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We consider second-order evolution equations with intermittently delayed/ not-delayed damping. We give sufficient conditions for asymptotic and exponential stability, completing our previous results from Nicaise and

Introduction

Let H be a real Hilbert space and let A : D(A) → H be a positive self-adjoint operator with a compact inverse in H. Denote by V := D(A 1 2 ) the domain of A 1 2 . Let B 1 , B 2 be time-dependent linear operators, B 1 ∈ L(H, H) and B 2 (t) : U → H, where U is a real Hilbert space with norm and inner product denoted respectively by ∥ • ∥ U and ⟨•, •⟩ U . We assume that B 1 and B 2 act alternately, that is

B * 1 (t)B * 2 (t) = 0, ∀t > 0.
Let us consider the problem u tt (t) + Au(t) + B 1 (t)B * 1 (t)u t (t) + B 2 (t)B * 2 (t)u t (tτ ) = 0 t > 0 (6.1) u(0) = u 0 and u t (0) = u 1 (6.2) where the constant τ > 0 is the time delay. Time delay effects appear in many applications and practical problems and it is by now well known that even an arbitrarily small delay in the feedback may destabilize a system which is uniformly exponentially stable in absence of delay. For some examples of this destabilizing effect of time delays we refer to [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF].

In [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] we considered the wave equation with both dampings acting simultaneously, that is B 1 (t) = µ 1 and B 2 (t) = µ 2 , with µ 1 , µ 2 ∈ IR + , and we proved that if µ 1 > µ 2 then the system is uniformly exponentially stable. Otherwise, if µ 2 ≥ µ 1 , that is the delay term prevails on the not-delayed one, then there are instability phenomena, namely, there are unstable solutions for arbitrarily small (large) delays.

The stabilization problem for second-order evolution equations with switching time delay is, in some sense, related to the one for second-order evolution equations damped by positive/negative feedbacks (see [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF]). See also [START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF] for the relation between wave equation with time delay in the damping and wave equation with indefinite damping, i.e., damping which changes sign in different subsets of the domain.

We firstly studied this subject in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], in a more general setting with respect to the problem considered here. Assuming that an observability inequality holds for the conservative model associated with (6.1) and (6.2) and, through the definition of a suitable energy, we obtained sufficient conditions ensuring asymptotic stability. Under more restrictive assumptions exponential stability estimates were also obtained.

An analogous problem has been considered in [START_REF] Ammari | Stabilization by switching time-delay[END_REF] for 1D models for the wave equation but with a different approach. Indeed, in [START_REF] Ammari | Stabilization by switching time-delay[END_REF] we obtain stability results for particular values of the time delays, related to the length of the domain, by using the D'Alembert formula.

The results of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] are improved in [START_REF] Nicaise | Stability results for second-order evolution equations with switching time-delay[END_REF] by removing a quite restrictive assumption on the size of the "bad" terms, i.e., the terms with time delay (cf. assumption (3.3) of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]). Indeed, expected from [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] and from the relation between delay problems and problems with antidamping, the delay feedback operator B 2 may be also large but then has to act on small time intervals. Moreover, in [START_REF] Nicaise | Stability results for second-order evolution equations with switching time-delay[END_REF] we consider also the case when B 1 is unbounded. In this short note, we complete the results from [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF][START_REF] Nicaise | Stability results for second-order evolution equations with switching time-delay[END_REF] by improving the sufficient conditions that guarantee stability results but by staying in the case of bounded operators B 1 .

This chapter is organized as follows. In Section 6.2, we recall the wellposedness result proved in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] and the observability estimate in short-time proved by Haraux, Martinez, and Vancostenoble. In Section 6.3, we obtain asymptotic and exponential stability results for the abstract model under suitable conditions, completing the results of [START_REF] Nicaise | Stability results for second-order evolution equations with switching time-delay[END_REF]. Finally, in Section 6.4, we give some concrete applications of our results.

Well-Posedness

In this section we recall a well-posedness result, proved by the authors in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], for problem (6.1) and (6.2).

