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A Note on the Asymptotic Stability of
Wave-Type Equations with Switching
Time-Delay

SERGE NICAISE AND CRISTINA PIGNOTTI

Abstract

We consider second-order evolution equations with intermittently delayed/
not-delayed damping. We give sufficient conditions for asymptotic and
exponential stability, completing our previous results from Nicaise and
Pignotti [Adv. Diff. Eq., 17: 879-902, 2012; J. Dyn. Diff. Eq., 26: 781-803,
2014]. Moreover, some concrete models are described.
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6.1 Introduction

Let H be a real Hilbert space and let A : D(A4) — H be a positive self-adjoint
operator with a compact inverse in H. Denote by V:=D(A4?) the domain
of A7. Let By, B, be time-dependent linear operators, B; € L(H, H) and
B,(t): U— H, where Uis a real Hilbert space with norm and inner product
denoted respectively by || - |y and (-,-)y. We assume that B; and B, act
alternately, that is

Bi(t)B5(t)=0, Vt>0.
Let us consider the problem

uy(t) + Au(t) + By (¢) By ()u(t) + Ba()Bs (u,(t — 7) =0 t>0 (6.1)

u(0)=uy and u,(0)=u (6.2)

where the constant 7 > 0 is the time delay.

Time delay effects appear in many applications and practical problems
and it is by now well known that even an arbitrarily small delay in the feed-
back may destabilize a system which is uniformly exponentially stable in
absence of delay. For some examples of this destabilizing effect of time
delays we refer to [2, 3, 9, 14].

In [9] we considered the wave equation with both dampings acting simul-
taneously, that is By(¢) =y and By(t) = pp, with uy, up € R, and we
proved that if p; >y, then the system is uniformly exponentially stable.
Otherwise, if 115 > 11, that is the delay term prevails on the not-delayed one,
then there are instability phenomena, namely, there are unstable solutions
for arbitrarily small (large) delays.

The stabilization problem for second-order evolution equations with
switching time delay is, in some sense, related to the one for second-order
evolution equations damped by positive/negative feedbacks (see [6]). See
also [13] for the relation between wave equation with time delay in the
damping and wave equation with indefinite damping, i.e., damping which
changes sign in different subsets of the domain.

We firstly studied this subject in [10], in a more general setting with
respect to the problem considered here. Assuming that an observability
inequality holds for the conservative model associated with (6.1) and (6.2)
and, through the definition of a suitable energy, we obtained sufficient con-
ditions ensuring asymptotic stability. Under more restrictive assumptions
exponential stability estimates were also obtained.



An analogous problem has been considered in [1] for 1D models for the
wave equation but with a different approach. Indeed, in [1] we obtain sta-
bility results for particular values of the time delays, related to the length
of the domain, by using the D’Alembert formula.

The results of [10] are improved in [11] by removing a quite restric-
tive assumption on the size of the “bad” terms, i.e., the terms with time
delay (cf. assumption (3.3) of [10]). Indeed, expected from [6] and from
the relation between delay problems and problems with antidamping, the
delay feedback operator B, may be also large but then has to act on small
time intervals. Moreover, in [11] we consider also the case when Bj is
unbounded. In this short note, we complete the results from [10, 11] by
improving the sufficient conditions that guarantee stability results but by
staying in the case of bounded operators B;.

This chapter is organized as follows. In Section 6.2, we recall the well-
posedness result proved in [10] and the observability estimate in short-time
proved by Haraux, Martinez, and Vancostenoble. In Section 6.3, we obtain
asymptotic and exponential stability results for the abstract model under
suitable conditions, completing the results of [11]. Finally, in Section 6.4,
we give some concrete applications of our results.

6.2 Well-Posedness

In this section we recall a well-posedness result, proved by the authors in
[10], for problem (6.1) and (6.2).

We assume that for all n€ IN, there exists ¢, >0 with ¢, <f,;; and
such that

B (t) =0 Ve 12n = |lon, t2n+1)7
B (12) =0 Vi€ by = [tws1; ny2),

with B; € Cl([lzn, t2n+l}§ L(H, H)) and B, € C([ZZn—i-l’ t2n+2]§ E(U, H))

Moreover, we assume that 7 < 75, for all n € IN, where 7, denotes the
length of the interval 7, i.e.,

Ty=tws1 —tn, n€IN. (6.3)

Under these assumptions, the following result holds (see Theorem 2.1
in [10]).

