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Abstract It is known that the difference tensor R ·C−C ·R and the Tachibana tensor Q(S,C)

of any semi-Riemannian Einsteinmanifold (M, g) of dimension n ≥ 4 are linearly dependent
at every point of M . More precisely R ·C −C · R = (1/(n−1)) Q(S,C) holds on M . In the
paper we show that there are quasi-Einstein, as well as non-quasi-Einstein semi-Riemannian
manifolds for which the above mentioned tensors are linearly dependent. For instance, we
prove that every non-locally symmetric and non-conformally flat manifold with parallelWeyl
tensor (essentially conformally symmetric manifold) satisfies R ·C = C · R = Q(S,C) = 0.
Manifolds with parallel Weyl tensor having Ricci tensor of rank two form a subclass of the
class of Roter type manifolds. Therefore we also investigate Roter type manifolds for which
the tensors R · C − C · R and Q(S,C) are linearly dependent. We determine necessary and
sufficient conditions for a Roter type manifold to be a manifold having that property.

Keywords Einstein manifold · Quasi-Einstein manifold · Manifold with parallel
Weyl tensor · Roter type manifold · Pseudosymmetric manifold · Generalized Einstein
metric condition · Tachibana tensor
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1 Introduction

Let ∇, R, S, κ and C be the Levi-Civita connection, the Riemann–Christoffel curvature
tensor, the Ricci tensor, the scalar curvature tensor and the Weyl conformal curvature tensor
of a semi-Riemannian manifold (M, g), n = dim M ≥ 2, respectively.

It is well-known that the manifold (M, g), n ≥ 3, is said to be an Einstein manifold ([1])
if at every point of M its Ricci tensor S is proportional to the metric tensor g, i.e., S = κ

n g on
M . In particular, if S vanishes on M then it is called Ricci flat. We denote by US the set of all
points of (M, g) at which S is not proportional to g, i.e., US := {x ∈ M | S − κ

n g �= 0 at x}.
The manifold (M, g), n ≥ 3, is said to be a quasi-Einstein manifold if at every point x ∈ US

we have rank (S − α g) = 1, for some α ∈ R, i.e., S = α g + ε w ⊗ w, for some α ∈ R,
where w is a non-zero covector at x and ε = ±1. We mention that quasi-Einstein manifolds
arose during the study of exact solutions of the Einstein field equations and investigation on
quasi-umbilical hypersurfaces of conformally flat spaces, see, e.g., [2] and references therein.

An extension of the class of semi-Riemannian Einstein manifolds is formed by the man-
ifolds for which we have ∇S = 0. Manifolds satisfying the last condition are called Ricci-
symmetric. Locally symmetricmanifolds, forwhichwehave∇R = 0, constitute an important
subclass of the class of Ricci-symmetric manifolds. The last relation implies the integrability
condition

R(X, Y ) · R = 0, (1.1)

whereR(X, Y )· denotes the derivation obtained from the curvature endomorphismR(X, Y )

and X, Y are vector fields on M . We refer to Sect. 2 for the precise definitions of the symbols
used here.Manifolds satisfying (1.1) are called semisymmetricmanifolds ([3]). Semisymmet-
ricmanifolds form a subclass of the class of pseudosymmetricmanifolds.A semi-Riemannian
manifold (M, g), n ≥ 3, is said to be pseudosymmetric ([2,4,5]) if the tensors R(X, Y ) · R
and (X ∧g Y ) · R are linearly dependent at every point of M . This is equivalent to

R(X, Y ) · R = LR (X ∧g Y ) · R (1.2)

on UR := {x ∈ M | R − κ
(n−1)n G �= 0 at x}, where LR is some function on this set and the

tensor G is defined by G(X, Y,W, Z) = g(X ∧g Y (Z),W ). A geometric interpretation of
the notion of pseudosymmetry is given in [6]. Further, a semi-Riemannian manifold (M, g),
n ≥ 4, is said to be a manifold with pseudosymmetric Weyl tensor ([2,4,7]) if the tensors
C(X, Y ) · C and (X ∧g Y ) · C are linearly dependent at every point of M . This is equivalent
to

C(X, Y ) · C = LC (X ∧g Y ) · C (1.3)

on UC := {x ∈ M |C �= 0 at x}, where LC is some function on this set, C(X, Y )· denotes
the derivation obtained from the Weyl conformal curvature endomorphism C(X, Y ), and the
Weyl conformal curvature tensor C is defined by C(X, Y,W, Z) = g(C(X, Y )(Z),W ). It is
known that (1.3) is invariant under the conformal deformations of the metric tensor g. We
also note that US ∪ UC = UR .

In what follows, for a (0, k)-tensor T and a symmetric (0, 2)-tensor A on a manifold
(M, g) we will denote the tensors R(X, Y ) · T , C(X, Y ) · T and (X ∧A Y ) · T by R · T ,
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Curvature conditions of pseudosymmetry type 155

C · T and Q(A, T ), respectively. The tensor Q(A, T ) is called the Tachibana tensor (see,
e.g., [8]). In particular, we have the following (0, 6)-tensors: R · R, R · C , C · R, C · C and
the Tachibana tensors: Q(g, R), Q(S, R), Q(g,C), Q(S,C). Then we can write (1.2) and
(1.3) in the form

R · R = LR Q(g, R) (1.4)

and

C · C = LC Q(g,C), (1.5)

respectively. We note that if (1.4) and (1.5) hold on the subset U = US ∩ UC of a semi-
Riemannian manifold (M, g), n ≥ 4, then

Q

(
S −

(
LC − LR + κ

n − 1

)
g,C − λG

)
= 0 (1.6)

on this set, where λ is some function ([7] Theorem 3.1). In addition, if (M, g) is a non-
quasi-Einstein manifold then from (1.6) it follows that on some open subset U1 ⊂ U its
curvature tensor R is a linear combination of the Kulkarni–Nomizu products S ∧ S, g ∧ S
and G = 1

2 g ∧ g, i.e.,

R = φ

2
S ∧ S + μ g ∧ S + ηG (1.7)

on U1, where φ, μ and η are some functions on this set ([7] Theorem 3.2 (ii)). A semi-
Riemannian manifold (M, g), n ≥ 4, satisfying (1.7) on US ∩UC ⊂ M is called a Roter type
manifold ([9]). We refer to [10] for a survey on that class of manifolds.

We can check that on any Einstein manifold (M, g), n ≥ 4, the tensors Q(g, R), Q(S, R),
Q(g,C) and Q(S,C) satisfy

κ

n
Q(g, R) = Q(S, R) = Q(S,C) = κ

n
Q(g,C). (1.8)

Further, in [11](Theorem 3.1) it was stated that on every Einstein manifold (M, g), n ≥ 4,
the following identity is satisfied:

R · C − C · R = κ

(n − 1)n
Q(g, R). (1.9)

The remarks above lead to the problem of investigation of curvature properties of non-
Einstein and non-conformally flat semi-Riemannian manifolds (M, g), n ≥ 4, satisfying
at every point of M the curvature condition, of the following form: the difference tensor
R · C − C · R is proportional to Q(g, R), Q(S, R), Q(g,C) and Q(S,C). Such conditions
are strongly related to some pseudosymmetry type curvature conditions, see, e.g., [2] and
references therein. In Sect. 2 we present the definitions of the most important conditions of
pseudosymmetry type. For instance, (1.2) and (1.3) are conditions of this kind. We also note
that there are manifolds for which the difference tensor R ·C −C · R is a linear combination
of the Tachibana tensors above, see, e.g., Sect. 5 of the present paper, [12](Theorem 5.1) and
[13](Propositions 2.1 and 3.2).

In this paper we will investigate semi-Riemannian manifolds (M, g), n ≥ 4, satisfying at
every point of M the following condition:

the tensors R · C − C · R and Q(S,C) are linearly dependent. (∗)
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156 R. Deszcz et al.

It is obvious that (∗) is satisfied at every point of M at which C vanishes. It is also clear that
(1.8) and (1.9) imply that

R · C − C · R = 1

n − 1
Q(S,C)

holds on any Einstein manifold (M, g), n ≥ 4. Therefore we will restrict our considerations
to manifolds (M, g), n ≥ 4, satisfying (∗) on the set U = US ∩UC ⊂ M . We will investigate
on U the condition

R · C − C · R = L Q(S,C), (1.10)

where L is some function on this set. We mention that if the tensor R · C − C · R vanishes
on U , then on this set we have ([11] Theorem 4.1)

R · C = C · R = 0. (1.11)

On the other hand, if Q(S,C) vanishes on U then at every point x ∈ U we have: (i) if
rank S = 1 at x then κ = 0 and (1.11) hold at x (see Sect. 3) or (ii) if rank S > 1 at x then
C · R = 0 and R ·C = κ

n−1 Q(g,C) hold at x (see Sect. 4). Thus we see that in the case (ii),
if a manifold satisfies (∗) then its scalar curvature must vanish on U .

Themain result of Sect. 3 (Theorem 3.4) states that pseudosymmetricmanifolds satisfying
some additional curvature conditions are quasi-Einstein manifolds satisfying the conditions:
C · C = 0, C · R = 0 and (1.10) with the function L = 1

n−1 . In that section an example of
warped product manifolds satisfying assumptions of Theorem 3.4 is also given.

The main result of Sect. 4 states that every essentially conformally symmetric manifold
(e.c.s. manifold) satisfies R · C = C · R = Q(S,C) = 0. We refer to [14–17] for recent
results on e.c.s. manifolds. We also mention that some e.c.s. metrics are realized on compact
manifolds ([15,17]).

In Sect. 5 Roter type manifolds satisfying (1.10) are investigated.We prove (Theorem 5.2)
that if (M, g), n ≥ 4, is a Roter type manifold with vanishing scalar curvature κ on U ⊂ M
then (1.10), with L = −1, holds on this set. In Theorem 5.3 we present some converse
statement. We show (Example 5.4) that under some conditions the Cartesian product of two
semi-Riemannian spaces of constant curvature satisfies assumptions of Theorem 5.3.

2 Preliminaries

Throughout this paper, all manifolds are assumed to be connected paracompact manifolds
of class C∞. Let (M, g) be an n-dimensional, n ≥ 3, semi-Riemannian manifold, let ∇ be
its Levi–Civita connection and X(M) the Lie algebra of vector fields on M . We define on M
the endomorphisms X ∧A Y and R(X, Y ) of X(M) by

(X ∧A Y )Z = A(Y, Z)X − A(X, Z)Y

and

R(X, Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z ,

respectively, where A is a symmetric (0, 2)-tensor on M and X, Y, Z ∈ X(M). The Ricci
tensor S, the Ricci operator S and the scalar curvature κ of (M, g) are defined by S(X, Y ) =
tr{Z → R(Z , X)Y }, g(SX, Y ) = S(X, Y ) and κ = tr S, respectively. The endomorphism
C(X, Y ) is given by
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Curvature conditions of pseudosymmetry type 157

C(X, Y )Z = R(X, Y )Z − 1

n − 2

(
X ∧g SY + SX ∧g Y − κ

n − 1
X ∧g Y

)
Z .

Finally, the (0, 4)-tensor G, the Riemann–Christoffel curvature tensor R and the Weyl con-
formal curvature tensor C of (M, g) are defined by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

respectively, where X1, X2, . . . ∈ X(M).
Let B be a tensor field sending any X, Y ∈ X(M) to a skew-symmetric endomorphism

B(X, Y ), and let B be a (0, 4)-tensor associated with B by

B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4). (2.1)

It is well-known that the tensor B is said to be a generalized curvature tensor if the following
conditions are fulfilled: B(X1, X2, X3, X4) = B(X3, X4, X1, X2) and

B(X1, X2, X3, X4) + B(X3, X1, X2, X4) + B(X2, X3, X1, X4) = 0.

For B as above, let B be again defined by (2.1). We extend the endomorphism B(X, Y ) to
a derivation B(X, Y )· of the algebra of tensor fields on M , requiring that it commutes with
contractions and B(X, Y ) · f = 0 for any smooth function f on M . Now for a (0, k)-tensor
field T , k ≥ 1, we can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk, X, Y ) = (B(X, Y ) · T )(X1, . . . , Xk)

= −T (B(X, Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X, Y )Xk).