We assume that for all n ∈ IN, there exists t n > 0 with t n < t n+1 and such that

B 2 (t) = 0 ∀t ∈ I 2n = [t 2n , t 2n+1 ), B 1 (t) = 0 ∀t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), with B 1 ∈ C 1 ([t 2n , t 2n+1 ]; L(H, H)) and B 2 ∈ C([t 2n+1 , t 2n+2 ]; L(U, H)).
Moreover, we assume that τ ≤ T 2n for all n ∈ IN, where T n denotes the length of the interval I n , i.e.,

T n = t n+1 -t n , n ∈ IN . (6.3)
Under these assumptions, the following result holds (see Theorem 2.1 in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]). Theorem 6.1 Under the above assumptions, for any u 0 ∈ V and u 1 ∈ H, the system (6.1) and (6.2) 

has a unique solution u ∈ C([0, ∞); V) ∩ C 1 ([0, ∞); H).
To obtain stability results for problem (6.1) and (6.2), we assume now that for all n ∈ IN, there exist three positive constants m 2n , M 2n , and M 2n+1 with m 2n ≤ M 2n and such that for all u ∈ H we have

(i) m 2n ∥u∥ 2 H ≤ ∥B * 1 (t)u∥ 2 H ≤ M 2n ∥u∥ 2 H for t ∈ I 2n = [t 2n , t 2n+1 ), ∀n ∈ IN; (ii) ∥B * 2 (t)u∥ 2 U ≤ M 2n+1 ∥u∥ 2 H for t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), ∀n ∈ IN.
Denote by E S (•) the standard energy for wave-type equations, i.e.,

E S (t) = E S (u; t) := 1 2 ( ∥u(t)∥ 2 V + ∥u t (t)∥ 2 H
) .

Observe that, on the time intervals I 2n , n ∈ IN, only the standard dissipative damping acts. So, the following observability estimate holds (see theorem 3.1 of [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF]).

Proposition 6.2 Assume (i).

There exists a constant c, independent of the length T 2n of the interval I 2n , such that for any solution of (6.1) and ( 6.2) it holds

E S (t 2n+1 ) ≤ 1 1 + c m 2n T -3 2n +T -1 2n +M 2n m 2n T -1 2n E S (t 2n ), n ∈ IN. (6.4) 

Stability Results

Now, as in [START_REF] Nicaise | Stability results for second-order evolution equations with switching time-delay[END_REF], we assume

inf n∈IN m 2n M 2n+1 > 0. (6.5) Note that assumption (3.3) in [10] is instead equivalent to inf n∈IN m 2n M 2n+1 > 1 2 .
Let us introduce the energy of the system

E(t) = E(u; t) := 1 2 ( ∥u(t)∥ 2 V + ∥u t (t)∥ 2 H + ξ 2 ˆt t-τ ∥B * 2 (s + τ )u t (s)∥ 2 U ds
) , (6.6) where ξ is a positive number satisfying

ξ < inf n∈IN m 2n M 2n+1 . (6.7) 
The following estimates are proved as in proposition 3.1 of [START_REF] Nicaise | Stability results for second-order evolution equations with switching time-delay[END_REF].

Proposition 6.3 Assume (i), (ii), and (6.5). For any regular solution of problem (6.1) and (6.2) the energy is decreasing on the intervals I 2n , n ∈ IN, and

E ′ (t) ≤ - m 2n 2 ∥u t ∥ 2 H . (6.8)
Moreover, on the intervals

I 2n+1 , n ∈ IN, E ′ (t) ≤ M 2n+1 2 ( ξ + 1 ξ ) ∥u t ∥ 2 H . (6.9)
The following theorem, due to the more general assumption (6.5) and due to the more general setting, improves and generalizes theorem 3.3 of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]. Theorem 6.4 Assume (i), (ii), and (6.5).

If ∞ ∑ n=0 M 2n+1 T 2n+1 < +∞, (6.10 
)

and ∞ ∑ n=0 ln   1 1 + c m 2n T -3 2n +T -1 2n +M 2n m 2n T -1 2n + τ ξM 2n+1   = -∞, (6.11) 
then system (6.1) and (6.2) is asymptotically stable, that is any solution u of (6.1) and (6.2) satisfies E S (u, t) → 0 for t → +∞.