Theorem 6.1 Under the above assumptions, for any ug€V and u; €
H, the system (6.1) and (6.2) has a unique solution u€ C([0,00); V)N
C'([0,00); H).



To obtain stability results for problem (6.1) and (6.2), we assume now
that for all n € IN, there exist three positive constants my,, M»,, and M>, |
with m,,, < M, and such that for all u € H we have

(i) maallully < 1B (0l < Moallullyy for 1€ by = [120, 201), ¥n € IN;
(ii) ||B§(l)u”%/ < M2n+] ||MH%_[ for lEIz,,.H = [l2n+1, lzn_;,_z), Vn € IN.

Denote by Es(-) the standard energy for wave—type equations, i.e.,

Es(1) = Es(u; 1) := % ()15 + llaer(0) 7).

Observe that, on the time intervals I»,, n € IN, only the standard dissi-
pative damping acts. So, the following observability estimate holds (see
theorem 3.1 of [6]).

Proposition 6.2 Assume (7). There exists a constant ¢, independent of the
length T, of the interval I,,, such that for any solution of (6.1) and (6.2)
it holds

1

< I 7B
+ ¢— ——= —
T;, 4Ty, +Maym, Ty,

2n

Es(tont1) Es(t2n), nelN. (6.4)

6.3 Stability Results

Now, as in [11], we assume

myy,

inf > 0. 6.5
nelN M2n+1 ( )

Note that assumption (3.3) in [10] is instead equivalent to

. myy, 1
inf —.
nelN M2n+1 2

Let us introduce the energy of the system

! E g
£0) = B )= 5 (a1 + [0l + 5 [ 13+ o)l ),
=T
(6.6)
where ¢ is a positive number satisfying

. map
< inf ——. 6.7
5 nlglN M2n+1 ( )

The following estimates are proved as in proposition 3.1 of [11].



Proposition 6.3 Assume (i), (ii), and (6.5). For any regular solution of
problem (6.1) and (6.2) the energy is decreasing on the intervals Iy,
nelIN, and

nmy,
E'(0) <=2 Ju (639)
Moreover, on the intervals Iy, 1, n € IN,
Mo, 11 1
B0 < 25 (e )l (69

The following theorem, due to the more general assumption (6.5) and
due to the more general setting, improves and generalizes theorem 3.3
of [10].

Theorem 6.4 Assume (i), (ii), and (6.5). If

ZManTan <400, (6.10)
n=0
and
- 1
Zln 1+c 12, +7EMopy1 | = —00, (6.11)
n=0 T, + T, 4 Moy, T,

then system (6.1) and (6.2 ) is asymptotically stable, that is any solution u of
(6.1) and (6.2) satisfies Es(u, t) — 0 for t — +oc.

Proof Note that (6.9) implies

1
E'(t) < My (5 + S)E(t)’ t € Dpt1 = [tons1, tang2), n€IN.

Then we have
E(l2n+2) §e(§+%)M2”+lTZ”“E(l‘zn_._l), Vn e IN. (612)

Now, note that

Dnt1

Elesi) = Eslni) + 5 [ [BiGs+ o) ds

Dpg1—T

Now observe that, since 75, > 7,n € IN, the variable s + 7 in the above

integral belongs to L1 U yg2. If s + 7 € Dyy1, then || B3 (s + 7)ue () |3, <
Mo ||ue(s) ||,2{ Otherwise, if s + 7 € Ir,42, then B; (s + 7)u,(s) =0. Then,

tnt1
Eltni) < Es(tms1) + S Mo / () 13 . (6.13)
1

2 2n+1—T



Now, since (t2,41 — T, tant1) C I, and in I, the system is dissipative, from
(6.13) we deduce

E(tany1) < Es(tani1) + 7Moni1 EEs(toni1 — 7)
< Es(tons1) + Moy 1 EEs(to). (6.14)

Combining Proposition 6.2 and (6.14) we then obtain

1

1+ =
T2»13 +1, '+ Moz, T, l

E(tyny1) < + 7€My | Es(ton), (6.15)

and therefore

Eg(tong2) < E(ta+2)

1

S — S —
T2n3+T2,,] +Moumay, Tz,ll

S e(£+%)M2”+] ot + T£M2n+l ES(ZZn)-

(6.16)
Since (6.16) holds for any n € IN we can deduce
ES([2,,+2) < H €(£+é)M2”+]T2”+I 1 ! iy + T£M2p+1 ES(O)
p=0 te Ty, + Ty, + Moy, T !
(6.17)

Now observe that the standard energy Es(-) is not decreasing. However, for
1 € [tan, tant+1), only the standard dissipative damping acts and so

