sequence (µn)n
which tends to +∞ with n and which satisfies Ψ(µn) = o(1), that is to say
that Ψ(µn) tends to 0 as n tends to +∞.
Then b−1a(J1(µn)+aJ3(µn))(J1(µn)+J3(µn)) = o(1) as well (cf. (48)). Now
the symmetric matrix A defined by

A :=

 1
a+ 1

2
a+ 1

2
a


is orthogonally diagonalizable. Denoting by λ2 > 0 > λ1 the two eigenvalues
of A (the determinant of A is −(1/4)(a− 1)2 < 0), it holds:

min(|λ1|, |λ2|) · (J2
1 +J2

3 ) ≤ |(J1 +aJ3)(J1 +J3)| ≤ max(|λ1|, |λ2|) · (J2
1 +J2

3 ). (89)

where J1 and J3 depend on µ and (89) holds for all µ in R.
Thus Ψ(µn) = o(1)⇒ J1(µn) = o(1); J3(µn) = o(1).

Using (68) and (70), Ψ(µn) = o(1)⇒ cos(µn) = o(1); cos

(
µn√
a

)
= o(1).

There exists (kn; ln) in Z2 such that

µn = knπ +
π

2
+ o(1) and

µn√
a

= lnπ +
π

2
+ o(1).

Here again, o(1) is a function which tends to 0 when n tends to ∞. Then,
writing

√
a as the irreducible fraction c/d:

knπ +
π

2
+ o(1) =

c

d

(
lnπ +

π

2
+ o(1)

)
⇒ (2kn + 1)d = (2ln + 1)c+ o(1).

Now, since (2kn + 1)d and (2ln + 1)c are both integer numbers, o(1) must
vanish and there exists (k; l) ∈ N2, such that

√
a =

c

d
=

2k + 1

2l + 1
. (90)

Note that there exists an infinity of such couples (k; l) ∈ Z2. Indeed, (90)
implies
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k =
c− d+ 2cl

2d
.

Since c and d are both supposed to be odd integer numbers, ∃p ∈ Z, c−d = 2p

thus k =
p+ cl

d
which is equivalent to dk − cl = p. Bezout’s Theorem gives

an infinity of solutions to this equation.

The conclusion is: if c or d is even, ∃K > 0, such that ∃L > 0,∀µ ≥ L,
|Ψ(µ)| ≥ K.

Since r21 := q21/µ
2 =

1

2a

(
a+ 1 +

1

µ

√
(a− 1)2µ2 + 4ab

)
and since r22 has the

same expression except for the sign before the square root, the asymptotic
behaviour of R(µ) for large values of µ is given by:

R(µ) = a(r22 − r21) = − 1

µ

√
(a− 1)2µ2 + 4ab = −|a− 1|+ o(1)

Hence the first result with C = (a− 1)2K.
• Assume that c and d are both odd numbers and that there exists a sequence

(µn)n which tends to +∞ with n and which satisfies Ψ(µn) = o

(
1

µn

)
, that

is to say that µnΨ(µn) tends to 0 as n tends to +∞.
In particular Ψ(µn) = o(1) and that still implies cos(µn) = o(1) and

cos

(
µn√
a

)
= o(1) as in the first part of the proof. Thus the limit of sin

(
µn√
a

)
is ±1.

Then, using the imaginary part of Φ(µn) (cf. (48)) and (67) to (70):

β(J1 + aJ3)(J0 + J2) = o

(
1

µn

)
=

β

(
cos(µn) +

b

2(1− a)

sin(µn)

µn
+ o

(
1

µ2
n

))
×
(

1√
a

sin

(
µn√
a

)
+ o

(
1

µn

)) (91)

⇒ cos(µn) = − b

2(1− a)

sin(µn)

µn
+ o

(
1

µn

)
. (92)

Now cos(µn) = o(1)⇒ ∃kn ∈ Z, µn = knπ+
π

2
+ e(µn), with e(µn) = o(1).

Note that the sequence (kn) has nothing to do with that of the first part of
the proof. Inserting this expression into (92) and using classical trigonometric
formulas for the cosine and sine of a sum, as well as sin(kπ + π/2) = (−1)k,
lead to:

− (−1)kn(e(µn) + o(e(µn))) = (−1)kn
b

2(−1 + a)πkn
+ o

(
1

kn

)
(93)

µn = knπ +
π

2
− b

2(−1 + a)knπ
+ o

(
1

kn

)
. (94)
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Likewise, starting from the real part of Φ(µn) (cf. (48)), ∃ln ∈ Z:

µn√
a

= lnπ +
π

2
−

√
ab

2(−1 + a)πln
+ o

(
1

ln

)
. (95)

Here again the sequence (ln) has nothing to do with that of the first part
of the proof. The comparison between (94) and (95) allows to write

kn +
1

2
−
√
a

(
ln +

1

2

)
= o(1) i.e. kn = −1

2
+

1

2
√
a

+
ln√
a

+ o(1).