Proof Note that (6.9) implies

E ′ (t) ≤ M 2n+1 ( ξ + 1 ξ ) E(t), t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), n ∈ IN.
Then we have

E(t 2n+2 ) ≤ e (ξ+ 1 ξ )M 2n+1 T 2n+1 E(t 2n+1 ), ∀n ∈ IN. (6.12)
Now, note that

E(t 2n+1 ) = E S (t 2n+1 ) + ξ 2 ˆt2n+1 t 2n+1 -τ ∥B * 2 (s + τ )u t (s)∥ 2 U ds.
Now observe that, since T 2n ≥ τ, n ∈ IN, the variable s + τ in the above integral belongs to

I 2n+1 ∪ I 2n+2 . If s + τ ∈ I 2n+1 , then ∥B * 2 (s + τ )u t (s)∥ 2 U ≤ M 2n+1 ∥u t (s)∥ 2 H . Otherwise, if s + τ ∈ I 2n+2 , then B * 2 (s + τ )u t (s) = 0. Then, E(t 2n+1 ) ≤ E S (t 2n+1 ) + ξ 2 M 2n+1 ˆt2n+1 t 2n+1 -τ ∥u t (s)∥ 2 H ds. (6.13)
Now, since (t 2n+1τ, t 2n+1 ) ⊂ I 2n and in I 2n the system is dissipative, from (6.13) we deduce

E(t 2n+1 ) ≤ E S (t 2n+1 ) + τ M 2n+1 ξE S (t 2n+1 -τ ) ≤ E S (t 2n+1 ) + τ M 2n+1 ξE S (t 2n ). (6.14) 
Combining Proposition 6.2 and (6.14) we then obtain

E(t 2n+1 ) ≤   1 1 + c m 2n T -3 2n +T -1 2n +M 2n m 2n T -1 2n + τ ξM 2n+1   E S (t 2n ), (6.15) 
and therefore

E S (t 2n+2 ) ≤ E(t 2n+2 ) ≤ e (ξ+ 1 ξ )M 2n+1 T 2n+1   1 1 + c m 2n T -3 2n +T -1 2n +M 2n m 2n T -1 2n + τ ξM 2n+1   E (t 2n ). (6.16) 
Since (6.16) holds for any n ∈ IN we can deduce 

E S (t 2n+2 ) ≤ n ∏ p=0 e (ξ+ 1 ξ )M2p+1T2p+1   1 1 + c m2p T -3 2p +T -1 2p +M2pm2pT -1 2p + τ ξM 2p+1   E S (0). ( 6 
E S (t) ≤ E(t) ≤ e (ξ+ 1 ξ )M 2n+1 T 2n+1 E(t 2n+1 ), (6.19) 
where in the second inequality we have used (6.12). Then, by (6.15) and (6.17)-(6.19), asymptotic stability occurs if

∞ ∑ n=0 [( ξ + 1 ξ ) M 2n+1 T 2n+1 + ln cn ] = -∞, (6.20) 
where

cn = 1 1 + c m 2n T -3 2n +T -1 2n +M 2n m 2n T -1 2n + τ ξM 2n+1 . (6.21) Thus, if ∞ ∑ n=0 M 2n+1 T 2n+1 < +∞, ∞ ∑ n=0 ln cn = -∞,
system (6.1) and (6.2) is asymptotically stable.

We now show that under additional assumptions on the coefficients T n , m n , M n an exponential stability result holds. Theorem 6.5 Assume (i), (ii), and (6.5). Assume also that where cn is as in (6.21). Then, there exist two positive constants γ, µ such that E S (t) ≤ γe -µt E S (0), t > 0, (6.25)

T 2n = T * ∀n ∈ IN, ( 6 
for every solution of problem (6.1) -(6.2).

Proof From (6.16) and ( 6.24) we obtain

E S (T * + T) ≤ dE S (0),
and also

E S (n(T * + T)) ≤ d n E S (0), ∀n ∈ IN.
Then, the standard energy E S (•) satisfies an exponential estimate like (6.25) (see lemma 1 of [START_REF] Gugat | Boundary feedback stabilization by time delay for one-dimensional wave equations[END_REF]).

Remark 6.6

In the assumptions of Theorem 6.5, from (6.17) we can see that exponential stability also holds if instead of (6.24) we assume

∃n ∈ IN such that k(n+1)+n ∏ p=k(n+1)
e (ξ+ 1 ξ )M 2p+1 Tc p ≤ d < 1, ∀k = 0, 1, 2, . . .