Es(t) <Es(ta), Vt€ [t tant1). (6.18)
Moreover, for ¢ € [ta,+1, fant2), it Tesults
Es(t) < E(f) <&t T pp, 1, (6.19)

where in the second inequality we have used (6.12).
Then, by (6.15) and (6.17)—(6.19), asymptotic stability occurs if

oo 1 .
Z |:<§ + 6) M2n+1 T2n+l + In Cp| = —0Q, (620)
n=0

where
- 1
Cp= 1 n o +T€M2n+1. (621)

C—= = =
T2Il ’ + T’ln l +Maumay T2/1 ]



Thus, if
ZM2"+1T2”+1 < +00, Zlnén:—oo,
n=0 n=0
system (6.1) and (6.2) is asymptotically stable. O

We now show that under additional assumptions on the coefficients
T,, m,, M, an exponential stability result holds.

Theorem 6.5 Assume (i), (ii), and (6.5). Assume also that

Ty, =T" VnelN, (6.22)
with T* > 1, and
Tou1=T VYneIN. (6.23)
Moreover, assume that
sup e&TOMunTe g1 (6.24)
n€N

where ¢, is as in (6.21). Then, there exist two positive constants -y, y such that
Es(t) <~ve MEg(0), >0, (6.25)
for every solution of problem (6.1) — (6.2).
Proof From (6.16) and (6.24) we obtain
Es(T* + T) < dEs(0),
and also
Es(n(T* + 1)) <d"Es(0), VneIN.

Then, the standard energy Es(-) satisfies an exponential estimate like (6.25)
(see lemma 1 of [5]). O

Remark 6.6 In the assumptions of Theorem 6.5, from (6.17) we can see that
exponential stability also holds if instead of (6.24) we assume

k(n+1)+n
1 i
dneIN suchthat [ e®FeMrnle <d<1, vk=0,1,2,...
p=k(n+1)



6.4 Examples

Here, we illustrate some concrete examples falling in our previous abstract
setting, namely the wave equation, the elasticity system, the Midlin—
Timoshenko model, the Petrowsky system.

6.4.1 The Wave Equation

As a concrete application let us consider the wave equation with internal
damping. More precisely, let Q c IR (with d a positive natural number) be
an open bounded domain with a boundary 992 of class C2. We denote by
w a subset of Q.

Let us consider the initial boundary value problem

U (x, 1) — Au(x, 1) + by (Du(x, 1) + by () xouts(x,t — 7) =0
in  x (0,+00) (6.26)
u(x,t)=0 on 90 x (0,+0c0) (6.27)
u(x,0)=up(x) and u(x,0)=u;(x) in Q (6.28)
with initial data (ug,u;) € H () x L*(Q) and by, by in L°°(0, +o0) such
that
bi()by(t)=0, Vt>0.

Moreover, W€ assume

(i) 0<my, <b; (Z) < My,, bz(l) =0, forall te b, = [lz,,, lzn_;,_]), and b; €
Cl(L,), for alln € IN;

(i) |b2(l)| < Moy, b](l) =0, for all t€ by = [l2n+1, l2n+2), and b, €
C(Lyyy1), for alln € IN.

This problem enters into our previous framework, if we take H = L*(12)
and the operator 4 defined by

A:D(A)— H: u— —Au,

where D(A4) = H}(Q) N H*(Q).

The operator 4 is a self-adjoint and positive operator with a compact
inverse in H and is such that ¥'=D(4'/?)= H}(Q). We then define the
operator B as

Bi:H—H:v—/by, (6.29)
and, denote U:= L*(Q), the operator B as
By:U— H: v—/byy, (6.30)



where ¥ € L*(12) is the extension of v by zero outside w.
It is easy to verify that B B (@) = b1y and B, B () = byx., for p € H.
This shows that problem (6.26) and (6.28) enters in the abstract frame-
work (6.1) and (6.2). Moreover, (i) and (ii,) easily imply (/) and (i) of
Section 6.3. Therefore we can restate Proposition 6.3. Now, the energy
functional is

I3
E()= % / {2 (x, 1) + | Vu(x, ) ydx + %/ |b2(s + 7)| /u?(x,s)dxds.
Q t—7 w
(6.31)
Proposition 6.7 Assume (i), (ii,), and (6.5). Then, for every regular solu-

tion of problem (6.26)—(6.28) the energy is decreasing on the intervals I,
nelIN, and

E'(r)< -2 / 12 (x, 1)dx. (6.32)
2 Ja
Moreover, on the intervals Iy, 1, n € IN,
B < Mon (f + 1) / 12 (x, £)dx. (6.33)
2 £/ Ja

Thus, the stability results of Theorems 6.4 and 6.5 apply to this model.

