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Curvature properties of some class of warped product manifolds
Ryszard Deszcz, Malgorzata Glogowska, Jan Jetowicki and Georges Zafindratafa

Dedicated to the memory of Professor Wiodzimierz Waliszewski

Abstract. Warped product manifolds with p-dimensional base, p=1,2, satisfy some curvature conditions of
pseudosymmetry type. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature
tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result
of the paper states that if p=2 and the fibre is a semi-Riemannian space of constant curvature, if n is greater
or equal to 4, then the (0,6)-tensors R.R - Q(S,R) and C.C of such warped products are proportional to the
(0,6)-tensor Q(g,C) and the tensor C is expressed by a linear combination of some Kulkarni-Nomizu products
formed from the tensors g and S. Thus these curvature conditions satisfy non-conformally flat non-Einstein
warped product spacetimes (p=2, n=4). We also investigate curvature properties of pseudosymmetry type of
quasi-Einstein manifolds. In particular, we obtain some curvature property of the Goedel spacetime

1. INTRODUCTION

Let g, V, R, S, k and C' be the metric tensor, the Levi-Civita connection, the Riemann-
Christoffel curvature tensor, the Ricci tensor, the scalar curvature tensor and the Weyl confor-
mal curvature tensor of a semi-Riemannian manifold (M, g), n = dim M > 3, respectively. It is
well-known that (M, g) is said to be an Einstein manifold if at every point of M its Ricci tensor
S is proportional to the metric tensor g, i.e., S = % g on M [5]. In particular, if S = 0 on M
then (M, g) is called a Ricci flat manifold. We denote by Us the set of all points of (M, g) at
which S is not proportional to g, i.e., Us = {v € M |S — £ g # 0 at x}. The manifold (M, g)
is said to be a quasi-FEinstein manifold if

(1.1) rank (S —ag) = 1

on Us, where « is some function on Us. In particular, if rank .S = 1 on Us then (M, g) is called
a Ricci-simple manifold [19]. Every warped product manifold M xz N of an 1-dimensional

(M,g) base manifold and a 2-dimensional manifold (N, g) or an (n — 1)-dimensional Einstein
manifold (N ,g), n > 4, with a warping function F, is a quasi-Einstein manifold (see, e.g.,
[12 Section 1]). We mention that quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations and the investigation on quasi-umbilical hypersurfaces
of conformally flat spaces, see, e.g., [29] and references therein. Quasi-Einstein hypersurfaces in
semi-Riemannian spaces of constant curvature were studied among others in: [26] 30}, [42] [46], 61],
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see also [29]. We refer to [12] [43] for recent results on quasi-Einstein manifolds. The semi-
Riemannian manifold (M, g), n > 3, is called a 2-quasi-Einstein manifold if

(1.2) rank (S —ag) < 2,

on Us and rank (S — a g) = 2 on some open non-empty subset of Ug, where « is some function
on Us (see, e.g., [32, 36]). Every warped product manifold M xp N of a 2-dimensional base

manifold (M,g) and a 2-dimensional manifold (N,§) or an (n — 2)-dimensional Einstein semi-
Riemannian manifold (N,3), n > 5, with a warping function F', satisfies (IL2) (see Theorem
6.1 of this paper). Some exact solutions of the Einstein field equations are non-conformally
flat 2-quasi-Einstein manifolds. For instance, the Reissner-Nordstrgm spacetime, as well as the
Reissner-Nordstrgm-de Sitter type spacetimes are such manifolds (see, e.g., [69]). It seems that
the Reissner-Nordstrgm spacetime is the ”oldest” example of a non-conformally flat 2-quasi-
Einstein warped product manifold. It is easy to see that every 2-quasi-umbilical hypersurface in
a semi-Riemannian space of constant curvature is a 2-quasi-Einstein manifold (see, e.g., [36]).

Let A and B be symmetric (0, 2)-tensors on a semi-Riemannian manifold (M, g). We denote
by A A B their Kulkarni-Nomizu tensor. We note that (L)) holds at a point x € Us C M if
and only if at this point we have (S —ag) A (S —ag) =0, ie.

1 1
(1.3) §SAS—ag/\S+a2G = 0, G:§g/\g.
From (L3]), by a suitable contraction, we get immediately
(1.4) S? = (k—(n—2)a)S+a((n—1)a—k)g.

For precise definitions of the symbols used here, we refer to Section 2 of this paper (see also
[12], 29]). We can write the Weyl conformal curvature tensor C' of (M, g), n > 3, by
K

1
(1.5) C = R-i 590 S+ g &

It is well-known that a semi-Riemannian manifold (M, g), n > 4, is conformally flat if and only
if C'= 0 everywhere in M. From C' = 0, by (LLH]), we get immediately

1 K
1.6 R = ——gANS—
(1.6) n—27 (n—2)(n—1)
The Robertson-Walker spacetimes, and more generally, warped products of an 1-dimensional
manifold and an (n — 1)-dimensional semi-Riemannian space of constant curvature, n > 4, are
conformally flat quasi-Einstein manifolds (see, e.g., [73] Section 4]). It is obvious that (I3]) and

(LQ) yield

R = %SASJF(5—a)gAS+(a2—(H_2;n_l))G

(see, e.g., [28, p. 150]). Thus the curvature tensor R of a conformally flat quasi-Einstein
manifold (M, g), n > 4, is expressed by a linear combination of the tensors: S AS, g A S
and G. We also can investigate non-conformally flat and non-quasi-Einstein semi-Riemannian
manifolds (M, g), n > 4, whose curvature tensor R is a linear combination of these tensors.
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More precisely, we can investigate semi-Riemannian manifolds (M, g), n > 4, satisfying on the
set Us NU- C M the condition

(1.7) R = %S/\S—FMQ/\S—F’/]G,

where Ue is the set of all points of M at which C' # 0 and ¢, p and 7 are some functions on
Us NU¢. A semi-Riemannian manifold (M, g), n > 4, satisfying (ILT) on Us NUc C M is called
a Roter type manifold, or Roter manifold, or Roter space [25, 35, B6]. Roter type manifolds
and in particular Roter type hypersurfaces in semi-Riemannian spaces of constant curvature
were studied in: [25] 28] 311, 32 35| 42} 47, K1), 52} (59, 60, 68, 69]. In Section 3 we present
curvature conditions satisfying by Roter type manifolds. In particular, on every Roter type
manifold (M, g), n > 4, the following relations are satisfied on Us NUc C M:

(1.8) R-R—Q(S,R) = LQ(g,0),
(1.9) C-C = LcQ(g,0),
1
(1.10) C-R+R-C = Q(S,C)+<L+Lc—m) 0(g,0),
(1.11) C-R-R-C = Q(S,C)—nle(g,C),

where L =L+ 5, Lo = Lr — ;55 + m — 45 and Lg = é((n —2)(u* — ¢n) — p) (Theorem

3.2 and Proposition 3.3). In [78 Theorem 3.2] (also see [36, Section 4] and [79, Section 4]) it
was proved that the curvature tensor R of some hypersurfaces in semi-Riemannian spaces of
constant curvature is a linear combination of the tensors: SA S, g A S, G, g A S%, S A S?% and
S? A S2. Precisely, we have on Us NU- C M

(1.12) R :f%SAS+@gAS+@G+¢wASWHmSA§+

P6 2 , q2
5 S°NSZ,
where ¢1, @9, ..., ¢¢ are some functions on this set. Evidently, (L) is a special case of ([L12]).
Examples of manifolds satisfying (ILIZ2) are given in [33] Example 2.1], [36, Section 4], [43]
Example 4.1], [79, Section 5] and [81 Section 5|. Manifolds satisfying (L.I12)) were studied in
34, [60, 82, [83].

It is easy to verify that on any semi-Riemannian manifold (M, g), n > 4, the following
identity is satisfied

B B 1 K 9
(1.13) C-R+R-C = R-R+C-C @i}ﬁQ@=gingS+gAS>

(Theorem 3.4(i)). In addition, if (L8], with some function L, holds on Ue C M then (ILI3)

turns into

C-R+R-C = QS,C)+LQ(g,C)+C-C

! JXQELESAS—KQAS+9AS%

(1.14) ~ s 5
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(Theorem 3.4(ii)). Moreover, if (L9), with some functions L¢, is satisfied on Us C M then
(LI4) takes the form

C-R+R-C = Q(S,C)+(L+ Lc)Qg,0)
L 00, =25 AS—kgAS+gAS)

(1.15) ~ T 5

(Theorem 3.4(iii)). We note that if (M, g) is a quasi-Einstein semi-Riemannian manifold satis-

fying (L)) then (II5]), by making use of (I3) and (L4, turns into
(1.16) C-R+R-C = Q(S,C)+(L+ Lc)Q(yg,0),
and in particular, if (M, g) is the Godel spacetime then (L16]) yields

(1.17) C-R+R-C = Q(S,C)JrgQ(g,C)

(Theorem 3.4(iv)-(v)). The conditions (I.8)) and (L9]) are also satisfied on some submanifolds
isometrically immersed in an Euclidean space, as well as on some hypersurfaces isometrically
immersed in a semi-Riemannian space of constant curvature (theorems 3.7-3.9).