In fact, since
√
a is supposed to be a rational number, o(1) = 0 (cf. first

part of the proof) and

kn = −1

2
+

1

2
√
a

+
ln√
a

which implies knπ +
π

2
=
√
a
(
lnπ +

π

2

)
or kn =

√
aln.

At last (94)-(95) is

(1 + a)b

2(−1 + a)knπ
= o

(
1

kn

)
which is impossible.
The conclusion is: if c and d are both odd, ∃K > 0, such that ∃L > 0,∀µ ≥ L,
|Ψ(µ)/µ| ≥ K.
The end of the proof is identical with the end of the proof of the first part.

5. Resolvent estimate.

Theorem 5.1. (Estimate for the resolvent operator norm)

1. Assume that a = 1. Then

sup
µ∈R
‖(iµI −A)−1‖ <∞. (96)

2. Assume that
√
a ∈ Q+ − {0; 1}. There exists (c; d) ∈ (N∗)2 such that c and d

are coprime and
√
a = c/d.

• Assume that c or d is even. Then

sup
µ∈R
‖(iµI −A)−1‖ <∞. (97)

• Assume that c and d are both odd numbers. Then

sup
µ∈R

1

|µ|
‖(iµI −A)−1‖ <∞. (98)

Proving Theorem 5.1 requires the estimation of ‖U‖H with respect to ‖U1‖H, where
U and U1 are defined by (14). The explicit espression for U is given by Proposition 2.

First, let us explicit the functions introduced in that proposition, in particular
those defined by (21). It holds, for x ≥ 0:
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

w11(x) =

(
b+ aq21 − µ2

)
q1

sin(q1x)−
(
b+ aq22 − µ2

)
q2

sin(q2x),

w12(x) = − cos(q1x) + cos(q2x),
w21(x) = b (cos(q1x)− cos(q2x)),

w22(x) =
q21 − µ2

q1
sin(q1x)− q22 − µ2

q2
sin(q2x).

(99)

Now q21 :=
µ2

2a

(
a+ 1 +

1

µ

√
(a− 1)2µ2 + 4ab

)
(cf. (19)).

Then q21 =

(
a+ 1 + |a− 1|

2a

)
µ2 +

b

|a− 1|
+ o(1) if a 6= 1 and q21 = µ2 +

√
bµ if

a = 1.

Likewise q22 =

(
a+ 1− |a− 1|

2a

)
µ2 − b

|a− 1|
+ o(1) if a 6= 1 and q22 = µ2 −

√
bµ if

a = 1.

5.1. Proof of Theorem 5.1 in the case a=1. If a = 1
b+ q21 − µ2

q1
= (b+

√
bµ)

(
1

µ

(
1−
√
b

2µ
+ o

(
1

µ

)))
=
√
b+O

(
1

µ

)
. Likewise

b+ q22 − µ2

q2
= (b−

√
bµ)

(
1

µ

(
1 +

√
b

2µ
+ o

(
1

µ

)))
= −
√
b+O

(
1

µ

)
.

Step 1: Estimate of up and yp given by (25).

Thus, if a = 1, w11(x) =
√
b(sin(q1x) + sin(q2x)) + r11(x)

where maxx∈[0,1] |r11(x)| = O

(
1

µ

)
.

Then, using (24), w11∗f1 =
√
b(sin(q1.)+sin(q2.))∗(−v1−iµu1)+r11∗(−v1−iµu1).

Moreover, for x ∈ [0; 1]:

|(sin(q1.) ∗ (−iµu1)) (x)| =

∣∣∣∣∫ x

0

sin(q1(x− s))(−iµu1)(x)ds

∣∣∣∣
=

∣∣∣∣ (−iµu1)(x)

q1
−
∫ x

0

cos(q1(x− s))
q1

(−iµu1,x)(s)ds

∣∣∣∣
≤ |µ|

q1
(|u1(x)|+ ‖u1,x‖) ≤ O(1) · ‖U1‖H

where O(1) is a bounded function of µ, ‖ · ‖ is the L2(Ω)-norm and ‖ · ‖H is the
norm introduced in Section 2. Since, for any x ∈ (0; 1)
|(r11 ∗ (−iµu1)) (x)| ≤ |µ| ·maxx∈[0,1] |r11(x)| · ‖u1‖ ≤ O(1) · ‖U1‖H, it holds, for any
x ∈ [0; 1]:

|(w11 ∗ f1)(x)| ≤ O(1) · ‖U1‖H. (100)