6.4.2 The Elasticity System

In the same setting than in the previous section, we consider the following
elastodynamic system

uy(x, ) — pAu(x,t) — (A + )V divu(x, t) + by (Hu,(x, 1)

+bry()xwtti(x,t —7)=0 in Q x (0,+00) (6.34)
u(x,1)=0 on 9Q x (0,400) (6.35)
u(x,0)=up(x) and u,(x,0)=u;(x) in Q (6.36)

with initial data (ug,u1) € H} (Q)¢ x L*(Q)¢ and by, b, satisfying the same
assumptions as in Section 6.4.1. Here the state variable u is vector-valued
and A, p are the Lamé coefficients that are positive real numbers. Finally for
a (smooth enough) vector-valued function v:Q — R?, div v is its standard
divergence, namely

d
divv= Z ;.
j=1



As before this problem enters into our abstract setting, once we take
H=1*Q)“, and 4 defined by

A:D(A)— H : u— —pAu(x, 1) — (A + p)V div u,

where D(A4) = H}(Q) N H?*(Q)".

The operator A is a self-adjoint and positive operator with a compact
inverse in H and is such that V' ="D(A4'/?) = H} ()¢ equipped with the inner
product

d
(u,v)p = / (,u Z 00y + (A + p) div u div v) dx, Yu,ve H}(Q)".
Q

=1
We further define U= L*(w) and the operators B;,i= 1,2, as follows:

Bi:U—>H:v— \/bTV,

B,:U—~H: V—)\/bzfi,
v being again the extension of v by zero outside w. As before By B} (¢) = b1,
and B, B;(v) =bypx., for any ¢ € H. So, problem (6.34)—(6.36) enters in
the abstract framework (6.1) and (6.2). Moreover, (i,,) and (ii,,) easily imply

(i) and (if) of Section 6.2. Therefore, the results of Section 6.3 apply also to
the system (6.34)—(6.36) with the energy defined by

d
E() = /Q fuP e 0)+ 1> (@ (x,0)* 4+ (4 ) (v u(x, 1)

ij=1

t
+%/ |bz(S+T)|/ |u,(x, 5)|>dx ds.
t—7 w

6.4.3 The Mindlin—-Timoshenko Model

In the same setting as in Section 6.4.1, we consider the internal stabiliza-
tion of the following Mindlin—Timoshenko (beam/plate) model (for similar
models, see chapter 5 of [8], chapters 2 and 4 of [7], [4, 12]).

wi(x, ) =div(K(Vw +u))(x, ) — a1 () wi(x, ?)

—a (D) xwwi(x,t —7) in Qx (0,400) (6.37)
uy(x,t) =div Ce(u)(x, 1) — K(Vw + u)(x, 1) — by (£)u,(x, ?)
—by()xwits(x,t —7) in QX (0,400) (6.38)

10



u(x,t)=0, w(x,£)=0 on 992 x (0,+0c0) (6.39)
u(x,0)=u(x), u,(x,0) =u'(x), w(x,0)=w(x), w;(x,0)=w!(x) in Q.
(6.40)

If d=1 (resp. d=2) the scalar variable w represents the displacement of

the beam (resp. plate) in the vertical direction, while the vectorial variable
u= (ui)?zl is the angles of rotation of a filament of the beam (resp. plate).

Here K belongs to L>(Q)99, is symmetric and positive definite, i.e.,
there exists a positive constant ky such that

X"K(x)X>ky, VXecIRY forae xeQ,

while C = (c;e) 1s a tensor such that

Cijke = Cjigk = Ckeij € L*> (Q), (6.41)
all indices running over the integers 1, ..., d. These quantities are related
to the constitutive materials of the beam/plate.