In Section 4 we prove that warped product manifolds M xp N of an I-dimensional semi-
Riemannian manifold (M,g) and some (n — 1)-dimensional semi-Riemannian manifold (N, g),
n > 4, satisty (L), (L9) and (L.I5) (theorems 4.1-4.3). In particular, we state that the warped

product of an 1-dimensional manifold (M, q) and some 3-dimensional Riemannian manifold: the

3-dimensional Berger spheres, the Heisenberg group Nil3, PSL(2,R) - the universal covering of
the Lie group PSL(2,R), the Lie group Sols, a Riemannian manifold isometric to an open part
of the 3-dimensional Cartan hypersurface or some three-spheres of Kaluza-Klein type, satisfies
(L), (CI) and ([TI5) (Theorem 4.2).

In the next section we present results on pseudosymmetric warped product manifolds. In
particular, we consider warped products M x g N of a 2-dimensional semi-Riemannian manifold
(M,g) and an (n — 2)-dimensional semi-Riemannian manifold (N,§), n > 4, with the warping
function F', assuming that (N ,g) is a semi-Riemannian space of constant curvature, when
n > 5. In Theorem 5.3 we present necessary and sufficient condition for such manifold to be
pseudosymmetric. N

In Section 6 we consider warped products M xp N of a 2-dimensional semi-Riemannian
manifold (M,g) and an (n — 2)-dimensional semi-Riemannian manifold (N,§), n > 4, with
the warping function F', assuming that (1\7 ,g) is an Einstein semi-Riemannian manifold, when
n > 5. Theorem 6.2 states that on some subset Us NUs C M Xp N (see to that section for
details) the tensor R- S is a linear combination of the Tachibana tensors Q(g, S), Q(g, S?) and

Q(S, S?), i.e.
(118> R-S = %Q(gas)+¢4Q(9752)+¢3Q(5752)7

on this set, for some functions 13,1, and ¥s. We mention that recently in [36] it was shown
that the tensor R - S of some minimal hypersurfaces in Euclidean spaces has this property (see
also [37,[77]). The condition (LI8), by (ZI9)), turns into

(1.19) C-S = ¥1Q(g,5) +12Q(g,5%) + 3 Q(S,5?),
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where 9 = 15 + m and 1y = Yy — ﬁ Semi-Riemannian manifolds, and in particular,
hypersurfaces in semi-Riemannian spaces of constant curvature, satisfying the special cases of
([LI9), ie. C-S=vQ(g,5), resp., C- S =0, were investigated, among others, in [27] 68, [69],
resp., [29, 30, 31, 32}, [44] [45] [81].

In the last section we consider warped products M X p N of a 2-dimensional semi-Riemannian
manifold (M, g) and an (n — 2)-dimensional semi-Riemannian manifold (N, g), n > 4, with the
warping function F', assuming that (N, g) is a semi-Riemannian space of constant curvature,
when n > 5. In Theorem 7.1(i) we state that (L&), (L9) and (LI5) hold on Us C M xp N.
In Theorem 7.1(ii), under some additional assumption, we state that on some open subset
V CUsNUz C M xp N the Weyl tensor C' of the considered warped product is a linear
combination of the Kulkarni-Nomizu tensors S A S, g AS, g A S? and G. Precisely, (Z.8) holds
on V. Evidently, (Z8) by (L) turns into (LI2)). Thus we have a new family of manifolds
satisfying (L12)). On the set (Us NUc) \ V the Weyl tensor C' is a linear combination of the
Kulkarni-Nomizu tensors SAS, gAS and G. In that section we also present curvature properties
of the Vaidya spacetime, as well as of some generalized Vaidya spacetimes: the Vaidya-Kottler,
the Vaidya-Reissner-Nordstrgm and the Vaidya-Bonnor spacetime.

2. PRELIMINARY RESULTS

Throughout this paper all manifolds are assumed to be connected paracompact manifolds of
class C*. Let (M, g) be an n-dimensional, n > 2, semi-Riemannian manifold and let V be its
Levi-Civita connection and Z(M) the Lie algebra of vector fields on M. We define on M the
endomorphisms X Ax Y and R(X,Y) of Z(M), respectively, by

(X Na Y)Z = A(Y> Z)X - A(X> Z)Y> R(X> Y)Z = vXVYZ - vYVXZ - V[X,Y}Za

where A is a symmetric (0,2)-tensor on M and X,Y,Z € Z(M). The Ricci tensor S, the
Ricci operator S, the tensors S? and S? and the scalar curvature s of (M, g) are defined by
S(X,)Y) = tr{Z = R(Z,X)Y}, g(SX,Y) = S(X,Y), S}(X,Y) = S(8X,Y), S3(X,Y) =
S%(S8X,Y) and k = trS, respectively. The endomorphism C(X,Y) is defined by

1
C(X,Y)Z = R(X,Y)Z — —(X A, SY +SX A, Y — i
n_

XA Y)Z

Now the (0,4)-tensor G, the Riemann-Christoffel curvature tensor R and the Weyl conformal
curvature tensor C' of (M, g) are defined by G(X1, X, X3, Xy) = g((X1 Ay X2) X35, X4) and

R(X1>X2>X3>X4) = Q(R(Xl,X2)X3,X4), C(Xl,X2,X3,X4) = Q(C(Xl,X2)X3,X4),

respectively, where X7, Xy, X3, X, € Z(M). Let B be a tensor field sending any X,Y € Z(M)
to a skew-symmetric endomorphism B(X,Y), and let B be a (0, 4)-tensor associated with B by

(21) B(X17X27X37X4> = g(B(X17X2)X37X4)-

The tensor B is said to be a generalized curvature tensor if the following conditions are satisfied
B(Xla X2a X3a X4) - B(X3a X4a Xla XZ) )
B(X17 X27 X37 X4) + B(X37 X17 X27 X4) + B(X27 X37 X17 X4) - O .

For B as above, let B be again defined by (2I)). We extend the endomorphism B(X,Y) to
a derivation B(X,Y)- of the algebra of tensor fields on M, assuming that it commutes with
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contractions and B(X,Y) - f = 0, for any smooth function f on M. For a (0, k)-tensor field
T, k> 1, we can define the (0, k + 2)-tensor B - T by

(B-T)(Xy,..., X, X)Y) = (BX,)Y) -T)(Xyq,...,Xx)
= —TBX,Y)X1,Xo,..., X)) — - =T(Xy,..., X1, B(X,Y)X}) .
In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A,T) by
QAT (Xy,...,. X, X)Y) = (X A4Y - T)(Xy,...,Xg)
= “T(XAaY)X1, X0, ., Xp)— - =T( Xy, ..., X1, X A4 Y) X))
The tensor Q(A,T) is called the Tachibana tensor of the tensors A and T, or shortly the

Tachibana tensor (see, e.g., [28, 31, 33], 36, [43]). For a symmetric (0, 2)-tensor £ and a (0, k)-
tensor T', k > 2, we define their Kulkarni-Nomizu product E'A T by ([27])

(EANT)(Xq,..., Xy, Y3,...,Yy)
= B(X1, X4)T(Xy, X3,Ys,..., Vi) + E(Xo, X3)T(X1, X4, Ys, ..., V2)

—FBE(X1, X3)T(Xo, X4, Y5, ..., Yy) — E(Xo, Xg)T(X4, X3, Y3, ..., Yk).
For instance, the following tensors are generalized curvature tensors: R, C', G and E A F,
where E and F' are symmetric (0,2)-tensors. For a symmetric (0,2)-tensor A we define the
endomorphism A and the tensors A? and A3 by g(AX,Y) = A(X,Y), A%(X,Y) = A(AX,Y)
and A*(X,Y) = A?(AX,Y), respectively. Let Bpijk, Thijk, and A;; be the local components
of generalized curvature tensors B and T and a symmetric (0, 2)-tensor A on M, respectively,
where h,i, 7, k,l,m,p,q € {1,2,...,n}. The local components (B - T")pijkim and Q(A, T)nijkim
of the tensors B - T, Q(A,T), B- A and Q(g, A) are the following

(2.2) (B - Thijeim = 9" (TpijeBahim + ThpjkBgitm + Thipk Bgjim + ThijpBakim)
QA Dhijkim = AnTmije + AiaThmje + AjiThimi + AThijm

(2.3) —Anm T — AimThije — AjmThite — AkmThiji,

(24) (B Apkim = 9P Apk Banim + Aph Bakim),

(2.5) Qg Arkim = G Arm + IutAnm — Jhm Akt — GrmAni-

Lemma 2.1. Let (M, g), n > 3, be a semi-Riemannian manifold. Let A be a symmetric (0,2)-
tensor on M such that rank(A) = 2 at some point x € M. (i) cf. [25, Lemma 2.1] The tensors
A, A? and A? satisfy at x the following relations

(2.6) A% = tr(A) A% + %(tr(AQ) — (tr(A))?) A,
(2.7) ANA* = %tr(A) ANA,

(2.8) A2 A2 = —%(tr(,@) — (tr(A)) A A,

(2.9) (A% —tr(A) A) A (A% —tr(A) A) = —%(tr(/ﬁ) — (tr(A))?) AN A.