If a = 1,
q21 − µ2

q1
=
√
b + O

(
1

µ

)
. Likewise

q22 − µ2

q2
= −

√
b + O

(
1

µ

)
. Thus,

similarly, it holds, for any x ∈ [0; 1]:

|(w22 ∗ g1)(x)| ≤ O(1) · ‖U1‖H. (101)

The other two functions w12 and w21 have even simpler expressions: analogously
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{
maxx∈[0,1] |(w12 ∗ g1)(x)| = O(1) · ‖U1‖H
maxx∈[0,1] |(w21 ∗ f1)(x)| = O(1) · ‖U1‖H

Since a(q21 − q22) = 2
√
bµ (for a = 1), it holds, for x ∈ [0; 1]:

|up(x)| ≤ O
(

1

µ

)
· ‖U1‖H and |yp(x)| ≤ O

(
1

µ

)
· ‖U1‖H. (102)

By definition (cf. (20)), the function φ vanishes at 0 as well as its first and second
derivatives. Then w11, w12, w21 and w22 also vanish at 0. Thus

up,x(x) =
1

q21 − q22
[w11,x ∗ f1 + w12,x ∗ g1]

yp,x(x) =
1

q21 − q22
[w21,x ∗ f1 + w22,x ∗ g1]

(103)

Now

w11,x(x) =
(
b+ q21 − µ2

)
cos(q1x)−

(
b+ q22 − µ2

)
cos(q2x)

=
√
b(q1 cos(q1x) + q2 cos(q2x)) + r11,x(x)

(104)

where maxx∈[0,1] |r11,x(x)| = O(1). Thus, for x ∈ [0; 1]:

|up,x(x)| ≤ O(1) · ‖U1‖H and |yp,x(x)| ≤ O(1) · ‖U1‖H. (105)

Step 2: Estimate of ur and yr given by (26).

By definition of γ1 and γ2 (cf. (27)), γ1 = O

(
1

µ

)
· ‖U1‖H, γ2 = O(1) · ‖U1‖H.

Now, since w22(1) = O(1), w22,x(1) = O(µ), w12(1) = O(1), w11(1) = O(1),

w21,x(1) = O(µ), w21,xx(1) = O(µ2), using (28) leads to: α1 =
O(1)

Φ(µ)
· ‖U1‖H

and α2 =
O(µ)

Φ(µ)
· ‖U1‖H.

It follows from (26) and (99) that, for x ∈ [0; 1]:
|ur(x)| = |α1w

′
11(x) + α2w12(x)| ≤ O(µ)

|Φ(µ)|
· ‖U1‖H

|yr(x)| = |α1w
′
21(x) + α2w22(x)| ≤ O(µ)

|Φ(µ)|
· ‖U1‖H

(106)

and

|ur,x(x)| ≤ O(µ2)

|Φ(µ)|
· ‖U1‖H and |yr,x(x)| ≤ O(µ2)

|Φ(µ)|
· ‖U1‖H. (107)

Step 3: Conclusion for the resolvent operator norm.

Using the usual norm on H (which is equivalent to that defined by (9)) as well
as the above estimates (102), (105), (106) and (107), there exists a constant C such
that:
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‖U‖H ≤ C·(‖up‖+ ‖up,x‖+ ‖v‖+ ‖yp‖+ ‖yp,x‖+ ‖z‖) ≤
(
O(1) +

O(µ2)

Φ(µ)

)
·‖U1‖H.

(108)
Recall that v and z are defined by (23). The result follows from Proposition 3.

5.2. Proof of Theorem 5.1 in the case a 6= 1: The proof is similar to the
previous one for a = 1. We give less details. The results, for any x ∈ [0; 1], are:

|(w11 ∗ f1)(x)| ≤ O(µ) · ‖U1‖H
|(w22 ∗ g1)(x)| ≤ O(µ) · ‖U1‖H
|(w12 ∗ g1)(x)| ≤ O(1) · ‖U1‖H
|(w21 ∗ f1)(x)| ≤ O(1) · ‖U1‖H.

(109)

Since a(q21 − q22) = |a− 1|µ2 +O(1), both (102) and (105) still hold, for a 6= 1. The

behaviour of γ1 and γ2 are still given by γ1 = O

(
1

µ

)
· ‖U1‖H, γ2 = O(1) · ‖U1‖H.