As usual for u = (1;)"_,, e(u) is the linear strain tensor defined by

. 1
e(u) = (ez(u))f,my  with e;(u) = 5 (O + Ojus).
For a d x d matrix e = (e;){,_, the product Ce= ((Ce)y){,_, is the d x d

matrix given by

d
(Ce)y=Y_ cineere.

k,t=1

As usual we assume that C is positive definite in the sense that there exists
o > 0 such that

C(x)e:e>pole)?, Vee R forae xe. (6.42)

We further recall that for a (smooth enough) matrix-valued function
w=(wy) : Q— R4 div wis its divergence line by line, i.e.,

d d
divw= (/Z} 8jw,-j) o

Finally we require that the functions by, b, satisfy the assumptions (i)
and (ii,,) from Section 6.4.1, and similarly for ¢; and a,, we suppose that

(i) 0<my, < al(t) < My,, az(l) =0,foralltel,= [l‘zn, lzn+1), and a; €
C!(Ly,), for alln € IN;

11



(iime) \azgl)\ < Moyti1, ai(t) =0, for all t € Lyy1 = [tant1, tany2), and ax €
C(lp+1), for all n € IN.

System (6.37)—(6.39) can be viewed as a coupling between the wave equa-
tion in w with the dynamical elastic system in u with internal feedbacks with
delays.

Again this problem enters into our abstract setting by using Friedrichs
extension theorem. Namely we take H=L*(Q)¢ x L*(Q) with its natural
inner product

((u, w),(u*,w*))H—/(u~ﬂ*—+—ww*)dx, Y(u,w), (u*,w*) € H,
Q

V=H\(Q)? x H}(Q) that is clearly compactly embedded into H and the
sesquilinear and symmetric form

a(U, U*) = /Q (Cz—:(u) Ce(@) + K(Vw +u) - (Vi + a*))dx

with U= (u,w), U*= (u*,w*) € V. Indeed using Korn’s and Poincaré’s
inequalities, it is not difficult to check that this sesquilinear form is coercive
in V, namely there exists a > 0 such that

Cl(U7 U)ZOCHU”i{l(Q)Jle(Q), vUeV.

Hence it is well known that the operator 4 associated with the triple
(a, V, H) is a self-adjoint and positive operator with a compact inverse in
H with D(A4'/?) = V. This operator is defined by

D(A)={Ue V:3Fy < Hsuch that a(U, U*) = (Fy, U" ) g, YU € V},

and
AU=Fy, YUeD(A).
By the definition of «, it is easy to see that
D(A) = {(u,w) € V:div Ce(u) € L*(Q)* and div(K(Vw +u)) € L*(Q)},
and then
A(u, w) =—(div Ce(u),div(K(Vw +u))), V(u,w)e€D(A).
We further define U= H and the operators B;,i=1, 2, as follows:

By (u,w)— H: v— (\/byv, Jaiw)
By:(u,w) = H: v— (\/byv, Jao i),

12



v being again the extension of v by zero outside w. Clearly one has
B\ B (u, w) = (biu, ayw) and B, Bj (u, w) = (batixw, a2WX.,), for any (u, w) €
H. So, problem (6.37)-(6.39) enters in the abstract framework (6.1) and
(6.2). Moreover, (i), (ity), (ime), and (iiy,) imply (7) and (i) from Section
6.2, and consequently the results of Section 6.3 apply also to this system
with the energy defined by

E(r)= 1 (Ce(u)(x, 1) :e(u(x, ) +K(Vw+u)(x,1)) - (Vw+u)(x, 1) pdx
2 Ja

+§/IiT/w(|b2(s+T)||ul(x,s)|2+|a2(s+7')|\w,(x,s)|2)dxds.

6.4.4 The Petrovsky System

Let Q c IRY be an open bounded set with a boundary 99 of class C* and
let w be any fixed subset of 2.
Let us consider the initial boundary value problem

(X, 1) + A%u(x, 1) + by (uy(x, 1) + ba (1) xwtts(x, 1 — 7) =0
in Q x (0, +00) (6.43)

u(x,t)=Au(x,t)=0 on 9Q x (0,+00) (6.44)
u(x,0)=up(x) and u/(x,0)=u;(x) in (6.45)

with initial data (ug, u1) € H*(2) N H () x L*(2) and by, b, satisfying the
same assumptions as in Section 6.4.1.
Now, we take H = L*(€2) and let 4 be the operator

A:D(A)— H: u— Nu, (6.46)

where
D(A)={ve H}(Q) N H*(): Au=0 on 09}.

The operator A is self-adjoint and positive, has a compact inverse in H
and satisfies D(4'/2) = H*(Q) N H} (Q). We then define U= L*(w) and the
operators B;,i=1,2, by (6.29) and (6.30). So, problem (6.43)—(6.45) enters
in the abstract framework (6.1) and (6.2). Moreover, (i,,) and (ii,) easily
imply (¢) and (if) of Section 6.2.

Therefore, the results of Section 6.3 apply also to the plate model.

13
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