If A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A, T ) by

Q(A, T )(X1, . . . , Xk, X, Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk) .

In this manner we obtain the (0, 6)-tensors B ·B and Q(A, B). SubstitutingB = R orB = C,
T = R or T = C or T = S, A = g or A = S in the above formulas, we get the tensors
R · R, R · C , C · R, R · S, Q(g, R), Q(S, R), Q(g,C) and Q(g, S).

For a symmetric (0, 2)-tensor E and a (0, k)-tensor T , k ≥ 2, we define their Kulkarni–
Nomizu product E ∧ T by

(E ∧ T )(X1, X2, X3, X4; Y3, . . . , Yk)
= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

− E(X1, X3)T (X2, X4, Y3, . . . , Yk) − E(X2, X4)T (X1, X3, Y3, . . . , Yk),

see [18]. The tensor E ∧ T will be called the Kulkarni–Nomizu tensor of E and T . The
following tensors are generalized curvature tensors: R, C and E ∧ F , where E and F are
symmetric (0, 2)-tensors. We have G = 1

2 g ∧ g and

C = R − 1

n − 2
g ∧ S + κ

(n − 2)(n − 1)
G. (2.2)

For symmetric (0, 2)-tensors E and F we have (see, e.g., [19] Sect. 3)

Q(E, E ∧ F) = −1

2
Q(F, E ∧ E). (2.3)
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158 R. Deszcz et al.

We also have (cf. [18] eq. (3))

E ∧ Q(E, F) = −1

2
Q(F, E ∧ E).

For a symmetric (0, 2)-tensor A we denote by A the endomorphism related to A by
g(AX, Y ) = A(X, Y ). The tensor Ap , p ≥ 2, is defined by Ap(X, Y ) = Ap−1(AX, Y ).
Further, let T be a (0, k)-tensor, k ≥ 2. We will call the tensor Q(A, T ) the Tachibana tensor
of A and T , or the Tachibana tensor for short (see, e.g., [8]). By an application of (2.3) we
obtain on M the identities

Q(g, g ∧ S) = −Q(S,G) and Q(S, g ∧ S) = −1

2
Q(g, S ∧ S). (2.4)

From the tensors g, R and S we define the following (0, 6)-Tachibana tensors: Q(S, R),
Q(g, R), Q(g, g ∧ S) and Q(S, g ∧ S). Using (2.3) we can check that the other (0, 6)-
Tachibana tensors that are constructed from g, R and S may be expressed by the four
Tachibana tensors above or they vanish identically on M .

Proposition 2.1 ([20] Proposition 4.1, [21] Lemma 3.4) Let (M, g), n ≥ 3, be a semi-
Riemannian manifold. Let a non-zero symmetric (0, 2)-tensor A and a generalized curvature
tensor B, defined at x ∈ M, satisfy at this point Q(A, B) = 0. In addition, let Y be a
vector at x such that the scalar ρ = w(Y ) is non-zero, where w is a covector defined by
w(X) = A(X, Y ), X ∈ TxM. Then we have

(i) A − ρ w ⊗ w �= 0 and B = λ A ∧ A, λ ∈ R, or (ii) A = ρ w ⊗ w and

w(X) B(Y, Z , X1, X2) + w(Y ) B(Z , X, X1, X2)

+w(Z) B(X, Y, X1, X2) = 0, X, Y, Z , X1, X2 ∈ TxM. (2.5)

Moreover, in both cases the following condition holds at x:

B · B = Q(Ric(B), B).

3 Some special generalized curvature tensors

Let e1, e2, . . . , en be an orthonormal basis of TxM at a point x ∈ M of a semi-Riemannian
manifold (M, g), n ≥ 3, and let g(e j , ek) = ε jδ jk , where ε j = ±1 and h, i, j, k, l,m, r, s ∈
{1, 2, . . . , n}. For a generalized curvature tensor B on M we denote by Ric(B), κ(B) and
Weyl(B) its Ricci tensor, scalar curvature and Weyl tensor, respectively. We have

Ric(B)(X, Y ) =
n∑
j=1

ε j B(e j , X, Y, e j ),

κ(B) =
n∑
j=1

ε j Ric(B)(e j , e j ),

Weyl(B) = B − 1

n − 2
g ∧ Ric(B) + κ(B)

(n − 2)(n − 1)
G, (3.1)

and we write URic(B) := {x ∈ M | Ric(B) − κ(B)
n g �= 0 at x} and UWeyl(B) := {x ∈

M |Weyl(B) �= 0 at x}.
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Curvature conditions of pseudosymmetry type 159

Let Bhi jk , Thi jk and Ai j be the local components of the generalized curvature tensors B
and T and a symmetric (0, 2)-tensor A onM , respectively. The local components (B ·T )hi jklm
and Q(A, T )hi jklm of the tensors B · T and Q(A, T ) are the following:

(B · T )hijklm = grs
(
Trijk Bshlm + Thrjk Bsilm + Thirk Bsjlm + Thijr Bsklm

)
,

Q(A, T )hijklm = AhlTmi jk + AilThmjk + A jlThimk + AklThi jm

− AhmTlijk − AimThl jk − A jmThilk − AkmThijl.

If we contract the last equation with gi j and ghm , then we obtain

grs Q(A, T )hrsklm = As
l Tskhm − As

l Tshmk − As
mTskhl + As

mTshlk

+ Q(A, Ric(T ))hklm, (3.2)

grs Q(A, T )ri jkls = −As
i Tsl jk + As

l Tsi jk + As
j Tsikl + As

kTsil j

+ Alk Ric(T )i j − A jl Ric(T )ik − grs ArsTli jk . (3.3)

Proposition 3.1 ([22] Proposition 2.1) Let B be a generalized curvature tensor on a semi-
Riemannian manifold (M, g), n ≥ 4. If

B · B − Q(Ric(B), B) = L Q(g,Weyl(B))

on UWeyl(B) ⊂ M, where L is a function on UWeyl(B), and Ric(B)i j and Bhi jk are the local
components of Ric(B) and B, respectively, then at every point of UWeyl(B) we have

Ric(B)sh Bsklm + Ric(B)sl Bskmh + Ric(B)sm Bskhl = 0. (3.4)

Let B be a generalized curvature tensor on a semi-Riemannian manifold (M, g), n ≥ 4.
The local components (B·Weyl(B))hi jklm and (Weyl(B)·B)hi jklm of the tensors B·Weyl(B)

and Weyl(B) · B are the following:

(B · Weyl(B))hi jklm = grs
(
Weyl(B)ri jk Bshlm + Weyl(B)hr jk Bsilm

+Weyl(B)hirk Bs jlm + Weyl(B)hi jr Bsklm
)
, (3.5)

(Weyl(B) · B)hi jklm = grs
(
Bri jkWeyl(B)shlm + Bhr jkWeyl(B)silm

+ BhirkWeyl(B)s jlm + Bhi jrWeyl(B)sklm
)
. (3.6)

Using (3.1), (3.5) and (3.6) we can check that the local components (B ·Weyl(B)−Weyl(B)·
B)hi jklm of the difference tensor B · Weyl(B) − Weyl(B) · B can be expressed as follows:

(n − 2)(B · Weyl(B) − Weyl(B) · B)hi jklm

= Q(Ric(B), B)hi jklm

− κ

n − 1
Q(g, B)hi jklm + ghlVmi jk − ghmVli jk − gilVmhjk + gimVlhjk

+ g jl Vmkhi − g jmVlkhi − gklVmjhi + gkmVl jhi − gi j (B · Ric(B))hklm

− ghk(B · Ric(B))i jlm + gik(B · Ric(B))hjlm + ghj (B · Ric(B))iklm,

where Vmi jk = grs Ric(B)mr Bsi jk (see [2,11,12]).
According to [9], a generalized curvature tensor B on a semi-Riemannianmanifold (M, g),

n ≥ 4, is called a Roter type tensor if

B = φ

2
Ric(B) ∧ Ric(B) + μ g ∧ Ric(B) + ηG (3.7)

on URic(B) ∩UWeyl(B), where φ, μ and η are some functions on this set. Manifolds admitting
Roter type tensors were investigated (e.g.) in [23]. We have

123



160 R. Deszcz et al.

Proposition 3.2 Let B be a generalized curvature tensor on a semi-Riemannian manifold
(M, g), n ≥ 4, satisfying (3.7) on U = URic(B)∩UWeyl(B) ⊂ M. Then the following relations
hold on U:
(i)

(Ric(B))2 = α1 Ric(B) + α2 g,

α1 = κ(B) + φ−1((n − 2)μ − 1), α2 = φ−1(μκ(B) + (n − 1)η), (3.8)

(a) B · B = LB Q(g, B), LB = φ−1 (
(n − 2)(μ2 − φη) − μ

)
,

(b) B · Weyl(B) = LB Q(g,Weyl(B)),

(c) B · B = Q(Ric(B), B) + (LB + φ−1μ) Q(g,Weyl(B)), (3.9)

Weyl(B) · B = LWeyl(B) Q(g, B), LWeyl(B) = LB + 1

n − 2

(
κ(B)

n − 1
− α1

)
,

(3.10)

Weyl(B) · Weyl(B) = LWeyl(B) Q(g,Weyl(B)), (3.11)

Weyl(B) · B = Q(Ric(B),Weyl(B))

+
(
LB − κ(B)

n − 1

)
Q(g,Weyl(B)). (3.12)

We also have

B · Weyl(B) − Weyl(B) · B =
(

(n − 1)μ − 1

(n − 2)φ
+ κ(B)

n − 1

)
Q(g, B)

+ 1

n − 2
Q(Ric(B), B) + μ((n − 1)μ − 1) − (n − 1)φη

(n − 2)φ
Q(Ric(B),G),

and, equivalently,

B · Weyl(B)−Weyl(B) · B =
(

φ−1
(

μ− 1

n − 2

)
+ κ(B)

n − 1

)
Q(g, B)

+
(
φ−1μ

(
μ− 1

n−2

)
−η

)
Q(Ric(B),G) (3.13)

([23] Sects. 1 and 4).
(ii)

Q(Ric(B),Weyl(B)) = φ−1
(

1

n − 2
− μ

)
Q(g, B)

+ 1

n − 2

(
LB − κ(B)

n − 1

)
Q(g, g ∧ Ric(B)). (3.14)

Moreover, if L B = κ(B)
n−1 , resp., κ(B) = 0, then we have

Q(Ric(B),Weyl(B)) = LWeyl(B) Q(g, B), (3.15)

and

B · Weyl(B) − Weyl(B) · B = −Q(Ric(B),Weyl(B)), (3.16)

respectively.

123



Curvature conditions of pseudosymmetry type 161

(iii) If LWeyl(B) = 0 on U1 ⊂ U then on this set we have

φ−1
(

1

n − 2
− μ

)
(B · Weyl(B) − Weyl(B) · B)

= (n − 2)

(
φ−1μ

(
μ − 1

n − 2

)
− η

)
Q(Ric(B),Weyl(B)). (3.17)

Proof (ii) Using (3.1), (2.4), (3.7) and suitable formulas of (i) we get

Q(Ric(B),Weyl(B))

= Q(Ric(B), B) − 1

n − 2
Q(Ric(B), g ∧ Ric(B))

+ κ(B)

(n − 2)(n − 1)
Q(Ric(B),G)

= φ−1
(

1

n − 2
− μ

)
Q(g,

φ

2
Ric(B) ∧ Ric(B))

−
(

η + κ(B)

(n − 2)(n − 1)

)
Q(g, g ∧ Ric(B))

= φ−1
(

1

n − 2
− μ

)
Q(g, B − μ g ∧ Ric(B))

−
(

η + κ(B)

(n − 2)(n − 1)

)
Q(g, g ∧ Ric(B)),

= φ−1
(

1

n − 2
− μ

)
Q(g, B)

− (φ−1μ

(
1

n − 2
− μ

)
+ η + κ(B)

(n − 2)(n − 1)
) Q(g, g ∧ Ric(B)), (3.18)

which leads to (3.14).
If LB = κ(B)

n−1 then, (3.12) reduces to (3.15). It is clear that (3.15) also follows from (3.18).
If κ(B) = 0, then (3.9)(b) and (3.12) yield (3.16). We can also obtain (3.16) from (3.13),

by making use of (2.3), (3.9)(a) and (3.14).

(iii) Conditions (3.8), (3.9)(a) and (3.10) yield

φ−1
(

μ − 1

n − 2

)
+ κ(B)

n − 1
= (n − 2)

(
φ−1μ

(
μ − 1

n − 2

)
− η

)
.

Now (3.13) turns into

B · Weyl(B) − Weyl(B) · B
= (n − 2)

(
φ−1μ

(
μ − 1

n − 2

)
− η

)
Q(g,Weyl(B)). (3.19)

Further, (3.10) yields LB − κ(B)
n−1 = φ−1(μ − 1

n−2 ), hence (3.14) takes the form

Q(Ric(B),Weyl(B)) = φ−1
(

1

n − 2
− μ

)
Q(g,Weyl(B)),

which together with (3.19) gives (3.17). Our proposition is thus proved. ��
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Proposition 3.3 Let B be a generalized curvature tensor on a semi-Riemannian manifold
(M, g), n ≥ 4. If the conditions

B · B = κ(B)

(n − 1)n
Q(g, B), (3.20)

B · B − Q(Ric(B), B) = − (n − 2)κ(B)

(n − 1)n
Q(g,Weyl(B)), (3.21)

B · Weyl(B) = 1

n − 1
Q(Ric(B),Weyl(B)) (3.22)

are satisfied on U = URic(B) ∩ UWeyl(B) ⊂ M, then on this set we have

Weyl(B) · Weyl(B) = 0, (3.23)

rank (Ric(B) − κ(B)

n
g) = 1, (3.24)

Weyl(B) · B = 0, (3.25)

(n − 1) (B · Weyl(B) − Weyl(B) · B) = Q(Ric(B),Weyl(B)), (3.26)

and the tensor Weyl(B) satisfies (2.5) for some non-zero covector w.

Proof First of all we note that (3.20) yields

B · Weyl(B) = κ(B)

(n − 1)n
Q(g,Weyl(B)). (3.27)

Next, comparing the right-hand sides of (3.22) and (3.27) we obtain

Q

(
Ric(B) − κ(B)

n
g,Weyl(B)

)
= 0. (3.28)

From this, in view of Proposition 4.1 of [20] (see also [21] Lemma 3.4), we get

Weyl(B) · Weyl(B) = Q(Ric(Weyl(B)), Weyl(B)). (3.29)

Since Ric(Weyl(B)) = 0, (3.29) reduces to (3.23).
Suppose that rank (Ric(B) − κ(B)

n g) > 1 at x ∈ U . From (3.28), in view of Proposition
4.1 of [20] (see also [21] Lemma 3.4 or [24] Lemma 3.1), it follows that

Weyl(B) = φ

2

(
Ric(B) − κ(B)

n
g

)
∧

(
Ric(B) − κ(B)

n
g

)
(3.30)

at x , where φ ∈ R \ {0}. Applying (3.1) in (3.30) we immediately get

B = φ

2
Ric(B) ∧ Ric(B) +

(
1

n − 2
− φκ(B)

n

)
g ∧ Ric(B)

+ κ(B)

(
φκ(B)

n2
− 1

(n − 2)(n − 1)

)
G.

This, together with (3.9) and (3.20), yields

B · B − Q(Ric(B), B) =
(

1

(n − 2)φ
− (n − 2)κ(B)

(n − 1)n

)
Q(g,Weyl(B)). (3.31)

Comparing the right-hand sides of (3.21) and (3.31) we get Q(g,Weyl(B)) = 0, and, as a
consequence, Weyl(B) = 0, which is a contradiction. Therefore (3.24) holds on U . Thus
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from (3.28), in view of Proposition 2.1 (ii), it follows that the tensor Weyl(B) satisfies (2.5)
for some non-zero covector w. Further, we note that (3.24) is equivalent to

1

2
Ric(B) ∧ Ric(B) = κ(B)

n
g ∧ S − (κ(B))2

n2
G (3.32)

(cf. [25] eq. (21)). Now from (3.28), by making use of (2.3), (3.1) and (3.32), we obtain

Q(Ric(B), B) − κ(B)

n
Q(g, B) = − κ(B)

(n − 1)n
Q(g, g ∧ Ric(B)). (3.33)

In terms of tensor components,

Q(Ric(B), B)ri jkls − κ(B)

n
Q(g, B)ri jkls = − κ(B)

(n − 1)n
Q(g, g ∧ Ric(B))ri jkls .

Contracting this with grs and using (3.3), (3.4) and (3.32) in the form

grs Ric(B)ir Bsl jk = κ(B)

(n − 1)n
(g jl Ric(B)ik − gkl Ric(B)i j )

− κ(B)

n

(
Bli jk − κ(B)

(n − 1)n
Gli jk

)

Applying this, (3.1), (3.33) and (3.20) in the form

(B · B)hi jklm = κ(B)

(n − 1)n
Q(g, B)hi jklm

to the identity (3.6), we obtain (3.25). Finally, (3.22) and (3.25) give (3.26), which completes
the proof. ��

As an immediate consequence of Proposition 3.3 we have

Theorem 3.4 Let (M, g), n ≥ 4, be a semi-Riemannianmanifold. If the following conditions

R · R = κ

(n − 1)n
Q(g, R), (3.34)

R · R − Q(S, R) = − (n − 2)κ

(n − 1)n
Q(g,C), (3.35)

R · C = 1

n − 1
Q(S,C) (3.36)

are satisfied on US ∩ UC ⊂ M, then on this set we have

C · C = 0,

rank (S − κ

n
g) = 1,

C · R = 0, (3.37)

(n − 1) (R · C − C · R) = Q(S,C). (3.38)

Proposition 3.5 Let B be a generalized curvature tensor on a semi-Riemannian manifold
(M, g), n ≥ 4, satisfying at every point x ∈ U = URic(B) ∩ UWeyl(B) ⊂ M the conditions

Ric(B) = α g + β w ⊗ w, w ∈ T ∗
x M, (3.39)

w(X)Weyl(B)(Y, Z , X1, X2) + w(Y )Weyl(B)(Z , X, X1, X2)

+w(Z)Weyl(B)(X, Y, X1, X2) = 0, X, Y, Z , X1, X2 ∈ TxM. (3.40)
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Then (3.20), (3.21), (3.22) and (3.24) hold on U . Moreover, the scalar curvature κ(B) is
non-zero at every point of U .
Proof We can easily adopt the proof of Theorem 4.2 of [26] to verify our proposition. ��

As an immediate consequence of Propositions 3.3 and 3.6 we get

Proposition 3.6 If B is a generalized curvature tensor on a semi-Riemannian manifold
(M, g), n ≥ 4, satisfying (3.39) and (3.40) on URic(B) ∩ UWeyl(B) ⊂ M, then (3.25) and
(3.26) hold on this set.

This proposition implies

Theorem 3.7 If the Ricci tensor S and the Weyl tensor C of a semi-Riemannian manifold
(M, g), n ≥ 4, satisfy (3.39) and (3.40) on US ∩ UC ⊂ M, then (3.36), (3.37), and, as a
consequence, (3.38) hold on this set.

Example 3.8 (i) Let M ×F Ñ be the warped product of an 1-dimensional manifold (M, g),
with g = ε = ±1, awarping function F given by F(x1) = a exp(bx1), a = const. > 0,
b = const. �= 0, and an (n − 1)-dimensional fibre (Ñ , g̃), n ≥ 4.

(ii) Proposition 4.2 of [27] states that the above defined warped product M ×F Ñ : such that
the fibre (Ñ , g̃) is a conformally flat semi-Riemannian manifold with rank S̃ = 1 and
the vanishing scalar curvature κ̃ satisfies (3.34)–(3.36). We note that the scalar curvature
κ of M ×F Ñ is a non-zero constant. Precisely, we have ([27] Eq. (28))

κ = − (n − 1)n

4
εa2. (3.41)

An example of a family of such warped products is given in Example 4.1 of [27].
(iii) Let now the fibre (Ñ , g̃) be the semisymmetric manifold defined in Example 4.1 of [19].

Thismanifold satisfies rank S̃ = 1 and κ̃ = 0. The scalar curvature κ ofM×F Ñ satisfies
(3.41) ([24] Eq. (54)). Moreover, the warped product M ×F Ñ satisfies (3.34)–(3.36)
([24] Example 5.1, [2] Sect. 6 pp. 15–16). As it was stated in [24] (Example 5.4), the
manifold M ×F Ñ can be locally realized as a hypersurface in a semi-Riemannian space
of non-zero constant curvature.

Proposition 3.9 Let B be a generalized curvature tensor on a semi-Riemannian manifold
(M, g), n ≥ 4.

(i) If the conditions

Q(Ric(B), B) = 0, (3.42)

rank (Ric(B)) = 1 (3.43)

are satisfied on U = URic(B) ∩ UWeyl(B) ⊂ M, then on this set we have

κ(B) = 0, (3.44)

B · Weyl(B) = Weyl(B) · B = Q(Ric(B),Weyl(B)) = 0. (3.45)

(ii) If the conditions (3.43) and

Q(Ric(B),Weyl(B)) = 0 (3.46)

are satisfied on U = URic(B) ∩ UWeyl(B) ⊂ M, then on this set we have (3.44) and

B · Weyl(B) = Weyl(B) · B = 0.
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Proof Let Bhi jk , Ric(B)i j and Weyl(B)hi jk be the local components of the tensors B,
Ric(B) and Weyl(B) at x ∈ U , respectively.
(i) By (3.43), at x we have Ric(B) = ρ w ⊗ w and Ric(B)i j = ρ wiw j , where wi are the

components of the covector w. Since (3.42) and (3.43) hold at x , (2.5) yields

wh Bi jkl + wi B jhkl + w j Bhikl = 0. (3.47)

Contracting this with ghl and using (3.43) we get

wr Bi jkr = 0, wr = grsws . (3.48)

Transvecting now (3.47) with wh and using (3.48) we get (3.44). Now (3.42)-(3.44),
together with (2.3) and (3.1), yield

Q(Ric(B),Weyl(B)) = Q(Ric(B), B) − 1

n − 2
Q(Ric(B), g ∧ Ric(B))

= Q(Ric(B), B) + 1

2(n − 2)
Q(g, Ric(B) ∧ Ric(B)) = Q(Ric(B), B) = 0.

Further, in view of Proposition 2.1, (3.42) yields B · B = Q(Ric(B), B), and, conse-
quently, B · B = 0, which implies B · Weyl(B) = 0. Now, Proposition 3.3 completes
the proof of (i).

(ii) Since (3.46) and (3.43) hold at x , (2.5) yields

whWeyl(B)i jkl + wiWeyl(B) jhkl + w jWeyl(B)hikl = 0. (3.49)

Contracting this with ghl we get

wrWeyl(B)i jkr = 0, wr = grsws . (3.50)

Transvecting (3.49) withwh and using (3.50) we get (3.44). Next, bymaking use of (2.3),
(3.1), (3.43), (3.44) and (3.46), we get

0 = Q(Ric(B),Weyl(B)) = Q(Ric(B), B) − 1

n − 2
Q(Ric(B), g ∧ Ric(B))

= Q(Ric(B), B) + 1

2(n − 2)
Q(g, Ric(B) ∧ Ric(B)) = Q(Ric(B), B).

Now (i) completes the proof of (ii).

��
Example 3.10 (i) Let M ×F Ñ be the warped product of a 3-dimensional manifold (M, g),

with a warping function F and a 1-dimensional fibre (Ñ , g̃). In Proposition 3.3(i) of [28]
it was proved that if the conditions

κ = 0, S2 = 0, (3.51)

are satisfied on M ×F Ñ , then rank S ≤ 1. In addition, if

S · C = 0, R · R = Q(S, R) (3.52)

on M ×F Ñ , then it is a semisymmetric manifold ([28], Proposition 3.3(ii)). Thus, by
(3.52), on M ×F Ñ we have Q(S, R) = 0. Now, in view of Proposition 3.6(i),

R · C = C · R = Q(S,C) = 0 (3.53)

on US ∩ UC ⊂ M ×F Ñ .
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(ii) In Sect. 4 of [28] a class of warped productsM×F Ñ of dimension≥ 4were investigated.
Among others, in this class of warped products there are manifolds satisfying (3.51)-
(3.53).

4 Manifolds with parallel Weyl conformal curvature tensor

Let (M, g), n ≥ 4, be a semi-Riemannian manifold whose Weyl conformal curvature tensor
is parallel, i.e.,∇C = 0 onM . It is obvious that the last condition implies R ·C = 0. Suppose,
moreover, that the manifold (M, g) is neither conformally flat nor locally symmetric. Such
manifolds are called essentially conformally symmetric manifolds, e.c.s. manifolds, in short
(see, e.g., [29] and [30]). E.c.s. manifolds are semisymmetric manifolds (R · R = 0, [29]
Theorem 9) satisfying κ = 0 and Q(S,C) = 0 ([29] Theorems 7 and 8). In addition,

F C = 1

2
S ∧ S (4.1)

holds on M , where F is some function on M , called the fundamental function ([30]). At
every point of M we also have rank S ≤ 2 ([30] Theorem 5). We mention that the local
structure of e.c.s. manifolds has already been described. We refer to [14] and [16] for the
final results related to this subject. We also mention that certain e.c.s. metrics are realized on
compact manifolds ([15,17]).

Suppose that F = 0 at x ∈ M . Now (4.1) implies rank S ≤ 1 at x . It is clear that if S
vanishes, then (3.53) holds at x . If rank S = 1, then in view Proposition 3.9(ii) we also have
(3.53) at x . Next, we assume that F is non-zero at x ∈ M . Then rank S = 2 at x . In this case
(4.1) turns into (3.7) with B = R, Ric(B) = S, φ = F−1, μ = 1

n−2 and η = 0. Therefore
(3.10) and (3.11) reduce to C · R = 0 and C · C = 0, respectively. Consequently, (3.53)
holds at x . Thus we have proved the following

Theorem 4.1 Condition (3.53) is satisfied on every essentially conformally symmetric man-
ifold (M, g).

Remark 4.2 (i) E.c.s. warped product manifolds were investigated in [31], where examples
of such manifolds are given.

(ii) The manifolds studied in this section satisfy (1.10). They can be quasi-Einstein or not.
Moreover, the tensor C · C of such manifolds is the zero tensor.

5 Roter type manifolds satisfying (1.10)

We recall that if the curvature tensor R of a semi-Riemannian manifold (M, g), n ≥ 4, is
a linear combination of the Kulkarni–Nomizu products S ∧ S, g ∧ S and G = 1

2 g ∧ g on
US ∩UC ⊂ M , i.e., (1.7) holds on this set, then (M, g) is called a Roter type manifold. Such
manifolds were investigated among others in [32] and [33]. We also refer to [10] for a survey
on Roter type manifolds, as well as on Roter type hypersurfaces. Curvature properties of
manifolds satisfying (1.7) are presented in Proposition 3.2 (for B = R).

Remark 5.1 ([11] Theorem 4.1 and Corollary 4.1) Let (M, g), n ≥ 4, be a semi-Riemannian
manifold and let U = US ∩ UC ⊂ M . If R · C − C · R = L Q(g,C) holds on U for some
function L , then R · R = L Q(g, R) and C · R = 0 on this set. In particular, if R ·C = C · R
holds on U , then R · R = R · C = C · R = 0 on this set. Therefore we consider manifolds
satisfying (1.10) and (1.7) on U with non-zero function L .
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As an immediate consequece of Proposition 3.2(ii) we get

Theorem 5.2 Let (M, g), n ≥ 4, be a a semi-Riemannian manifold satisfying (1.7) on
U = US ∩ UC ⊂ M. If κ = 0 on U then (1.10), with L = −1, holds on this set.

We also have a converse to this result.

Theorem 5.3 Let (M, g), n ≥ 4, be a semi-Riemannian manifold satisfying (1.10) and (1.7)
on U = US ∩ UC ⊂ M, and let U1 ⊂ U be the set of all points at which the functions L and
LC , defined by (1.10), (3.10) and (3.11) (for B = R), respectively, are nowhere zero on this
set. Then on U1 we have

L = −1, (5.1)

κ = 0. (5.2)

Proof From (3.9)(b) and (3.10) we obtain on U
R · C − C · R = LR Q(g,C) − LC Q(g, R).

This, together with (1.10), yields

L Q(S,C) = LR Q(g,C) − LC Q(g, R),

which, via (2.3), turns into

L Q(S,C) − LC

n − 2
Q(S,G) = LR Q(g,C) − LC Q(g, R) + LC

n − 2
Q(g, g ∧ S).

We restrict our considerations to the set U1. Now the last equation turns into

L Q

(
S,C − LC L−1

n − 2
G

)
= (LR − LC ) Q(g,C),

Q

(
S,C − LC L−1

n − 2
G

)
= −(LC − LR)L−1 Q

(
g,C − LC L−1

n − 2
G

)
,

and

Q(S + (LC − LR)L−1 g,C − LC L−1

n − 2
G) = 0. (5.3)

We note that if we had rank (S + (LC − LR)L−1 g) = 1 at a point of U1 then - in a standard
way - we would obtain C = 0 from (1.7), which is a contradiction. Therefore (5.3) implies
([20] Proposition 4.1, [21] Lemma 3.4): rank (S + (LC − LR)L−1 g) ≥ 2 and

C − LC L−1

n − 2
G = λ

2

(
S + (LC − LR) L−1 g

)
∧ (

S + (LC − LR) L−1 g
)
, (5.4)(

C − LC L−1

n − 2
G

)
·
(
C − LC L−1

n − 2
G

)
= −n − 1

n − 2
LC L

−1 Q (g,C) (5.5)

on U1, where λ is a function on this set. Now (5.4), via (2.2), turns into

R = λ

2
S ∧ S +

(
1

n − 2
+ λ (LC − LR) L−1

)
g ∧ S

+
(

λ (LC − LR)2 L−2 + LC L−1

n − 2
− κ

(n − 2) (n − 1)

)
G. (5.6)
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The decomposition of R is unique on U1 (see, e.g., [24] Lemma 3.1). Therefore (1.7) and
(5.6) yield φ = λ and

(a) μ = 1

n − 2
+ φ(LC − LR)L−1,

(b) η = φ(LC − LR)2L−2 + LC L−1

n − 2
− κ

(n − 2)(n − 1)
. (5.7)

Since LC − LR = 1
n−2 (φ

−1(1 − (n − 2)μ) − n−2
n−1κ), (5.7)(a) can be written as

(L + 1)(1 − (n − 2)μ) = n − 2

n − 1
κφ. (5.8)

On the other hand, we have
(
C − LC L−1

n − 2
G

)
·
(
C − LC L−1

n − 2
G

)
=

(
C − LC L−1

n − 2
G

)
· C

= C · C − LC L−1

n − 2
G · C = C · C − LC L−1

n − 2
Q (g,C) ,

which, together with (5.5), gives C · C = −LC L−1 Q(g,C). From the last relation, via
(3.11), it follows that

(L + 1)LC Q(g,C) = 0 (5.9)

on U1. Now from (5.8) and (5.9) we conclude that (5.1) and (5.2) are satisfied on this set,
which completes the proof. ��

Example 5.4 (i) Let (M, g) = N p
s1(c1) × Nn−p

s2 (c2) be a Cartesian product of semi-
Riemannian spaces of constant curvature, where 2 ≤ p ≤ n − 2, c1 = κ1

(p−1)p ,

c2 = κ2
(n−p−1)(n−p) , κ1 and κ2 are the scalar curvatures of N p

s1(c1) and Nn−p
s2 (c2),

respectively. For the scalar curvature κ of (M, g) we have

κ = κ1 + κ2 = p(p − 1) c1 + (n − p)(n − p − 1) c2. (5.10)

It is well-known that (3.9), with LR = 0, holds on M ([3] Theorem 4.5). Moreover,
(3.11) is satisfied on M , with

LC = − (p − 1)(n − p − 1)

(n − 2)(n − 1)
(c1 + c2) (5.11)

([34] Sect. 4).
(ii) We assume that c1 and c2 satisfy

(a) c1 + c2 �= 0 and (b) (p − 1) c1 − (n − p − 1) c2 �= 0. (5.12)

Then (M, g) is a non-conformally flat and non-Einstein manifold. More precisely, we
have US ∩ UC = M (cf. [35] Sect. 3). Moreover, as it was stated in Sect. 3 of [35], (3.7)
holds on M with

φ = τ (c1 + c2), η = τ c1c2 ((p − 1)2c1 + (n − p − 1)2c2),

μ = −(n − 2)τ c1c2, τ = ((p − 1)c1 − (n − p − 1)c2)
−2. (5.13)
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(iii) In addition, we assume that n �= 2p, κ = 0 and c1 �= 0 hold on M . Now (5.10) reduces
to c2 = − p(p−1)

(n−p)(n−p−1) c1. Applying this in (5.11), (5.12) and (5.13) we obtain

c1 + c2 = (n − 1)(n − 2p)

(n − p)(n − p − 1)
c1, (p − 1) c1 − (n − p − 1) c2 = n(p − 1)

n − p
c1,

φ = (n − 1)(n − p)(n − 2p)

n2(n − p − 1)(p − 1)2
c−1
1 , μ = (n − 2)p(n − p)

n2(n − p − 1)(p − 1)
,

η = (n − 2p)p

n2(n − p − 1)
c1, LC = − (p − 1)(n − 2p)

(n − 2)(n − p)
c1.

Thus we see that (M, g) is a Roter type manifold satisfying

R · C − C · R = −Q(S,C),

with the non-zero function LC and zero scalar curvature κ .
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2. R. Deszcz, M. Głogowska, M. Hotloś, K. Sawicz, in A survey on generalized einstein metric conditions,
ed. by S.-T. Yau (series ed.), M. Plaue, A.D. Rendall andM. Scherfner. Advances in Lorentzian geometry:
Proceedings of the LorentzianGeometry Conference in Berlin, AMS/IP Studies inAdvancedMathematics
49, 27–46, 2011

3. Z.I. Szabó, Structure theorems on Riemannian spaces satisfying R(X, Y ) · R = 0. I. The local version. J.
Differ. Geom. 17, 531–582 (1982)

4. R. Deszcz, On pseudosymmetric spaces. Bull. Belg. Math. Soc. Ser. A 44, 1–34 (1992)
5. R. Deszcz, W. Grycak, On some class of warped product manifolds. Bull. Inst. Math. Acad. Sin. 15,

311–322 (1987)
6. S. Haesen, L. Verstraelen, Properties of a scalar curvature invariant depending on two planes. Manuscr.

Math. 122, 59–72 (2007)
7. R. Deszcz, S. . Yaprak, Curvature properties of certain pseudosymmetric manifolds. Publ. Math. Debr. 45,

334–345 (1994)
8. R. Deszcz,M. Głogowska,M. Plaue, K. Sawicz,M. Scherfner, On hypersurfaces in space forms satisfying

particular curvature conditions of Tachibana type. Kragujev. J. Math. 35, 223–247 (2011)
9. R. Deszcz, On some Akivis–Goldberg type metrics. Publ. Inst. Math. (Beograd) (N.S.) 74(88), 71–83

(2003)
10. M. Głogowska, On Roter-type identities, in Pure and Applied Differential Geometry-PADGE 2007,

Berichte aus der Mathematik (Shaker Verlag, Aachen, 2007), pp. 114–122
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