Examples

Here, we illustrate some concrete examples falling in our previous abstract setting, namely the wave equation, the elasticity system, the Midlin-Timoshenko model, the Petrowsky system.

The Wave Equation

As 

u tt (x, t) -∆u(x, t) + b 1 (t)u t (x, t) + b 2 (t)χ ω u t (x, t -τ ) = 0 in Ω × (0, +∞) (6.26) u(x, t) = 0 on ∂Ω × (0, +∞) (6.27) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω (6.28) with initial data (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω) and b 1 , b 2 in L ∞ (0, +∞) such that b 1 (t)b 2 (t) = 0, ∀t > 0.
Moreover, we assume

(i w ) 0 < m 2n ≤ b 1 (t) ≤ M 2n , b 2 (t) = 0, for all t ∈ I 2n = [t 2n , t 2n+1 ), and b 1 ∈ C 1 ( Ī2n ), for all n ∈ IN; (ii w ) |b 2 (t)| ≤ M 2n+1 , b 1 (t) = 0, for all t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), and b 2 ∈ C( Ī2n+1 ), for all n ∈ IN.
This problem enters into our previous framework, if we take H = L 2 (Ω) and the operator A defined by

A : D(A) → H : u → -∆u, where D(A) = H 1 0 (Ω) ∩ H 2 (Ω).
The operator A is a self-adjoint and positive operator with a compact inverse in H and is such that V = D(A 1/2 ) = H 1 0 (Ω). We then define the operator B 1 as

B 1 : H → H : v → √ b 1 v, (6.29)
and, denote U := L 2 (Ω), the operator B 2 as

B 2 : U → H : v → √ b 2 ṽ, (6.30)
where ṽ ∈ L 2 (Ω) is the extension of v by zero outside ω.

It is easy to verify that B 1 B * 1 (φ) = b 1 φ and B 2 B * 2 (φ) = b 2 φχ ω , for φ ∈ H. This shows that problem (6.26) and (6.28) enters in the abstract framework (6.1) and (6.2). Moreover, (i w ) and (ii w ) easily imply (i) and (ii) of Section 6.3. Therefore we can restate Proposition 6.3. Now, the energy functional is 

E(t) = 1 2 ˆΩ{u 2 t (x, t) + |∇u(x, t)| 2 }dx + ξ 2 ˆt t-τ |b 2 (s + τ )| ˆωu 2 t (x,
E ′ (t) ≤ - m 2n 2 ˆΩ u 2 t (x, t)dx. (6.32)
Moreover, on the intervals

I 2n+1 , n ∈ IN, E ′ (t) ≤ M 2n+1 2 ( ξ + 1 ξ )ˆΩ u 2 t (x, t)dx. ( 6.33) 
Thus, the stability results of Theorems 6.4 and 6.5 apply to this model.

The Elasticity System

In the same setting than in the previous section, we consider the following elastodynamic system b 1 , b 2 satisfying the same assumptions as in Section 6.4.1. Here the state variable u is vector-valued and λ, µ are the Lamé coefficients that are positive real numbers. Finally for a (smooth enough) vector-valued function

u tt (x, t) -µ∆u(x, t) -(λ + µ)∇ div u(x, t) + b 1 (t)u t (x, t) + b 2 (t)χ ω u t (x, t -τ ) = 0 in Ω × (0, +∞) (6.34) u(x, t) = 0 on ∂Ω × (0, +∞) (6.35) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω (6.36) with initial data (u 0 , u 1 ) ∈ H 1 0 (Ω) d × L 2 (Ω) d and
v : Ω → R d , div v is its standard divergence, namely div v = d ∑ j=1 ∂ j v j .
As before this problem enters into our abstract setting, once we take H = L 2 (Ω) d , and A defined by

A : D(A) → H : u → -µ∆u(x, t) -(λ + µ)∇ div u, where D(A) = H 1 0 (Ω) d ∩ H 2 (Ω) d .
The operator A is a self-adjoint and positive operator with a compact inverse in H and is such that

V = D(A 1/2 ) = H 1 0 (Ω) d equipped with the inner product (u, v) V = ˆΩ ( µ d ∑ i,j=1 ∂ i u j ∂ i v j + (λ + µ) div u div v ) dx, ∀u, v ∈ H 1 0 (Ω) d .
We further define U = L 2 (ω) d and the operators B i , i = 1, 2, as follows:

B 1 : U → H : v → √ b 1 v, B 2 : U → H : v → √ b 2 ṽ,
ṽ being again the extension of v by zero outside ω. As before

B 1 B * 1 (φ) = b 1 φ, and B 2 B * 2 (φ) = b 2 φχ ω ,
for any φ ∈ H. So, problem (6.34)-( 6.36) enters in the abstract framework (6.1) and (6.2). Moreover, (i w ) and (ii w ) easily imply (i) and (ii) of Section 6.2. Therefore, the results of Section 6.3 apply also to the system (6.34)-(6.36) with the energy defined by

E(t) = 1 2 ˆΩ { |u t | 2 (x, t) + µ d ∑ i,j=1 (∂ i u j (x, t)) 2 + (λ + µ)(div u(x, t)) 2 } dx + ξ 2 ˆt t-τ |b 2 (s + τ )| ˆω |u t (x, s)| 2 dx ds.

The Mindlin-Timoshenko Model

In the same setting as in Section 6.4.1, we consider the internal stabilization of the following Mindlin-Timoshenko (beam/plate) model (for similar models, see chapter 5 of [START_REF] Lagnese | Boundary stabilization of thin plates[END_REF], chapters 2 and 4 of [START_REF] Lagnese | Modelling analysis and control of thin plates[END_REF], [START_REF] Fernández Sare | On the stability of Mindlin-Timoshenko plates[END_REF][START_REF] Nicaise | Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks[END_REF]).

w tt (x, t) = div(K(∇w + u))(x, t) -a 1 (t)w t (x, t)
-a 2 (t)χ ω w t (x, tτ ) in Ω × (0, +∞) (6.37)

u tt (x, t) = div Cϵ(u)(x, t) -K(∇w + u)(x, t) -b 1 (t)u t (x, t) -b 2 (t)χ ω u t (x, t -τ ) in Ω × (0, +∞) (6.38)
u(x, t) = 0, w(x, t) = 0 on ∂Ω × (0, +∞) (6.39) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), w(x, 0) = w 0 (x), w t (x, 0) = w 1 (x) in Ω.

(6.40)

If d = 1 (resp. d = 2
) the scalar variable w represents the displacement of the beam (resp. plate) in the vertical direction, while the vectorial variable u = (u i ) d i=1 is the angles of rotation of a filament of the beam (resp. plate). Here K belongs to L ∞ (Ω) d×d , is symmetric and positive definite, i.e., there exists a positive constant k 0 such that

X ⊤ K(x)X ≥ k 0 , ∀X ∈ IR d , for a.e. x ∈ Ω, while C = (c ijkℓ ) is a tensor such that c ijkℓ = c jiℓk = c kℓij ∈ L ∞ (Ω), (6.41) 
all indices running over the integers 1, . . . , d. These quantities are related to the constitutive materials of the beam/plate. As usual for u = (u i ) d i=1 , ϵ(u) is the linear strain tensor defined by As usual we assume that C is positive definite in the sense that there exists µ 0 > 0 such that C(x)ϵ : ϵ ≥ µ 0 |ϵ| 2 , ∀ϵ ∈ IR d×d , for a.e. x ∈ Ω.

ϵ(u) = (ϵ ij (u)) d i,j=1 with ϵ ij (u) = 1 2 (∂ i u j + ∂ j u i ).
(6.42)

We further recall that for a (smooth enough) matrix-valued function w = (w ij ) : Ω → R d×d , div w is its divergence line by line, i.e., div w =