(ii) Let T be a generalized curvature tensor on M satisfying

(2.10) T = %A/\A+¢29AA+¢3G+¢49/\A2+¢5A/\A2+%Az/\fﬁ



where ¢g, G2, ... , g are some functions on M. Then at given point x we have

[
2
1
p1 = ¢o+tr(A) g5 — 5(“"(/12) — (tr(4))?) ¢s.
Proof. (i) (2:6) and (217) were already obtained in [25, egs. (2.6) and (2.10)]. Further,
transvecting equation (2.10) of [25], i.e.
with A" = ¢"™* Ay, we obtain

A?lA?k - A?M?z + AilA?k —AjAY = tr(A) (AilA?k — AjA%),

T = ANA+ dogNA+ d3G+ dyg N A2

where gni, g"%, Ani, A2, and A3, are the local components of the tensors g, g7!, A, A% and A3,
respectively. This, by (2.7), turns into
1
AGAS — ARAG = —§(tr(A2) — (tr(A))?) (Audje — AwAjp),
i.e. (28). Now, using (217) and (2.8]) we get immediately (2.9), which completes the proof of
(i). (ii) is an obvious consequence of (i).

Lemma 2.2. Let B be a symmetric (0, 2)-tensor on a 2-dimensional semi- Riemannian manifold
(M,g). (i) [22, Lemma 2(iii)] The following identity is satisfied on M

(2.11) gNB = tr(B)G.
(i) The following identities are satisfied on M

(2.12) B — wu(B)B+ %(tr(B2) _ (te(B)?) g,
QB.B) = —(ix(B") ~ ((B)) Qlo. B).
Proof. (ii) From (ZTII]) we get
(2.13) 9nieBij + 9ijBri — 9njBik — 9iBrj = tr(B) (ghkgij — 9njik)

where B;; and ij are the local components of the tensors B and B?, respectively. Transvecting
[2I3) with B" = B;;g"g" we obtain
1
ij = tl"(B) Bij + i(tl"(Bz) - (tl"(B))z) Gij,
i.e. (ZI2)). Further, we also have
1 1
Q(B,B%) = Q(B,tr(B) B+ 5(tr(B*) — (t(B))*) g) = —5(tr(B*) — (tx(B))*) Q(g, B),

which completes the proof.

For symmetric (0, 2)-tensors E and F' we have

(2.14)  Q(E,EAF) = —%Q(F,E/\E), EANQ(E,F) = —%Q(F,E/\E)
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(see, e.g., [30L Section 3] and [27], eq. (3)]). In particular, from ([2.14]) we obtain
1
Using now (L) and (2I5) we get
1 1
(2.16) Q(S,R) = Q(S>C)—mQ(g>§SAS)—

K

(n—2)(n—1) Q(5,G).

We also have

(217)  (gAS)-(gAS) = —Q(S*,G), G-(gAS) = Qg.gAS) = —Q(S,G),

(218)  (gAS)-S = Qg,8%), G-8 = Qg,9)

(see, e.g., [28, Lemma 2.1 (ii)] and [69, Lemma 3.2]). Using (I5) and (ZI8)) we obtain
1 9 K

(2.19) c-S = R-S—mQ(g,S)+(n_2)(n_1)Q(g,S)

(see, e.g., [45] p. 217)).

3. SOME CURVATURE CONDITIONS

A semi-Riemannian manifold (M, g), n > 3, is called semisymmetric if R- R =0 on M [85].
A semi-Riemannian manifold (M, g), n > 3, is said to be pseudosymmetric if the tensors R - R
and Q(g, R) are linearly dependent at every point of M [22] 23 24] 38]. This is equivalent on
Up={z e M|R - G#Oatx}to

(3.1) R-R = LrQ(g,R),

where Lp is some function on this set. We note that Us Ule = Ug (see, e.g. [28]). We mention
that [38] is the first paper, in which manifolds satisfying (B]) were called pseudosymmetric
manifolds. It is easy to check that (B8.1]) is equivalent on Ug to (R — LgG) - (R — LgG) = 0.
Evidently, every semisymmetric manifold is pseudosymmetric. The converse statement is not
true. It seems that the Schwarzschild spacetime, the Kottler spacetime, the Reissner-Nordstrgm
spacetime, as well as some Friedmann-Lemaitre-Robertson-Walker spacetimes are the “oldest”
examples of non-semisymmetric pseudosymmetric warped product manifolds (see, e.g., [39,55]).
Pseudosymmetric manifolds also are named Deszcz symmetric spaces (see, e.g., [88]). We also
note that (B.]) implies

(3.2) R-S = LrQ(g,5), R-C = LgQ(g.0).

The conditions (B.1]) and (B.2)) are equivalent on the set UsNU¢ of any warped product manifold
My X My, with dim M; = dim My = 2 [22]. A semi-Riemannian manifold (M, g), n > 3, is
called Ricci-pseudosymmetric if the tensors R - S and (g, S) are linearly dependent at every
point of M [20], 22, 23] 29] 53]. This is equivalent on Us to

(3.3) R-S5 = LsQ(yg,9),

where Lg is some function on this set. As it was mentioned in Introduction, every warped
product manifold M xp N of an 1-dimensional (M,g) manifold and an (n — 1)-dimensional
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Einstein semi-Riemannian manifold (N ,g), n > 3, with a warping function F', is a quasi-
Einstein manifold. Such warped products also are Ricci-pseudosymmetric manifolds, see, e.g.,
[12, Section 1] and Example 4.1 of this paper.

A semi-Riemannian manifold (M, g), n > 4, is said to be Weyl-pseudosymmetric if the tensors
R-C and Q(g,C) are linearly dependent at every point of M [22] 23 29]. This is equivalent
on Uex to

where L is some function on this set. Using (L), we can check that on every Einstein manifold
(M,g),n >4, [B4) turns into R- R = L, Q(g, R). For a presentation of results on the problem
of the equivalence of pseudosymmetry, Ricci-pseudosymmetry and Weyl-pseudosymmetry we
refer to [29, Section 4]. A semi-Riemannian manifold (M, g), n > 4, is said to have a pseu-
dosymmetric Weyl conformal curvature tensor if the tensors C' - C' and Q(g,C) are linearly
dependent at every point of M [15], 22] 23]. This is equivalent on Ug to (L9), where L¢ is some
function on this set. We note that (L9]) is equivalent on U to (C' — Le G) - (C — Lo G) = 0.

As it was stated in [22], any warped product manifold M; X g My, with dim M; = dim M, = 2,
satisfies (LY). Thus in particular, the Schwarzschild spacetime, the Kottler spacetime and
the Reissner-Nordstrgm spacetime satisfy (L3). Recently manifolds with pseudosymmetric
Weyl tensor were investigated in [28, [43]. Warped product manifolds M x p N, of dimension
> 4, satisfying the condition (L8) on Uy C M xp N, where L is some function on this
set, were studied in [I4, I7]. In [I7] necessary and sufficient conditions for M xp N to be
a manifold satisfying (L&) are given. In particular, in that paper it was proved that any 4-
dimensional warped product manifold M X p N , with an 1-dimensional base (M, ), satisfies
(L8) [I7, Theorem 4.1]. For details about the pseudosymmetric, Ricci-pseudosymmetric and
Weyl-pseudosymmetric manifolds as well other conditions of this kind, named pseudosymmetry
type curvature conditions, we refer to the papers: [12], 23, 29,39, [64] and also references therein.

If (M,g), n >4, is an Einstein semi-Riemannian manifold then Ur = Uy and (LE) yields

K

(3.5) C = R 5, G

Theorem 3.1. If (M,g), n > 4, is a pseudosymmetric Einstein semi-Riemannian manifold
satisfying (31) on Ur C M then on this set we have R - R — Q(S,R) = (Lg — £)Q(g,0),
C-C=(Lp— 555:)Q(9.C) and C- R+ R-C = Q(S,0) + (2L — %) Qg C).

Proof. The second condition of our assertion was proved in [I5 Theorem 3.1]. Further,

using (B.I) and (3.5) we obtain R-C = L Q(g,C) and

RR-Q(SR) = (Ln—2) Qg R~ &) = (La—")Q,0),

(n—1)n
C-R+R-C = (R—ﬁG)-R%—LRQ(Q,C)
= R'R—WG'R‘FLRQ(Q’C) = (LR_W) Q(g, R) + LrQ(g,C)

= (2LR - ﬁ) Qg,C) = Q(8,C) + <2LR - ﬁ) Q9. 0),
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completing the proof.

In [86] Section 2] a class of 4-dimensional Einstein Riemannian manifolds was defined and
investigated. As it was stated in [I3| Remark 5.1] those manifolds are pseudosymmetric. If a
non-quasi-Einstein semi-Riemannian manifold (M, g), n > 4, satisfies on Us NUs C M (31))
and (L8) or (31) and (L9), then (7)) holds on this set ([58, Theorem 3.2 (ii)], [4I, Lemma
4.1]). We also have the following converse statement.

Theorem 3.2. [29, [60] If (M,g), n > 4, is a semi-Riemannian manifold satisfying (1.7) on
Us "NU- C M then on this set we have

—2)u—1 -1

¢ ¢

R-C = LnQo.C), Ln = 5 ((n—2)( —on) = n).

R-R = LRQ(ng)v R-S = LRQ(Q,S),

R-R = QSR +LQ.C). L = La+h = ”;sz—czm),
c-C = LcQ(g,C), Lo = LR+5(ni1_al>’

C-R = LcQ(g,R), C-S = LeQ(g,9),

(n—1pu—1 K
(n—2)¢p * n—1
plln = Dp=1) = (n = 1)on
— Q(5.G).

1

_|_

1 1 K W 1
R-C-C-R = (—(p— R “(p———) — S, G).
(G0t + o) Qe rr+ (- 2 -n) Qs
Remark 3.1. Let the curvature tensor R of a semi-Riemannian manifold (M, g), n > 4, has the
decomposition (IL7) on Us NUc C M. In [42] Lemma 3.2] it was shown that the decomposition
(L7) is unique on this set.

Proposition 3.3. If (M,g), n > 4, is a semi-Riemannian manifold satisfying (1.7) on Us N
Uc C M then (I.10) and (I11) hold on this set.

Proof. On Us NUc C M we have C - R = Q(S,C) + (Lg — -5)Q(g,C) [69, eq. (37)],
where the function Lg is defined by ([LI0) (see also Theorem 3.1). But this, together with
R-C=LrQ(g,C)and L+ Lo — m = 2Lr — - (see Theorem 3.1), completes the proof.

n—1

Theorem 3.4. Let (M, g), n > 4, be a semi-Riemannian manifold. (i) The identity (1.13) is
satisfied on M. (i) If (1.8), with some function L, is satisfied on U C M then (1.14) holds
on this set. (i) If (I.8) and (1.9), with some functions L and L¢, are satisfied on Ue C M
then (I.13) holds on this set. (i) If (M,g) is a non-Einstein and non-conformally flat semi-
Riemannian manifold satisfying on Us NUc C M the conditions: (11), and (L38) and (139),
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with some functions L and L¢, then (I.18) holds on this set. (v) The equation ({1.17) is satisfied
on the Gadel spacetime.

Proof. (i) We have (cf. [T7, Section 1])
_ 92 (C—R)-(C — _ " . _
(-2 C-R)-(C-B) = (ghS- -0)-(gAs- "0,
which yields
(n—22(C-C-R-C—C-R+R-R) = (g/\S)-(gAS)—%G-(gAS).

But this, by (ZI7), turns into (LI3). (ii) It is easy to see that (TI3]), by making use of (.9
and the identities (2.I5) and (2.I6) turns into (II4). (iii) Relations 2.I6), (L9), (L8) and
(CI3) yield

C-R+R-C = Q(S,R)+ (L+ Lc)Q(g,C) +

K

Q(S* — S,G)

n—1

Q(S* -k S,G),

(=27
= QUS.0)+ (L+Le) QM. C) — =5 Qo5 S S) + 5=

which by ([2I4) turns into (LIH). (iii) It is easy to see that the conditions (LI, (L3), (T4,
(LI5) and Q(g,G) = 0 lead to (LIG). (iv-v) The Ricci tensor S of the Godel spacetime (M, g)

satisfies S = kK w ®w, where w is an 1-form [62]. From the last equation we get easily SAS =0
and S? = £ S. Tt is also known that R- R = Q(S,R) and C - C = £Q(g,C) hold on M [43]
Theorem 2]. Now (L.I6]) yields (I.I7). Our theorem is thus proved.

Remark 3.2. In [43] Section 4(v)] it was shown that on the Godel spacetime the tensors R-C,
C-R,Q(g9,R), Q(S,R), Q(g,C) and Q(S, C) are linearly dependent.

We also have the following result.

Proposition 3.5. c¢f. [28, Proposition 3.2, Theorem 3.3, Theorem 4.4] If (M,g), n > 4, is a

semi-Riemannian manifold satisfying on Us NUe C M the conditions (1.8), (1.9) and

(3.6) R-S = Q9. D),

where D is a symmetric (0,2)-tensor, then (3.1) holds on this set. Moreover, at every point of

UsNUc we haverank (S—ay g) = 1 orrank (S—aq g) > 2 and ({1.7), where oy = §(-2;—L+Lc).
The last proposition, together with Proposition 3.3 and Theorem 3.4(iv), yields

Corollary 3.6. If (M,g), n > 4, is a semi-Riemannian manifold satisfying on Us NUc C M
the conditions (1.8), (1.9) and (34) then C-R+ R-C = Q(S,C) + Ly Q(g,C) holds on

Us NUc, where Ly is some function on this set.

Let M, n = dim M > 4, be a connected hypersurface isometrically immersed in a semi-
Riemannian space of constant curvature N?*!(c), with signature (s,n+1—s), where ¢ = W
and & is its scalar curvature. It is known that (I.8]) holds on M. Precisely,

(n—2)k
m@(%c)

on M [54, Proposition 3.1]. Now, as an immediate consequence of Theorem 3.3, we have

(3.7) R-R = Q(S,R)—
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Theorem 3.7. Let M is a hypersurface isometrically immersed in N (c), n > 4. Then

) (0= 2
C-R+R-C = Q(S,0)= 1 h Q9. 0) +C-C
(3.8) 0 =2 A — kg AS g A S
: CEDRIGES kg g
holds on M. Moreover, if (1.9) is satisfied on Us NUc C M then on this set we have
(n—2)k
: O = Ly — W02
CRIR-C = Q8.0+ (Lo U2 Q0.0
(3.9) L 0 "=%srs AS+gAS?
: o Qo kg gnS?).

If M is a quasi-FEinstein hypersurface satisfying (I1) and (I.8) on Us NUc then on this set we
have

(n—2)k

(3.10) C-R+R-C = Q(S,C)+<LC—m

) Q(g, 0).
It is known that every 2-quasi-umbilical hypersurface in a semi-Riemannian space of constant
curvature N (c), n > 4, satisfies (L9) [57, Theorem 3.1]. Now Theorem 3.4 yields

Theorem 3.8. If M is a 2-quasi-umbilical hypersurface isometrically immersed in N"™(c),
n >4, then (3.9) holds on Us NUc C M.

Let M be an n-dimensional Chen ideal submanifold of codimension m isometrically immersed
in an Euclidean space E"* n >4, m > 1 [0, 10]. It is known that (L§)) and (9] hold on
Uc C M ([49, Theorem 1], see also [I1), Section 6] and [50, Section 3.1]). Now Theorem 3.3(ii)
yields

Theorem 3.9. If M, n > 4, is a Chen ideal submanifold of codimension m, m > 1, isometri-
cally immersed in an Euclidean space B"*™ then (I.13) holds on this set.

Remark 3.3. (i) We refer to [61] for further results on quasi-Einstein hypersurfaces M in
Nt1(e), n > 4, satisfying (L9). (i) We refer to [50] for curvature properties of pseudosymmetry
type of Chen ideal submanifolds in an Euclidean space. (iii) From (3.1 it follows that every
Einstein hypersurface M in N™*1(c), n > 4, is a pseudosymmetric manifold satisfying (3.1 and

Lp="— Sé;i)f) on Ur C M (cf. [23, Section 5.5]). Now from Theorem 3.1 we have

K 2K
n—1 n+1

n— 2

R-C+C-R = Q(S,0)+ (

n

) Q(g,C)

on Ug. We refer to [75] for examples of semisymmetric Einstein hypersurfaces in some semi-
Riemannian spaces of constant curvature. (iv) Let M be a hypersurface in N (c), n > 4. If
at every point of Uy C M the tensor H?, the square of the second fundamental tensor H of M,
is a linear combination of H and the metric tensor g of M then (L9) holds on Ue (see, e.g.,
[57, Section 1]). Moreover, in view of Theorem 3.5(iii), (I.I5]) is satisfied on Ue.
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4. WARPED PRODUCT MANIFOLDS

Let now (M,g) and (N,g), dimM = p, dimN = n —p, 1 < p < n, be semi-Riemannian
manifolds covered by systems of charts {U;z*} and {V;y}, respectively. Let F' be a positive
smooth function on M. The warped product M xz N of (M,g) and (N,g) is the product
manifold M x N with the metric g=gxpg=mig+(Fo 7r1)7r2g, where 71 : M x N —s M
and m : M x N —s N are the natural projections on M and N, respectively [6], 711 [76].
Let {U x V;a! JaP, oPtt = ¢t 2™ = y" P} be a product chart for M x N. The local
components g;; of the metric g =g Xp § with respect to this chart are the following g;; = g,
ifi=aand j=0b, gij = Fgap if i = a and j = f, and g;; = 0 otherwise, where a,b,c,d, f €
{1,....p}, o, 8,7, 0 e {p+1,...,n} and h,i,7, k,I,m,r,;s € {1,2,...,n}. We will denote by
bars (resp., by tildes) tensors formed from g (resp., g). The local components

1 0
h __ hs _
i = 5 9"%(0;9js + 0;Gis — 0sgi5), 0; = 9
of the Levi-Civita connection V of M Xz N are the following
a 7% a 1 —ab 7~ «a 1 a OF
be — Fbc? FB'y’ af — _59 Fbga67 Faﬁ 2FF 557 I ab — Fab - 0 Fa = Ox

(see, e.g., [48] 72]). The local components
Ruije = gnsLj = gns(OkL5; — 0515 + T4 00 — THTT)),

ij-rk
of the Riemann-Christoffel curvature tensor R and the local components S;; of the Ricci tensor

S of the warped product M xp N which may not vanish identically are the following:

_ 1 _ ~ 1 ~
(41) Rabcd = Rabcda Raab5 = _5 abasé, Raﬁwé = FRaﬁwB - Z AIF Gaﬁfy57
_ n—pl ~ 1 n—p—1 -
42 b = Sup— ST Sas = Sap— = (0(T) + LT A F) G,
(4.2) Sab Sav =5 7T, Sasg = Sap = 5 (00(T) + —— 15— A1F) gas
— 1
(4-3) Ta = VaFy— ﬁFanv tr(T) = ?abTaba AF = AIEF = ?abFana

where T is the (0, 2)-tensor with the local components T,,. The scalar curvature k of M Xp N
satisfies the following relation
1 —p n—

(44) K = l‘i‘i‘F/‘i—T(tr(T)"—T

Warped products play an important role in Riemannian geometry (see, e.g., [5, 6, [72] [76])
as well as in the general relativity theory (see, e.g., [7, 63} [76 [84]). Many well-known space-
times of this theory, i.e. solutions of the Einstein field equations, are warped products, e.g.
the Schwarzschild, Kottler, Reissner-Nordstrgm, Reissner-Nordstrgm-de Sitter, Vaidya, Vaidya-
Kottler, Vaidya-Reissner-Nordstrgm, Vaidya-Bonnor, as well as Robertson-Walker spacetimes.
We recall that a warped product M xz N of an l-dimensional manifold (M,3), g,, = —1,
and a 3-dimensional Riemannian space of constant curvature (N,g), with a warping func-
tion F, is said to be a Robertson-Walker spacetime (see, e.g., [63] [76, 84]). It is well-known
that the Robertson-Walker spacetimes are conformally flat quasi-Einstein manifolds. More
generally, one also considers warped products M xp N of (M,g), dim M = 1, g, = —1,

AL F).
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with a warping function F' and an (n — 1)-dimensional Riemannian manifold (N,g), n > 4.
Such warped products are called generalized Robertson-Walker spacetimes [1, 2]. We men-
tion that Einstein generalized Robertson-Walker spacetimes were classified in [2]. Curva-
ture conditions of pseudosymmetry type on spacetimes have been considered among others
in [3] 2] 13, 15, 16l 40} 43, 48] 51}, 55] 68, 69].

Example 4.1. The warped product manifold M X p N , of an 1-dimensional manifold (M, 7g),
J,; = £1, and an (n — 1)-dimensional semi-Riemannian Einstein manifold (N, g), n > 5, which
is not of constant curvature, with a warping function F, satisfies on Us NUs C M xp N:

tr’l’
R-S = LsQ(9.S). Ls = —5, rank(S—ag) = 1, a = —— — Ls,

n—1
(4.5)  (n=2)(R-C-C-R) = Q(S,R) - Ls Qg, R),
[12, Theorem 4.1]. Furthermore, using (L3)), (LT), (2.15), (2.16) and ([4.3) we get
Q. B) = Q9,C)~ 5 Q(5.0),

K

n—2 n—1

Using Theorem 3.4(i)-(iii), [I7, Theorem 4.1] and [56, Theorem 2| we obtain

Q(S.R) = Q(S,CHL(a— )Q(S,G>,

Theorem 4.1. Let M xz N be the warped product manifold of an 1-dimensional manifold
(M,q), g;; = 1, and a 3-dimensional semi-Riemannian manifold (N,g). If (N,gq) is not a
space of constant curvature then (IL.8) and (I.14) hold on Uc C M xp N. Moreover, if (N,g)

is a quasi-Einstein manifold then (L9) and (ILI3) hold on Us NUs C M xp N.

The Ricci tensor of the following 3-dimensional Riemannian manifolds (N ,g): the Berger

—_——

spheres, the Heisenberg group Nils, PSL(2,R) - the universal covering of the Lie group
PSL(2,R) and the Lie group Sols [74, Section 3|, a Riemannian manifold isometric to an
open part of the Cartan hypersurface [27, Section 2] and some three-spheres of Kaluza-Klein
type [8, Theorem 2 (ii),] have exactly two distinct eigenvalues. Evidently, these manifolds are
quasi-Einstein, and in a consequence, pseudosymmetric (see, e.g., [56, Theorem 1]). For further
examples of 3-dimensional quasi-Einstein manifolds we refer to [4] (Thurston geometries and
warped product manifolds) and [70] (manifolds with constant Ricci principal curvatures).
Theorem 4.1 leads to the following result.

Theorem 4.2. The conditions (L.8), (L9) and (I13) are satisfied on the warped product
manifold M xp N of an 1-dimensional manifold (M,g), §,, = %1, and the 3-dimensional

Riemannian manifold (N,q) such as: the Berger sphere, Nilg, PSL(2,R), Sols, a Riemannian
manifold isometric to an open part of the Cartan hypersurface, or some three-spheres of Kaluza-
Klein type.

Using [I7, Theorem 4.2], [21, Theorem 3.5] and [56, Theorem 3] we can prove
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Theorem 4.3. ]foF]A\f is the warped product manifold of an 1-dimensional manifold (M,g),
gy = %1, and an (n — 1)-dimensional quasi-Einstein conformally flat semi- Riemannian mani-

fold (N, g), n > 5, then the conditions (I8), (I9) and {II3) are satisfied on Uy C M xp N.

We mention that recently curvature conditions of pseudosymmetry type of four-dimensional
Thurston geometries were investigated in [67].

5. PSEUDOSYMMETRIC WARPED PRODUCT MANIFOLDS
In this section we present some results on pseudosymmetric warped product manifolds.

Theorem 5.1. [24] The Riemann-Christoffel curvature tensor R of the warped product manifold
M xp N, with dimM = p, dimN = n—p, 1 < p<n—1,n > 3, satisfies (31)), i.e.
R-R = LrQ(g,R), on some coordinate domain of a point v € Up C M Xp N if and only if
the following relations are satisfied on this set

(E'ﬁ)abcdef = Lpg Q(E,E)abcdefa

QHfRfabc = % (TocHps — TopHea),
Hoa (Rsagy — A41F Gragy) = —%TJ Hyo oy,
(R R)aprire = ( i;&@NEMmm
where Ty, is defined by (4.3) and
(5.1) Hy = ! ab+ FLR Gy -

2

Proposﬂzlon 5.2. Let M Xp ] N be the warped product of semi-Riemannian manifolds (M, )
and (N g), dim M = p, dim N =n — p,2<p<n-—1,n >4, with the warping function F,
and let (M,g) and (N, g) be a spaces of constant curvature, provided thatp > 3 andn—p > 3,
respectively. (i) cf. [24, Corollary 2.1] The warped product M x N satisfies R-R = Ly Q(g, R),
i.e. [31), on some coordinate domain of a point v € Up C M Xp N if and only if the following
two relations are satisfied on this set

7
(52) Hachd - HabHcd = F (m - LR) (gabHCd - gachd>7

~ A F
(5.3) KHyg = (n—p)(n—p—1) <(FLR+ 4}, )Had—Hfd) ,

where H2, = g/ H,. Hy and & and K are the scalar curvatures of (M,q) and (]V, g), respectively.
Moreover, if n —p > 2 then (23) is equivalent to

FR R AF
5.4 H? = ( — + ) He,q.
54) ‘ (p—D1p (—p-Dn—p) 4F )"
(ii) If H = “H 5 s satisfied on some coordinate domain U of a point v € Ur C M Xp N, for

certain functzon Lg, then T = trpT g on U. Moreover, H = 0 and (31)) hold on U, provided
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that Lr = —g;)—g. (iii) Let M X N bithe warped product satisfying R - R = LrQ(g, R). If
H # %g at a point x € Ur C M X N then on some neighbourhood U C Ug of x we have

K
(p—1)p’

Proof. (i) This assertion is a consequence of Theorem 5.1 and the definition of H,, (see
(B10). (ii) From our assumption, by (5.1)), it follows that 7" is proportional to g. It is obvious
that if we set Ly = —;‘;—;C then (5.I)) gives H = 0. Now (i) completes the proof of (ii). (iii)
From (5.2)) we have

(5.5) (a) Lr = (b) rank (H) = 1.

K
HeaHop — HocHpg = F (m - LR) (Goatac — GeaHav),

This, together with (5.2]), yields

K

<m - LR) (gabHcd - gachd + gdeac — gcdHab) — 07

which by contraction with g% gives (ﬁ — Lg)(Heq — %ycd) = 0. From this, by our

assumption, we get immediately (5.5])(a). Now (5.2), by (5.5])(a), reduces to
(56) Hy, Hyy— HypHyg = 0,
which is equivalent to (5.H)(b). Our proposition is thus proved.

Let M x 7 N be the warped product of semi-Riemannian manifolds (M, ), dim M = p, and
(N, 7), dimN =n —p, 2 < p < n — 2, with the warping function F, and let (M,g) and (N, 7)
be spaces of constant curvature, provided that p > 3 and n — p > 3, respectively, satisfying
BI) on Up C M xp N. Moreover, let H %g at a point x € Ur. We note that from (2]

it follows that S # % g at this point. Further, in view of Proposition 5.2, (5.4)), (5.5) and (5.6)
hold on some neighbourhood U C Ug of x. From (5.6), by a suitable contraction, it follows

that H? = trH H on U. The last equation and (5.4) yield

R 7% tr T AlF
5.7 — — = 0.
(5.7) p+(n—p—1)(n—p)F+2F AF?

We note that if p = 2 then (7.2)), (T4), (T5) and (5.7) lead to py = p =0, and C' = 0.

From the above presented considerations it follows

Theorem 5.3. Let M xp N be the warped product of a 2-dimensional semi-Riemannian man-
ifold (M, ) and an (n — 2)-dimensional semi-Riemannian manifold (N,§), n > 4, with the
warping function F', and let (N, g) be a space of constant curvature, provided that n > 5. The
manifold M xp N satisfies (3.1), i.e. R-R = LrQ(g,R), on some coordinate domain U of a

point x € Us NUc C M xp N if and only if on U we have

1 1 tr T 1 tr T
H = -T+FLgg = -T+F(——)g = = (T'"——79) =

i.e. Ty is proportional to g, on U.
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At the end of this section we recall the following result of [47].

Theorem 5.4. cf. [47, Theorem 4.1] Let M xp N be the warped product of a 2-dimensional
semi-Riemannian manifold (M ,g) and an (n—2)-dimensional semi-Riemannian manifold (N, g),

n > 4, with the warping function F, and let (N,qg) be a space of constant curvature, pro-
vided that n > 5. If the tensor Ty, defined by (4.3), is proportional to g, at every point of

Us NUs C M xp N then (1-7) holds on this set.

6. WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE AND KEINSTEINIAN FIBRE

Let M xp N be the warped product manifold of a 2-dimensional manifold (M,g) and an
(n — 2)-dimensional semi-Riemannian manifold (V,q), n > 4, with a warping function F', and

let (N, g) be an Einstein manifold, provided that n > 5. Now (4.2]) turns into

I n—2
(61) Sad - 5 Gab — W Tab> Saﬁ = T19a8,
R tr(7") A F
6.2 = _ —(n—3 .
(6:2) [ ey T G iy

From (6.)) it follows that Ty, is proportional to g, at a point of Us N\Us C M X N if and only

if Sup is proportional to g, at this point. Furthermore, from (6.1I) also it follows that (L2) is
satisfied on Us C M xp N, i.e. rank (S—7, ¢g) < 2 on this set. In addition, if rank (S—7; g) = 2

then M xp N is a 2-quasi-Einstein manifold. Thus we have

Theorem 6.1. Let M x FN be the warped product manifold of a 2-dimensional semi- Riemannian
manifold (M,g) and an (n — 2)-dimensional semi-Riemannian manifold (N,§), n > 4, with
a warping function F, and let (]V,'gv) be an Finstein manifold, provided that n > 5. Then on
Us C M xp N we have rank (S—1, g) < 2, where the function 71 is defined by G23). Moreover,
ifrank (S —71 g) = 2 on some open non-empty subset of Us then M xp N is a 2-quasi- Finstein
manifold.

Let now A be the (0, 2)-tensor with the local components A;; defined by

(6.3) Aij = Sij — 71945,
where 7y is the function defined by (6.2]). Using (6.1) and (6.3]) we get
(64) Aad = Sad — T1 Yad, Aaﬁ = Saﬁ —T19ap — 07 Aaa = 0.

From (6.4)) it follows immediately that A, is proportional to g, if and only if Sy is proportional
t0 G,y Further, let A be the (0, 2)-tensor with the local components A?; = g™ A;. A;,. We have

)

(65) A?j = Sfj—27'1 Sij+7129ij, A?Ld = Szd—QTl Sad"_legad; Aiﬁ = 0, A?La = 0,

tr(A) = ¢ A, = k—nm, tr(A?) = ¢ A% = tr(S?) — 267 + n7Y,
(6.6) tr(A?) — (tr(A)* = tr(S?) — k> + (n — 1)1 (26 — nmy),
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and
tr(A%) — (tr(A))? = ¢ A% — (9" A)?
— VA2 25242, 1 g2 A% — (Y A + 252 A0 + 5% A’
= G g AL AL + 2009 AL Ao + G797 Ao Ass — (G A + 252 A + 57 A
— GG (An)? + 292 A1 Avs + T2(A12)) + 522 (7" (A12)? + 29" Ars Agy + 522(Ans)?)
+27" (" A1 A2 + 7P A1 Agy + 7 (A12)? + 52 A1pAn) — (G A 4+ 257 Arp + G An)?
= —2(7"7" — (@) (Audsn — (A12)?),
ie.
(6.7) tr(A%) — (tr(4))* = —2(det(9)) " (An Az — (A12)%).

From (64) and (67) it follows that at every point of 2 € Us C M Xp N the conditions:
rank(A) = 2 and tr(A4?%) — (tr(A))? # 0 are equivalent. Therefore on the set of at all points of
Us at which rank(A) = 2 we can define the function 7 by

(6.8) Ty = (tr(A2) — (tr(A))2)_1.
We also note that in view of Lemma 2.2 we have

A2y = tr(A) A+ S (0(A) = (65(4)) B

(69) QA W) ea = =5 (6(42) = (6(4))) Q[ A
We have

Theorem 6.2. Let M x N be the warped product manifold of a 2-dimensional semi-Riemannian
manifold (M,g) and an (n — 2)-dimensional semi-Riemannian manifold (N,g), n > 4, with a

warping function F', and let (N,q) be an Finstein manifold, provided that n > 5. Moreover, let

V be the set of all points of Us NUc C M xp N at which S,q is not proportional to G,y. Then
on V we have

(6.10) R-S = (¢ —2mos+1103) Q(g,5) + (2 — 11¢3) Q(g,5%) + 05 Q(S, 5?),
21 —F 1 12k —-F—-2(n—1)m)
(611) ¢1 - 2(77,—2)’ ¢2_ n_27 ¢3_ .

The condition (3.3) holds on the set (Us NU) \ V.
Proof. Let A be the (0, 2)-tensor defined by (6.4]). Using now (2.4)), (2.5), (1)), (42), (€1)

and (6.4) we get
1 1 2’7‘1 — K

n— 2

__Ta = 4 Aa ad )
op Tod = g et =5 0ud)
I 1 27’1 - K
Rac = _Gac ) Raa = —a Aa a afs
bed 5 Grabed Bd n—2( d+2(n_2)gd)96
R 1 2 2’7‘1 — K
(R ' A)abcd 5 Q(gu A)abcch (R : A)aaﬁd = m (Aad + 9 Aad) Japs;

e

(R'A>Oéﬁ“/5 = ) Q(97A>Oéﬁ“/5 = Q(97A2)aﬁ’75 = Q(A7A2)a5'y5 = 0.
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Using the above presented relations and (6.9) we obtain on V' the following condition
(612) R-A = QSI Q(Q,A) +¢2 Q(97A2) +¢3 Q(A7A2>7

where ¢1, ¢ and ¢3 are defined on V by (6.I1). Now (6.12), by (6.4) and (6.5)), turns into
(6.10). Finally, from (6.0)) and the fact that Sy is proportional to g.,, on (UsNU:) \ V' it follows
that T}, also is proportional to gq, on this set. Therefore, in view of [20, Corollary 4.1], (B3]
holds on (Us NUc) \ V. The last remark completes proof.

7. WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE AND FIBRE OF CONSTANT
CURVATURE

We consider the warped product manifold M x F~N of a 2-dimensional manifold (M, g) and an
(n — 2)-dimensional semi-Riemannian manifold (V,q), n > 4, with a warping function F', and

let (N,g) be a space of constant curvature, provided that n > 5. Using Lemma 1.1, (4.1])-(4.4)
and [22], egs. (12)-(16)] we can check that the local components C,jj, of the tensor Ricci tensor

S and the Weyl conformal curvature tensor C' of M xp N are expressed by

(n —3)po _ (n —3)po
Cabcd n—1 Gabcd7 Cabc5 — (n — 2)(n — 1) Gabc57
(71) Caﬁ %) 2p0 Gaﬁ ) Cabc5 = Cab s — Caﬁ 5 = 0
ol (n o 2)(77, o 1) Y0 Y 0 )
respectively, where
R R tr(T)  AF
2 = = — ]
(7.2) mo T 3 m—2)F | 2F 4P
We also have
R tr(T
F71+(n—3)gF+(n—2)¥
B R K tr(T) A F
= (n—3)§F+n_2+(n—3)T—(n—3) o
R K tr(T)  AF n—1
3) = —3)F | = — = (n—3)Fpy = F
(78) = (n=3) <2+(n—3)(n—2)F+ 0F  4F? (n=3) Fpo P
where
2(n = 3)po
4 S S
(7.4) p 3
Now the condition (7.1]), by (7.4]), turns into
p p
Cac = _Gac> Cac :_7Gaca
bed 5 Gabed bed 2(n—2) bes
p
7.5 Cy, Gagrss Caves = Caps = Cq = 0.

Remark 7.1. Let M x z N be the warped product manifold of a 2-dimensional manifold (M, g)

and an (n — 2)-dimensional semi-Riemannian manifold (N,g), n > 4, with a warping function

F, and let (N,g) be a space of constant curvature, provided that n > 5. (i) From () it



20

follows immediately that the manifold M xpN is conformally flat if and only if the function py,
defined by ((7.2)), vanishes on M. (ii) We refer to [I8, Lemma 3.3, Lemma 4.1, Lemma 4.3], [14],
Example 5.4 (i), (ii)] and [73} Sections 4 and 5] for examples of conformally flat warped product

manifolds M x z N, with dim M > 2. (iii) Recently warped product spacetimes M x N, with
dim M = N = 2, satisfying curvature conditions of pseudosymmetry type were studied in [40].

Theorem 7.1. Let M x N be the warped product manifold of a 2-dimensional semi-Riemannian
manifold (M,g) and an (n — 2)-dimensional semi-Riemannian manifold (N,§), n > 4, with a
warping function F', and let (]V,Ei) be a space of constant curvature, provided that n > 5.

(i) The following three conditions are satisfied on the set Us C M X g N:

_ P
(7.6) C-C = —%n_2¢W%C%
where p is defined by (7)), (I8) with the function L be defined by
B n—2 (_ tr(7) n—3
(77) L = —(n — l)p (I{ (’7‘1 + W) + AF2 (tl"(T2) — (tl"(T))2)) s

where 7y is defined by (62), and (L13) with Lc = —5;25 and L defined by (77).

(ii) Let V be the set of all points of Us NUc C M X p N at which Sad s not proportional to G,,.
Then on V we have:

B (n—1pry [n—2 ,  tr(S?%) —k?
(7.8) C = _(n—3)(n—2)( 5 S/\S—/{g/\S%—gAS—ﬁG),
‘ ‘ _ _ p n—3
(79) R-C+C-R Q(S,C) + (L 20— 3] + = 2)(n = 1),07‘2) Q(g,0),
C-R = (n—12) ((p+(n—1)/)7'17'2)5—(n—l)pﬁTgSz,G)
(n— 1) p72 2 P
(7.10) Cm R 00 QUS89 - 5 Q0.
C = n-3 (n=1)pm 2
R-C = Q(S,0C)+ (L+ (n—2)(n—1)pr2)Q(g’C>+ (n—2)? g N Q(S,S5%)
(7.11) - ! Q((B +(n—1) prin) S — (n— 1) prim S, G).

(n—2)2 2

On the set (UsNU)\V the Weyl tensor C' is expressed by a linear combination of the Kulkarni-
Nomizu products SNS, gNS and g N\ g.

Proof. (i) Using (2.2) and (2.3) we can verify that the local components (C - C')psjpim and
Q(9, C)nijrim of the tensors C' - C' and Q(g, C') which may not vanish are those related to

n—1)p n—1)p
(712> (C : C)aabcdﬁ == ﬁ gaﬁGdabcu (C : C)aaﬁfydﬁ == 4(77, (_ 2)2(111 3) gadGcgaﬁ“{v
(n—1)p (n—1)p
(713> Q(gv C)aabcdﬁ = 2(7’L 2) gaﬁGdabm Q(ga C)aaﬁ’yd& = - 2(71 — 2)(7’L — 3) gadGcSaﬁ«/
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(cf. [15, egs. (8)-(11)]). From (ZI2) and (TI3) it follows that (LI) holds on Uy C M xp N,
where Lo = —z(n—p_z) and p is defined by (7.4]).

We prove now that (L) is satisfied. First of all, we recall that necessary and sufficient
conditions for warped products of two semi-Riemannian spaces of constant curvature satisfying
that condition are given in [17]. In particular, when the base (M, g) is a 2-dimensional manifold,

(N,§) a space of constant curvature (when n > 5), then (L) holds on Ue € M xp N if and

only if
I3 1 n—3 K L n—3 FLE\ —
_ t _
<(n—2 2<r(T>+ oF AIF)) <2+n—2)+n—2 2 )Gdabc
n—3 k L
(7.14) = I (TooTea — TucTha) — (Z + 5) (GapTed + GeaTob — TacTba — GogLuc)

on Ue (cf., [17, Section 7, eq. (40)]). Applying in ((C.I14]) the relation (6.2) and the definitions
of the tensors g AT and T' AT we obtain

2L n—3 — n—31 I3
R F FLR = —(T'ANT — | =+ L )
((K’_I' n_2) Tl“’ n—29 K') Gdabc oF 2( A )dabc (2 + ) (g/\T)dabc

Thie last equation, together with
(g/\T>1221 = tI‘(T) G1221 = tI‘(T) det(?),

ST ATho = TuTo— (T = — det() (ir(T?) — (ir(T))?),
leads to
<(R + n2_L2) Fri + Z — ;’ FLR) det(q)
_ _”2;3 % (t2(T?) — (t6(T))2) det(g) — (g + L) t2(T) det(g),
((R + n2—_L2) Fri+ Z — ;’ FLE) = —”2;3 % (tr(T?) — (tr(T))?) — (g + L) tr(T),
(%Fﬁ + Z—:;’ Fr+ tr(T)) L = —Ffn— 22 (tx(T%) — (tx(T))%) — Etr(T),
<F7‘1 +(n—3) Fg +(n— 2)tr(2T)) L
S ; 2 (FR (71 + tr;?) + n4;,3 (tr(T?) — (tr(T))2)> .

This, by making use of (6.2), (7.2]) and (7.4]), turns into

=1L = -2 (% (n+ G2) + 522 () - )
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which, together with (73)) and (7.4), yields (Z.7)). Now Theorem 3.3(ii) completes the proof of
(i). (ii) First we prove that the following relation is satisfied on V:

Cc = %AAA+¢29/\A+¢3G—I—¢4Q/\A2
(n—1)pmy n—2 5 1
7.15 = — ANA—-tr(A)gNn A NA"— ——(G
(7.15) n—3)n-2) \ 2 (A)gna+y CEN
b = — (n—1)pm by = (n — 1)pmatr(A)
! n-3 = 7 (n—3)(n—2)"
P (n—1)pm
7.16 = - _
where the (0,2)-tensor A is defined on V' by (6.4). Let B be the (0,4)-tensor defined on V' by
B = C- %AAA_¢QQAA_¢3G_¢4Q/\A2,
where ¢, ..., ¢4 are some functions on V. Evidently, B is generalized curvature tensor. Let

By,;ji be the local components of B. We have
Bhijk = Chijr — &1 (AnkAij — AnjAix) — &2 (gneAij + 95 Ank — njAik — giAnj)
— 3 (gnkgis — gnsgix) — Ga (g ALy + 9ijAny — 9ng A% — ginAz;)-
It is clear that B vanish at a point z € V if and only if
Chije = 01 (AmAij — AnjAir) + 02 (9reAij + GijAnk — GnjAik — GiAnj)
+¢3 (gnegi; — Inigie) + G4 (9eAs + 9 Ank — gni A% — ginAs;)

at x. We note that from (6.4]) and (7.1]) it follows immediately that the local components By,
of the tensor B which may not vanish identically are the following: Bgpca; Bapes and Bagys.
Thus we see that B = 0 at x if and only if

(g = ¢3> Gabed = 01 (AvaAve — AacApa) + 02 (GadAbe + bocAvd — JacAbd — GodAac)
+4 (gadAl%c + bbcAzd - gacAl%d - gbdAzc)v

P 2
- cYad — Aca A ad
<2(n_2)+¢3>9b96 ®2 Apcfas + G4 Ajeas

p
7.17 — G, =0
010 (g %) G
at z. Further, (T.I7), by (6.9), is equivalent to

¢1 (A11A22 - A12A12) = % G12217
_ _ (n—1)p 1 2y 2
62+ ()00 A = (5 L) — ()00 ) g

p
(n—=3)(n-2)

¢3 =
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But this, together with (6.7), (6.8) and the fact that A, is not proportional to g, leads
immediately to ((Z.10).

From (7.15), by (6.3), (6.5), (€.6) and (7.16), we get (.8). Now (I.I3]), together with (7.7
and (7.8), yields (7.9). Using (L3)), (2.14) and (7.6]) we obtain

1 K 1
C-R = C-(C+mgAS—(n_2)(n_1)G) = C-C+—5gN(C-S)
= 500 Q. G+ (=)o) S = (1= prima )
S QS S - 55 Q00.)

and in a consequence (7.I0). From (7.9) and (7.I0) it follows immediately (Z.IT).
From (6.1)) and the fact that S,, is proportional to g, on (Us NUc) \ V' it follows that

T.y also is proportional to g, on this set. Therefore, in view of Theorem 5.4, (I.7)) holds on
(UsNU:) \ V. Now using (L5]) and (L7) we can express the tensor C' by a linear combination
of the Kulkarni-Nomizu products SAS, gAS and gAg. The last remark completes proof of (ii).

Remark 7.1. (i) Let the curvature tensor R of a semi-Riemannian manifold (M, g), n > 4,
satisfies

[
2
on Us NUc C M, where ¢1, ¢o, . . ., ¢4 are some functions on this set. Evidently, if (I4]) holds
at a point of Us NU¢ then (TIF) reduces to (L) at this point. We can prove that if the tensor
S3 is not a linear combination of g, S and S? at a point Us NUc then the decomposition (7.18)
is unique at this point. We also note that (7.I8]), by (LI), yields

¢ 1 K
75/\5—1—(¢2—m)g/\5+(¢3+(n_2)(n_1)

(ii) Warped product manifolds M xp N, dim M = 1, satisfying (ZI8) are investigated in [34].

(7.18) R = SAS+pagNS+¢dsG+pygAS>

Example 7.1. (i) Let M, = {(v,r) € R? : 7 > 0}, resp., My = {(u,r) € R? : r > 0}, be an
open connected non-empty subset of R? and let on M, resp., Ms, the metric tensor g,, resp.,
75, be defined by

Gipdrtda® = —fidv* 4+ 2dvdr, Goyda®de® = —fydu® — 2 dudr,

1 1

=wv, 22 =7 and f; = fi(v,r), resp., 2! = u, 22 = r and fo = fo(u,r), is a smooth
function on M, resp., M5, and a,b = 1,2. We consider the warped product manifold M; xp N ,
i=1,2,0f (M;,g,),i = 1,2, and the 2-dimensional standard unit sphere (N, §) with the warping
function F = F(r) = r?. (ii) (a) According to [7, Section 29.5.2] (see also [63, Section 9.5])
the Vaidya metrics form a simple class of timedependent generalizations of the Schwarzschild
metric [87]. They can be obtained from the Schwarzschild metric written in ingoing or outgoing
Eddington-Finkelstein coordinates by replacing the constant mass m by a mass function m(v)
or m(u) depending on an advanced or retarded time coordinate. The metrics of the warped
products manifolds M; xp N, i = 1,2, defined in (i), provided that fi(v,r) = 1 — mly)

T

where
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resp., fo(u,r) = 1 — 2";("), are the Vaidya metrics (see, e.g., [7, eq. (29.15)] and [63] eq.
(9.32)]). (b) The metric of My X N, resp., My X N, is called the generalized Vaidya ingoing

metric, resp., outgoing metric (see, e.g. [7, eq. (39.16)]. In particular, the metric of M, xp N
with the function f = f(v r) = fi(v,r) deﬁned by f(v,r) =1— 2m—(”) ATTQ,A = const.,
fo,r) = 1-— & 2,q = const., f(v,r) = 1— 2m(”) -1 (2”), respectively, is named

the Valdya—Kottler the Vaidya- Re1ssner—Nordstr@m and the Va1dya—Bonnor ingoing metric,
respectively, (see, e.g. [T, eqs. (39.18), (39.19), (39.20)]). (iii) (a) For the manifold M; xz N,
with fi(v,r) =1— 2m(v) , we have: S, = 22 m/ = 9 1y = m(v), and Sy, = 0, if h # v or

r2 dv ?

k#v,5=0,k=0, S R Z2gA S, C #0, in particular Cyypy = —28. Moreover,

(719) C-C = R-R—Q(S,R) = %(R~C+C~R—Q(S,C)) - —g@(g,C).

(b) For the manifold My, x N, with fo(u,7) = 1 — 2mT(u), we have: S,, = —27,—"21/, m = CQ—Z"”,
m = m(u), and Spr = 0, if h Zuork #u, S?=0,k=0,S-R=23gAS, C#0,in
particular Cy,py = —2%. Moreover, we also have (TI19) (with m = m(u)). (iv) For the metric

of the manifold M, xp N, with the function f = f(v,7) = fi(v,7), we have

1 [r? 1
S = 5 (A rf = f) g Ser = - SIS ) gur
r2 \ 2 f

1 2
Sap = Tigapy 1 = S(rfi=fH+1), k= —73 (%fﬁi+27“fﬁ+f—1),

1 T2 17 12 r /
Am) = va_Tlgvv = 3 _frr+2r-fr+f_1__fv Yoo,
r 2 f

L,
Avr = Svr_Tlgvr = S\ 5 rr_'_f_l Gor,
T 2
ATT = S —Tlgw = 0, Aag = Saﬁ—ﬁgaﬁ = 0,

where f = %,f; = —T, and f) = 3. We set 73 = ”2—2 " —rfl+ f—1. Now we can state
that M xgp N is a conformall}L flat manifold if and only if the function 73 is a zero function.
Furthermore, on Us C M xp N we have (Z5) and (Z.8)), with n = 4 and p = —%7'37"_2, as well
as (LR) with L = ((f—1)f—3 (/)75 . We also note that M; xz N is an Einstein manifold

if and only if the function f satisfies on M the following system of differential equations

T—2”—f+1:0 —2”+2rf/—5f’+f—1=0

2 rr ) 2 rr T f v °
It is easy to see that at every point of M, X N we have rankA = 2 if and only if at every point
of M, we have = L+ f—1#0. Fmally, Agp is proportional to gu, at a point of My xp N if

and only if at thls pomt we have rf! +2f — f{) =0.

Example 7.2. (i) Let M, = {(u, r) €R? : r—2m >0 (or r—2m < 0)} be an open connected
non-empty subset of R? and let on M the metric tensor g be defined by

wdu® 423G, dudr +g,.dr* = —exp(28) f du® + 2 exp(B) dudr,
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l—u,2?=r, f=1— 27m, and m = m(u,r) and § = B(u,r) are some smooth functions

where x
on M. Further, let g be the standard metric on the 2-dimensional unit sphere N = S%(1).

We denote by ¢ = § xp g, where F' = F(r) = r?, the warped product metric of M xp N.
The metric g is said to be the general spherically symmetric metric in advanced Eddington-
Filkenstein coordinates, see, e.g., [80), Section 4.1]. (ii) The local components of the Ricci tensor
S of M xp N which may not vanish identically are the following
1
P m(—% exp(—p)m., — (=3r? 4+ 6rm)B.m. — (—r* + 2rm)m/,
—(r* = 2r*m) exp(—B) B! — (2r* — 5rm + 2m?)f.

—(r* = 4r*m + 4rm?)((8;)° + B.)) Guu,

1
Sur = —5(=r” exp(=P)By, + 3rmi B+ rmy, + (=2 +m) + (= + 2rm)((5))" + 57,))ur,

Spr = %B;, Ses = T19ss, S0 = Tigep, T = :—Q(Qm/r — (r—2m)B,),
where gos = 17 oy Goo = 1, Goo = 12 Goo, Jop = sin® ¢ and m), = 22 m! = %272% =92 6 =
%, pr = %, = a?fgr' (iii) In the class of the general spherically symmetric metrics g we
also have non-Einstein metrics. For instance, from the above formulas it follows immediately
that the metrics g with S, # 0, i.e. with . # 0, are non-Einstein metrics. Moreover, for such
metrics S, are non-proportional to gu, a,b = 1,2. Some general spherically symmetric g also
are non-conformally flat metrics. Namely, the metrics g satisfying

r3(exp(—B)BY, + (B2 + BL) —r2(m! + B, +2m(B.)* +2mpB!. + 38.m.)
—r(5mpB. +4m.) —6m = 0

are non-conformally flat. This means that for some general spherically symmetric metrics g the
set V, defined in Theorem 7.1, is a non-empty subset of Us NUc C M xp N.

Example 7.3. (i) Let M = {(t,r) € R? : ¢t > 0 and r > 0} be an open connected non-empty
subset of R? and let on M the metric tensor g be defined by g,,dzdx® = dt* + R*(t)dr?,
a,b= 1,2, where ' = t, 22 = r, and R = R(t) is a smooth positive (or negative) function on
M. Let M x5z N be the warped product manifold of the manifold (M, g) and the 2-dimensional
standard unit sphere (N,§) with the warping function F = F(t,r) = (f(r)R(¢))?, where
f = f(r) is a smooth positive (or negative) function on M. We denote by g = § xr g the
metric of M Xz N. We mention that the metric g was considerd in [65, Section 4] (see also [66),
Section 6]). (i) We set py = (ff2 — (f1)? + 1)(fR)™2, where f/ = % and f/ = C;ij. We can
check that the Weyl conformal curvature tensor C' of g is a zero tensor if and only if pg = 0
on M Further, we have 512 = 521 = O, Sll = )\1 g1, 522 = )\2 go2, Sag =T19aB8 = (fR)27'1 gag,
a, B = 3,4, where

)\__//—1 /_@ //_d_R1/€)\__ /" 1\ 2 " -1 p-2
L= SBRGRTL Ry = =5 Ryo= b Ao = —(fRRy +2f(R) +2f1)f R

no= —(fPRR,+2f*(R) + ff + (F) = D[R = X+ po
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and g,p are the local components of the metric g. (iii) From (ii) it follows that A\; = Ay if
and only if RR” — (R')?> = ¢, and f” = c¢;f and ¢; = const. on M. (iv) If py is non-zero
at a point of Us C M xp N then in view of (i) S — %9 # 0 at this point. Thus we have
Uo CUs C M Xp N. Moreover, the following relations are satisfied on Ug

R-R-QS,R) = —2Q0,C), C-C = —mQs,C).
R.C+C-R = Q(S,C)—%(ﬁ+2po)Q(g,C).

(v) If A = Xy = )y at a point of Up then Sy, = A gup, and by ([E2), T, = % Jap at this point.
Let V be the set of all points of Uy having this property. From (iii) it follows that for some
functions f and R the set V is non-empty and in view of [47, Theorem 4.1] we can state that
(L7) holds on this set. (vi) If A\; # Ay at a point of Ux then S, is not proportional to g, at
this point. Let V' be the set of all points of Uc having this property. From (iii) it follows that
for some functions f and R the set V' is non-empty and in view of Theorem 7.1(ii) we can state

that (Z.8)-(7.II)) hold on this set.
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