Now, since w22(1) = O(µ), w22,x(1) = O(µ2), w12(1) = O(1), w11(1) = O(µ),

w21,x(1) = O(µ), w21,xx(1) = O(µ2) , using (28) leads to: α1 =
O(µ)

Φ(µ)
· ‖U1‖H and

α2 =
O(µ)

Φ(µ)
· ‖U1‖H.

It follows from (26) and (99) that, for x ∈ [0; 1]:
|ur(x)| = |α1w

′
11(x) + α2w12(x)| ≤ O(µ3)

|Φ(µ)|
· ‖U1‖H

|yr(x)| = |α1w
′
21(x) + α2w22(x)| ≤ O(µ2)

|Φ(µ)|
· ‖U1‖H

(110)

and

|ur,x(x)| ≤ O(µ4)

|Φ(µ)|
· ‖U1‖H and |yr,x(x)| ≤ O(µ3)

|Φ(µ)|
· ‖U1‖H. (111)

To conclude:

‖U‖H ≤
O(µ4)

Φ(µ)
· ‖U1‖H. (112)

The results follow from Proposition 4.

6. Decay rate of the energy.

Theorem 6.1. (Decay rate)
Assume that

√
a ∈ Q.

1. Assume that a = 1 and b satisfies Condition (C1) and (C2). Then there
exist positive constants K1 > 0 and K2 > 0, such that for all initial U0 =
(u0, u1, y0, y1) ∈ D(A), the energy of the system (1)-(5) satisfies the following
decay rate:

E(t) ≤ K1e
−K2t‖U0‖2D(A), ∀t > 0. (113)

2. Assume that
√
a ∈ Q+ − {0; 1} and b satisfies Condition (C1). There exists

(c; d) ∈ (N∗)2 such that c and d are coprime and
√
a = c/d.
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• Assume that c or d is even. Then there exist positive constants L1 > 0
and L2 > 0, such that for all initial U0 = (u0, u1, y0, y1) ∈ D(A) the
energy of the system (1)-(5) satisfies the following decay rate:

E(t) ≤ L1e
−L2t‖U0‖2D(A), ∀t > 0. (114)

• Assume that c and d are both odd numbers. Then there exists a positive
constant M > 0 such that for all initial U0 = (u0, u1, y0, y1) ∈ D(A) the
energy of the system (1)-(5) satisfies the following decay rate:

E(t) ≤ M

t2
‖U0‖2D(A), ∀t > 0. (115)

Proof. 1. To prove (113) and (114), we use the following frequency domain the-
orem for uniform stability of a C0 semigroup of contractions on a Hilbert
space (cf. [16] and [27]): a C0 semigroup etA on a Hilbert space H satisfies
‖etA‖ ≤ Ce−τt for some constant C > 0 and for τ > 0 if and only if

iR ⊂ ρ(A) and lim sup
|µ|−→∞

‖(iµI −A)−1‖ <∞. (116)

where ρ(A) denotes the resolvent set of the operator A.
Then, Theorems 2.2 and 5.1 imply (113) and (114).

2. To prove (115), we use Theorem 2.4 of [10] (see also [18]): a C0-semigroup of
contractions etA in a Hilbert space H satisfies

E(t) ≤ c

t2/l
‖U0‖2D(A), ∀t > 0 (117)

if

iR ⊂ ρ(A) and sup
µ∈R

1

|µ|l
‖(iµI −A)−1‖ <∞. (118)

Then, Theorems 2.2 and 5.1 imply (115).

7. Conclusion. As announced in the introduction, the decay rate of the energy
of the solution of (1)-(5) is given for any rational value of

√
a, using an innovative

technique.
If
√
a is irrational the problem is solvable if it is proved that there exists C > 0,

such that, for any k ∈ N, |k sin(k) + cos(k)| ≥ C. To our knowledge, the answer to
this question is not obvious.

From a result of Lambert, it is known that k sin(k) + cos(k) 6= 0 for all k ∈ N.
And with a formal calculation software we have obtained:

min
k=1,...,106

|k sin(k) + cos(k)| = |3 sin(3) + cos(3)| ≈ 0.566632.

But it also holds: |k sin(k) + cos(k)| ≈ 0.183953 for k = 80143857 and
|k sin(k) + cos(k)| ≈ 0.0764463 for k = 6167950454.

We do not know if there exists, in the literature, an answer to this problem. But
from the last two examples we may conjecture that

min
k∈N
|k sin(k) + cos(k)| = 0.
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For that reason we think that the decay rate (for an irrational value of
√
a) is very

small and not easy to study.
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dissipatif et de signe indéfini, Ph.D thesis, Lebanese University and Université de Valenciennes
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