( d ∑ j=1 ∂ j w ij ) d i=1 .
Finally we require that the functions b 1 , b 2 satisfy the assumptions (i w ) and (ii w ) from Section 6.4.1, and similarly for a 1 and a 2 , we suppose that (i mt ) 0 < m 2n ≤ a 1 (t) ≤ M 2n , a 2 (t) = 0, for all t ∈ I 2n = [t 2n , t 2n+1 ), and a 1 ∈ C 1 ( Ī2n ), for all n ∈ IN; ṽ being again the extension of v by zero outside ω. Clearly one has B 1 B * 1 (u, w) = (b 1 u, a 1 w) and B 2 B * 2 (u, w) = (b 2 uχ ω , a 2 wχ ω ), for any (u, w) ∈ H. So, problem (6.37)-(6.39) enters in the abstract framework (6.1) and (6.2). Moreover, (i w ), (ii w ), (i mt ), and (ii mt ) imply (i) and (ii) from Section 6.2, and consequently the results of Section 6.3 apply also to this system with the energy defined by The operator A is self-adjoint and positive, has a compact inverse in H and satisfies D(A 1/2 ) = H 2 (Ω) ∩ H 1 0 (Ω). We then define U = L 2 (ω) and the operators B i , i = 1, 2, by (6.29) and (6.30). So, problem (6.43)-(6.45) enters in the abstract framework (6.1) and (6.2). Moreover, (i w ) and (ii w ) easily imply (i) and (ii) of Section 6.2.

E(t) = 1 
Therefore, the results of Section 6.3 apply also to the plate model.

  .22) with T * ≥ τ, and T 2n+1 = T ∀n ∈ IN. (6.23)Moreover, assume thatsup n∈IN e (ξ+ 1 ξ )M 2n+1 Tc n = d < 1,(6.24)

For a d

 d × d matrix ϵ = (ϵ ij ) d i,j=1 the product Cϵ = ((Cϵ) ij ) d i,j=1 is the d × d matrix given by (Cϵ) ij = d ∑ k,ℓ=1 c ijkℓ ϵ kℓ .

  u t (x, tτ ) = 0 in Ω × (0, +∞) (6.43) u(x, t) = ∆u(x, t) = 0 on ∂Ω × (0, +∞) (6.44) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω (6.45) with initial data (u 0 , u 1 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) × L 2 (Ω)and b 1 , b 2 satisfying the same assumptions as in Section 6.4.1. Now, we take H = L 2 (Ω) and let A be the operatorA : D(A) → H : u → ∆ 2 u, (6.46) where D(A) = {v ∈ H 1 0 (Ω) ∩ H 4 (Ω) : ∆u = 0 on ∂Ω}.

  a concrete application let us consider the wave equation with internal damping. More precisely, let Ω ⊂ IR d (with d a positive natural number) be an open bounded domain with a boundary ∂Ω of class C 2 . We denote by ω a subset of Ω.Let us consider the initial boundary value problem

  Assume (i w ), (ii w ), and (6.5). Then, for every regular solution of problem (6.26)-(6.28) the energy is decreasing on the intervals I 2n , n ∈ IN, and

	s)dx ds.
	(6.31)
	Proposition 6.7

4 The Petrovsky System Let

  (s + τ )||u t (x, s)| 2 + |a 2 (s + τ )||w t (x, s)| 2 )dx ds. Ω ⊂ IR d bean open bounded set with a boundary ∂Ω of class C 4 and let ω be any fixed subset of Ω .Let us consider the initial boundary value problem u

	2	ˆΩ{ (Cε(u)(x, t)) : ε(ū(x, t)))+K(∇w+u)(x, t)) • (∇w+ū)(x, t)) }	dx
	+	ξ 2 ˆt t-τ	ˆω(|b 2

6.4.tt (x, t) + ∆ 2 u(x, t) + b 1 (t)u t (x, t) + b 2 (t)χ ω

(ii mt ) |a 2 (t)| ≤ M 2n+1 , a 1 (t) = 0, for all t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), and a 2 ∈ C( Ī2n+1 ), for all n ∈ IN.

System (6.37)-(6.39) can be viewed as a coupling between the wave equation in w with the dynamical elastic system in u with internal feedbacks with delays.

Again this problem enters into our abstract setting by using Friedrichs extension theorem. Namely we take H = L 2 (Ω) d × L 2 (Ω) with its natural inner product

that is clearly compactly embedded into H and the sesquilinear and symmetric form

with U = (u, w), U * = (u * , w * ) ∈ V. Indeed using Korn's and Poincaré's inequalities, it is not difficult to check that this sesquilinear form is coercive in V, namely there exists α > 0 such that

Hence it is well known that the operator A associated with the triple (a, V, H) is a self-adjoint and positive operator with a compact inverse in H with D(A 1/2 ) = V. This operator is defined by

and

By the definition of a, it is easy to see that

and then

We further define U = H and the operators B i , i = 1, 2, as follows: