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Curvature properties of some class of warped product manifolds

Ryszard Deszcz, Ma lgorzata G logowska, Jan Je lowicki and Georges Zafindratafa

Dedicated to the memory of Professor W lodzimierz Waliszewski

Abstract. Warped product manifolds with p-dimensional base, p=1,2, satisfy some curvature conditions of

pseudosymmetry type. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature

tensor R, the Ricci tensor S and the Weyl conformal curvature C of the considered manifolds. The main result

of the paper states that if p=2 and the fibre is a semi-Riemannian space of constant curvature, if n is greater

or equal to 4, then the (0,6)-tensors R.R - Q(S,R) and C.C of such warped products are proportional to the

(0,6)-tensor Q(g,C) and the tensor C is expressed by a linear combination of some Kulkarni-Nomizu products

formed from the tensors g and S. Thus these curvature conditions satisfy non-conformally flat non-Einstein

warped product spacetimes (p=2, n=4). We also investigate curvature properties of pseudosymmetry type of

quasi-Einstein manifolds. In particular, we obtain some curvature property of the Goedel spacetime.1

1. Introduction

Let g, ∇, R, S, κ and C be the metric tensor, the Levi-Civita connection, the Riemann-
Christoffel curvature tensor, the Ricci tensor, the scalar curvature tensor and the Weyl confor-
mal curvature tensor of a semi-Riemannian manifold (M, g), n = dimM ≥ 3, respectively. It is
well-known that (M, g) is said to be an Einstein manifold if at every point of M its Ricci tensor
S is proportional to the metric tensor g, i.e., S = κ

n
g on M [5]. In particular, if S = 0 on M

then (M, g) is called a Ricci flat manifold. We denote by US the set of all points of (M, g) at
which S is not proportional to g, i.e., US = {x ∈ M |S − κ

n
g 6= 0 at x}. The manifold (M, g)

is said to be a quasi-Einstein manifold if

rank (S − α g) = 1(1.1)

on US, where α is some function on US. In particular, if rankS = 1 on US then (M, g) is called

a Ricci-simple manifold [19]. Every warped product manifold M ×F Ñ of an 1-dimensional

(M, g) base manifold and a 2-dimensional manifold (Ñ , g̃) or an (n − 1)-dimensional Einstein

manifold (Ñ, g̃), n ≥ 4, with a warping function F , is a quasi-Einstein manifold (see, e.g.,
[12, Section 1]). We mention that quasi-Einstein manifolds arose during the study of exact
solutions of the Einstein field equations and the investigation on quasi-umbilical hypersurfaces
of conformally flat spaces, see, e.g., [29] and references therein. Quasi-Einstein hypersurfaces in
semi-Riemannian spaces of constant curvature were studied among others in: [26, 30, 42, 46, 61],
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see also [29]. We refer to [12, 43] for recent results on quasi-Einstein manifolds. The semi-
Riemannian manifold (M, g), n ≥ 3, is called a 2-quasi-Einstein manifold if

rank (S − α g) ≤ 2,(1.2)

on US and rank (S − α g) = 2 on some open non-empty subset of US, where α is some function

on US (see, e.g., [32, 36]). Every warped product manifold M ×F Ñ of a 2-dimensional base

manifold (M, g) and a 2-dimensional manifold (Ñ, g̃) or an (n− 2)-dimensional Einstein semi-

Riemannian manifold (Ñ, g̃), n ≥ 5, with a warping function F , satisfies (1.2) (see Theorem
6.1 of this paper). Some exact solutions of the Einstein field equations are non-conformally
flat 2-quasi-Einstein manifolds. For instance, the Reissner-Nordstrøm spacetime, as well as the
Reissner-Nordstrøm-de Sitter type spacetimes are such manifolds (see, e.g., [69]). It seems that
the Reissner-Nordstrøm spacetime is the ”oldest” example of a non-conformally flat 2-quasi-
Einstein warped product manifold. It is easy to see that every 2-quasi-umbilical hypersurface in
a semi-Riemannian space of constant curvature is a 2-quasi-Einstein manifold (see, e.g., [36]).

Let A and B be symmetric (0, 2)-tensors on a semi-Riemannian manifold (M, g). We denote
by A ∧ B their Kulkarni-Nomizu tensor. We note that (1.1) holds at a point x ∈ US ⊂ M if
and only if at this point we have (S − α g) ∧ (S − α g) = 0, i.e.

1

2
S ∧ S − α g ∧ S + α2G = 0, G =

1

2
g ∧ g.(1.3)

From (1.3), by a suitable contraction, we get immediately

S2 = (κ− (n− 2)α)S + α((n− 1)α− κ) g.(1.4)

For precise definitions of the symbols used here, we refer to Section 2 of this paper (see also
[12, 29]). We can write the Weyl conformal curvature tensor C of (M, g), n ≥ 3, by

C = R−
1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.(1.5)

It is well-known that a semi-Riemannian manifold (M, g), n ≥ 4, is conformally flat if and only
if C = 0 everywhere in M . From C = 0, by (1.5), we get immediately

R =
1

n− 2
g ∧ S −

κ

(n− 2)(n− 1)
G.(1.6)

The Robertson-Walker spacetimes, and more generally, warped products of an 1-dimensional
manifold and an (n− 1)-dimensional semi-Riemannian space of constant curvature, n ≥ 4, are
conformally flat quasi-Einstein manifolds (see, e.g., [73, Section 4]). It is obvious that (1.3) and
(1.6) yield

R =
1

2
S ∧ S +

(
1

n− 2
− α

)
g ∧ S +

(
α2 −

κ

(n− 2)(n− 1)

)
G

(see, e.g., [28, p. 150]). Thus the curvature tensor R of a conformally flat quasi-Einstein
manifold (M, g), n ≥ 4, is expressed by a linear combination of the tensors: S ∧ S, g ∧ S

and G. We also can investigate non-conformally flat and non-quasi-Einstein semi-Riemannian
manifolds (M, g), n ≥ 4, whose curvature tensor R is a linear combination of these tensors.
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More precisely, we can investigate semi-Riemannian manifolds (M, g), n ≥ 4, satisfying on the
set US ∩ UC ⊂M the condition

R =
φ

2
S ∧ S + µ g ∧ S + η G,(1.7)

where UC is the set of all points of M at which C 6= 0 and φ, µ and η are some functions on
US ∩UC . A semi-Riemannian manifold (M, g), n ≥ 4, satisfying (1.7) on US ∩UC ⊂M is called
a Roter type manifold, or Roter manifold, or Roter space [25, 35, 36]. Roter type manifolds
and in particular Roter type hypersurfaces in semi-Riemannian spaces of constant curvature
were studied in: [25, 28, 31, 32, 35, 42, 47, 51, 52, 59, 60, 68, 69]. In Section 3 we present
curvature conditions satisfying by Roter type manifolds. In particular, on every Roter type
manifold (M, g), n ≥ 4, the following relations are satisfied on US ∩ UC ⊂M :

R · R−Q(S,R) = LQ(g, C),(1.8)

C · C = LC Q(g, C),(1.9)

C ·R +R · C = Q(S, C) +

(
L + LC −

1

(n− 2)φ

)
Q(g, C),(1.10)

C · R− R · C = Q(S, C) −
κ

n− 1
Q(g, C),(1.11)

where L = LR + µ

φ
, LC = LR − κ

n−1
+ 1

(n−2)φ
− µ

φ
and LR = 1

φ
((n− 2)(µ2 − φη) − µ) (Theorem

3.2 and Proposition 3.3). In [78, Theorem 3.2] (also see [36, Section 4] and [79, Section 4]) it
was proved that the curvature tensor R of some hypersurfaces in semi-Riemannian spaces of
constant curvature is a linear combination of the tensors: S ∧ S, g ∧ S, G, g ∧ S2, S ∧ S2 and
S2 ∧ S2. Precisely, we have on US ∩ UC ⊂M

R =
φ1

2
S ∧ S + φ2 g ∧ S + φ3G+ φ4 g ∧ S

2 + φ5 S ∧ S2 +
φ6

2
S2 ∧ S2,(1.12)

where φ1, φ2, . . . , φ6 are some functions on this set. Evidently, (1.7) is a special case of (1.12).
Examples of manifolds satisfying (1.12) are given in [33, Example 2.1], [36, Section 4], [43,
Example 4.1], [79, Section 5] and [81, Section 5]. Manifolds satisfying (1.12) were studied in
[34, 60, 82, 83].

It is easy to verify that on any semi-Riemannian manifold (M, g), n ≥ 4, the following
identity is satisfied

C ·R +R · C = R · R + C · C −
1

(n− 2)2
Q(g,−

κ

n− 1
g ∧ S + g ∧ S2)(1.13)

(Theorem 3.4(i)). In addition, if (1.8), with some function L, holds on UC ⊂ M then (1.13)
turns into

C · R +R · C = Q(S, C) + LQ(g, C) + C · C

−
1

(n− 2)2
Q(g,

n− 2

2
S ∧ S − κ g ∧ S + g ∧ S2)(1.14)



4

(Theorem 3.4(ii)). Moreover, if (1.9), with some functions LC , is satisfied on UC ⊂ M then
(1.14) takes the form

C · R +R · C = Q(S, C) + (L + LC)Q(g, C)

−
1

(n− 2)2
Q(g,

n− 2

2
S ∧ S − κ g ∧ S + g ∧ S2)(1.15)

(Theorem 3.4(iii)). We note that if (M, g) is a quasi-Einstein semi-Riemannian manifold satis-
fying (1.1) then (1.15), by making use of (1.3) and (1.4), turns into

C · R +R · C = Q(S, C) + (L+ LC)Q(g, C),(1.16)

and in particular, if (M, g) is the Gödel spacetime then (1.16) yields

C · R +R · C = Q(S, C) +
κ

6
Q(g, C)(1.17)

(Theorem 3.4(iv)-(v)). The conditions (1.8) and (1.9) are also satisfied on some submanifolds
isometrically immersed in an Euclidean space, as well as on some hypersurfaces isometrically
immersed in a semi-Riemannian space of constant curvature (theorems 3.7-3.9).

In Section 4 we prove that warped product manifolds M ×F Ñ of an 1-dimensional semi-
Riemannian manifold (M, g) and some (n− 1)-dimensional semi-Riemannian manifold (Ñ, g̃),
n ≥ 4, satisfy (1.8), (1.9) and (1.15) (theorems 4.1-4.3). In particular, we state that the warped
product of an 1-dimensional manifold (M, g) and some 3-dimensional Riemannian manifold: the

3-dimensional Berger spheres, the Heisenberg group Nil3, ˜PSL(2,R) - the universal covering of
the Lie group PSL(2,R), the Lie group Sol3, a Riemannian manifold isometric to an open part
of the 3-dimensional Cartan hypersurface or some three-spheres of Kaluza-Klein type, satisfies
(1.8), (1.9) and (1.15) (Theorem 4.2).

In the next section we present results on pseudosymmetric warped product manifolds. In

particular, we consider warped products M×F Ñ of a 2-dimensional semi-Riemannian manifold

(M, g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with the warping

function F , assuming that (Ñ , g̃) is a semi-Riemannian space of constant curvature, when
n ≥ 5. In Theorem 5.3 we present necessary and sufficient condition for such manifold to be
pseudosymmetric.

In Section 6 we consider warped products M ×F Ñ of a 2-dimensional semi-Riemannian

manifold (M, g) and an (n − 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with

the warping function F , assuming that (Ñ , g̃) is an Einstein semi-Riemannian manifold, when

n ≥ 5. Theorem 6.2 states that on some subset US ∩ UC ⊂ M ×F Ñ (see to that section for
details) the tensor R ·S is a linear combination of the Tachibana tensors Q(g, S), Q(g, S2) and
Q(S, S2), i.e.

R · S = ψ5Q(g, S) + ψ4Q(g, S2) + ψ3Q(S, S2),(1.18)

on this set, for some functions ψ3, ψ4 and ψ5. We mention that recently in [36] it was shown
that the tensor R · S of some minimal hypersurfaces in Euclidean spaces has this property (see
also [37, 77]). The condition (1.18), by (2.19), turns into

C · S = ψ1Q(g, S) + ψ2Q(g, S2) + ψ3Q(S, S2),(1.19)
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where ψ1 = ψ5 + κ
(n−2)(n−1)

and ψ2 = ψ4 −
1

n−2
. Semi-Riemannian manifolds, and in particular,

hypersurfaces in semi-Riemannian spaces of constant curvature, satisfying the special cases of
(1.19), i.e. C · S = ψQ(g, S), resp., C · S = 0, were investigated, among others, in [27, 68, 69],
resp., [29, 30, 31, 32, 44, 45, 81].

In the last section we consider warped products M×F Ñ of a 2-dimensional semi-Riemannian

manifold (M, g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, with the

warping function F , assuming that (Ñ , g̃) is a semi-Riemannian space of constant curvature,

when n ≥ 5. In Theorem 7.1(i) we state that (1.8), (1.9) and (1.15) hold on UC ⊂ M ×F Ñ .
In Theorem 7.1(ii), under some additional assumption, we state that on some open subset

V ⊂ US ∩ UC ⊂ M ×F Ñ the Weyl tensor C of the considered warped product is a linear
combination of the Kulkarni-Nomizu tensors S ∧ S, g ∧ S, g ∧ S2 and G. Precisely, (7.8) holds
on V . Evidently, (7.8) by (1.5) turns into (1.12). Thus we have a new family of manifolds
satisfying (1.12). On the set (US ∩ UC) \ V the Weyl tensor C is a linear combination of the
Kulkarni-Nomizu tensors S∧S, g∧S and G. In that section we also present curvature properties
of the Vaidya spacetime, as well as of some generalized Vaidya spacetimes: the Vaidya-Kottler,
the Vaidya-Reissner-Nordstrøm and the Vaidya-Bonnor spacetime.

2. Preliminary results

Throughout this paper all manifolds are assumed to be connected paracompact manifolds of
class C∞. Let (M, g) be an n-dimensional, n ≥ 2, semi-Riemannian manifold and let ∇ be its
Levi-Civita connection and Ξ(M) the Lie algebra of vector fields on M . We define on M the
endomorphisms X ∧A Y and R(X, Y ) of Ξ(M), respectively, by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y, R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where A is a symmetric (0, 2)-tensor on M and X, Y, Z ∈ Ξ(M). The Ricci tensor S, the
Ricci operator S, the tensors S2 and S3 and the scalar curvature κ of (M, g) are defined by
S(X, Y ) = tr{Z → R(Z,X)Y }, g(SX, Y ) = S(X, Y ), S2(X, Y ) = S(SX, Y ), S3(X, Y ) =
S2(SX, Y ) and κ = trS, respectively. The endomorphism C(X, Y ) is defined by

C(X, Y )Z = R(X, Y )Z −
1

n− 2
(X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y )Z.

Now the (0, 4)-tensor G, the Riemann-Christoffel curvature tensor R and the Weyl conformal
curvature tensor C of (M, g) are defined by G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4) and

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4), C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

respectively, where X1, X2, X3, X4 ∈ Ξ(M). Let B be a tensor field sending any X, Y ∈ Ξ(M)
to a skew-symmetric endomorphism B(X, Y ), and let B be a (0, 4)-tensor associated with B by

B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4) .(2.1)

The tensor B is said to be a generalized curvature tensor if the following conditions are satisfied

B(X1, X2, X3, X4) = B(X3, X4, X1, X2) ,

B(X1, X2, X3, X4) +B(X3, X1, X2, X4) +B(X2, X3, X1, X4) = 0 .

For B as above, let B be again defined by (2.1). We extend the endomorphism B(X, Y ) to
a derivation B(X, Y )· of the algebra of tensor fields on M , assuming that it commutes with
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contractions and B(X, Y ) · f = 0, for any smooth function f on M . For a (0, k)-tensor field
T , k ≥ 1, we can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk, X, Y ) = (B(X, Y ) · T )(X1, . . . , Xk)

= −T (B(X, Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X, Y )Xk) .

In addition, if A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A, T ) by

Q(A, T )(X1, . . . , Xk, X, Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk) .

The tensor Q(A, T ) is called the Tachibana tensor of the tensors A and T , or shortly the
Tachibana tensor (see, e.g., [28, 31, 33, 36, 43]). For a symmetric (0, 2)-tensor E and a (0, k)-
tensor T , k ≥ 2, we define their Kulkarni-Nomizu product E ∧ T by ([27])

(E ∧ T )(X1, . . . , X4, Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

−E(X1, X3)T (X2, X4, Y3, . . . , Yk) −E(X2, X4)T (X1, X3, Y3, . . . , Yk).

For instance, the following tensors are generalized curvature tensors: R, C, G and E ∧ F ,
where E and F are symmetric (0, 2)-tensors. For a symmetric (0, 2)-tensor A we define the
endomorphism A and the tensors A2 and A3 by g(AX, Y ) = A(X, Y ), A2(X, Y ) = A(AX, Y )
and A3(X, Y ) = A2(AX, Y ), respectively. Let Bhijk, Thijk, and Aij be the local components
of generalized curvature tensors B and T and a symmetric (0, 2)-tensor A on M , respectively,
where h, i, j, k, l,m, p, q ∈ {1, 2, . . . , n}. The local components (B · T )hijklm and Q(A, T )hijklm
of the tensors B · T , Q(A, T ), B · A and Q(g, A) are the following

(B · T )hijklm = gpq(TpijkBqhlm + ThpjkBqilm + ThipkBqjlm + ThijpBqklm),(2.2)

Q(A, T )hijklm = AhlTmijk + AilThmjk + AjlThimk + AklThijm

−AhmTlijk − AimThljk − AjmThilk − AkmThijl,(2.3)

(B ·A)hklm = gpq(ApkBqhlm + AphBqklm),(2.4)

Q(g, A)hklm = ghlAkm + gklAhm − ghmAkl − gkmAhl.(2.5)

Lemma 2.1. Let (M, g), n ≥ 3, be a semi-Riemannian manifold. Let A be a symmetric (0, 2)-
tensor on M such that rank(A) = 2 at some point x ∈M . (i) cf. [25, Lemma 2.1] The tensors
A, A2 and A3 satisfy at x the following relations

A3 = tr(A)A2 +
1

2
(tr(A2) − (tr(A))2)A,(2.6)

A ∧ A2 =
1

2
tr(A)A ∧A,(2.7)

A2 ∧ A2 = −
1

2
(tr(A2) − (tr(A))2)A ∧ A,(2.8)

(A2 − tr(A)A) ∧ (A2 − tr(A)A) = −
1

2
(tr(A2) − (tr(A))2)A ∧ A.(2.9)

(ii) Let T be a generalized curvature tensor on M satisfying

T =
φ0

2
A ∧ A+ φ2 g ∧A+ φ3G+ φ4 g ∧ A

2 + φ5A ∧A2 +
φ6

2
A2 ∧ A2,(2.10)
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where φ0, φ2, . . . , φ6 are some functions on M . Then at given point x we have

T =
φ1

2
A ∧ A+ φ2 g ∧ A+ φ3G+ φ4 g ∧ A

2,

φ1 = φ0 + tr(A)φ5 −
1

2
(tr(A2) − (tr(A))2)φ6.

Proof. (i) (2.6) and (2.7) were already obtained in [25, eqs. (2.6) and (2.10)]. Further,
transvecting equation (2.10) of [25], i.e.

tr(A) (AilAjm − AimAjl) + AjlA
2
im + AimA

2
jl −AilA

2
jm −AjmA

2
il = 0,

with Am
k = gmsAsk we obtain

A2
ilA

2
jk −A2

ikA
2
jl + AilA

3
jk − AjlA

3
ik = tr(A) (AilA

2
jk − AjlA

2
ik),

where ghk, g
hk, Ahk, A

2
hk and A3

hk are the local components of the tensors g, g−1, A, A2 and A3,
respectively. This, by (2.7), turns into

A2
ilA

2
jk − A2

ikA
2
jl = −

1

2
(tr(A2) − (tr(A))2) (AilAjk −AikAjl),

i.e. (2.8). Now, using (2.7) and (2.8) we get immediately (2.9), which completes the proof of
(i). (ii) is an obvious consequence of (i).

Lemma 2.2. Let B be a symmetric (0, 2)-tensor on a 2-dimensional semi-Riemannian manifold
(M, g). (i) [22, Lemma 2(iii)] The following identity is satisfied on M

g ∧B = tr(B)G.(2.11)

(ii) The following identities are satisfied on M

B2 = tr(B)B +
1

2
(tr(B2) − (tr(B))2) g,(2.12)

Q(B,B2) = −
1

2
(tr(B2) − (tr(B))2)Q(g, B).

Proof. (ii) From (2.11) we get

ghkBij + gijBhk − ghjBik − gikBhj = tr(B) (ghkgij − ghjgik),(2.13)

where Bij and B2
ij are the local components of the tensors B and B2, respectively. Transvecting

(2.13) with Bhk = Bijg
higkj we obtain

B2
ij = tr(B)Bij +

1

2
(tr(B2) − (tr(B))2) gij,

i.e. (2.12). Further, we also have

Q(B,B2) = Q(B, tr(B)B +
1

2
(tr(B2) − (tr(B))2) g) = −

1

2
(tr(B2) − (tr(B))2)Q(g, B),

which completes the proof.

For symmetric (0, 2)-tensors E and F we have

Q(E,E ∧ F ) = −
1

2
Q(F,E ∧ E), E ∧Q(E, F ) = −

1

2
Q(F,E ∧ E)(2.14)
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(see, e.g., [30, Section 3] and [27, eq. (3)]). In particular, from (2.14) we obtain

Q(S, g ∧ S) = −
1

2
Q(g, S ∧ S), Q(g, g ∧ S) = −Q(S,G).(2.15)

Using now (1.5) and (2.15) we get

Q(S,R) = Q(S, C) −
1

n− 2
Q(g,

1

2
S ∧ S) −

κ

(n− 2)(n− 1)
Q(S,G).(2.16)

We also have

(g ∧ S) · (g ∧ S) = −Q(S2, G), G · (g ∧ S) = Q(g, g ∧ S) = −Q(S,G),(2.17)

(g ∧ S) · S = Q(g, S2), G · S = Q(g, S)(2.18)

(see, e.g., [28, Lemma 2.1 (ii)] and [69, Lemma 3.2]). Using (1.5) and (2.18) we obtain

C · S = R · S −
1

n− 2
Q(g, S2) +

κ

(n− 2)(n− 1)
Q(g, S)(2.19)

(see, e.g., [45, p. 217]).

3. Some curvature conditions

A semi-Riemannian manifold (M, g), n ≥ 3, is called semisymmetric if R ·R = 0 on M [85].
A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmetric if the tensors R ·R
and Q(g, R) are linearly dependent at every point of M [22, 23, 24, 38]. This is equivalent on
UR = {x ∈M |R− κ

(n−1)n
G 6= 0 at x} to

R · R = LRQ(g, R),(3.1)

where LR is some function on this set. We note that US ∪UC = UR (see, e.g. [28]). We mention
that [38] is the first paper, in which manifolds satisfying (3.1) were called pseudosymmetric
manifolds. It is easy to check that (3.1) is equivalent on UR to (R − LRG) · (R − LRG) = 0.
Evidently, every semisymmetric manifold is pseudosymmetric. The converse statement is not
true. It seems that the Schwarzschild spacetime, the Kottler spacetime, the Reissner-Nordstrøm
spacetime, as well as some Friedmann-Lemâıtre-Robertson-Walker spacetimes are the “oldest”
examples of non-semisymmetric pseudosymmetric warped product manifolds (see, e.g., [39, 55]).
Pseudosymmetric manifolds also are named Deszcz symmetric spaces (see, e.g., [88]). We also
note that (3.1) implies

R · S = LRQ(g, S), R · C = LRQ(g, C).(3.2)

The conditions (3.1) and (3.2) are equivalent on the set US∩UC of any warped product manifold
M1 ×F M2, with dim M1 = dimM2 = 2 [22]. A semi-Riemannian manifold (M, g), n ≥ 3, is
called Ricci-pseudosymmetric if the tensors R · S and Q(g, S) are linearly dependent at every
point of M [20, 22, 23, 29, 53]. This is equivalent on US to

R · S = LS Q(g, S),(3.3)

where LS is some function on this set. As it was mentioned in Introduction, every warped
product manifold M ×F Ñ of an 1-dimensional (M, g) manifold and an (n − 1)-dimensional
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Einstein semi-Riemannian manifold (Ñ, g̃), n ≥ 3, with a warping function F , is a quasi-
Einstein manifold. Such warped products also are Ricci-pseudosymmetric manifolds, see, e.g.,
[12, Section 1] and Example 4.1 of this paper.

A semi-Riemannian manifold (M, g), n ≥ 4, is said to be Weyl-pseudosymmetric if the tensors
R · C and Q(g, C) are linearly dependent at every point of M [22, 23, 29]. This is equivalent
on UC to

R · C = L1Q(g, C),(3.4)

where L1 is some function on this set. Using (1.5), we can check that on every Einstein manifold
(M, g), n ≥ 4, (3.4) turns into R ·R = L1Q(g, R). For a presentation of results on the problem
of the equivalence of pseudosymmetry, Ricci-pseudosymmetry and Weyl-pseudosymmetry we
refer to [29, Section 4]. A semi-Riemannian manifold (M, g), n ≥ 4, is said to have a pseu-

dosymmetric Weyl conformal curvature tensor if the tensors C · C and Q(g, C) are linearly
dependent at every point of M [15, 22, 23]. This is equivalent on UC to (1.9), where LC is some
function on this set. We note that (1.9) is equivalent on UC to (C − LC G) · (C − LC G) = 0.

As it was stated in [22], any warped product manifold M1×FM2, with dim M1 = dimM2 = 2,
satisfies (1.9). Thus in particular, the Schwarzschild spacetime, the Kottler spacetime and
the Reissner-Nordstrøm spacetime satisfy (1.9). Recently manifolds with pseudosymmetric

Weyl tensor were investigated in [28, 43]. Warped product manifolds M ×F Ñ , of dimension

≥ 4, satisfying the condition (1.8) on UC ⊂ M ×F Ñ , where L is some function on this

set, were studied in [14, 17]. In [17] necessary and sufficient conditions for M ×F Ñ to be
a manifold satisfying (1.8) are given. In particular, in that paper it was proved that any 4-

dimensional warped product manifold M ×F Ñ , with an 1-dimensional base (M, g), satisfies
(1.8) [17, Theorem 4.1]. For details about the pseudosymmetric, Ricci-pseudosymmetric and
Weyl-pseudosymmetric manifolds as well other conditions of this kind, named pseudosymmetry
type curvature conditions, we refer to the papers: [12, 23, 29, 39, 64] and also references therein.

If (M, g), n ≥ 4, is an Einstein semi-Riemannian manifold then UR = UC and (1.5) yields

C = R−
κ

(n− 1)n
G.(3.5)

Theorem 3.1. If (M, g), n ≥ 4, is a pseudosymmetric Einstein semi-Riemannian manifold
satisfying (3.1) on UR ⊂ M then on this set we have R · R − Q(S,R) = (LR − κ

n
)Q(g, C),

C · C = (LR − κ
(n−1)n

)Q(g, C) and C · R +R · C = Q(S, C) + (2LR − κ
n−1

)Q(g, C).

Proof. The second condition of our assertion was proved in [15, Theorem 3.1]. Further,
using (3.1) and (3.5) we obtain R · C = LRQ(g, C) and

R · R−Q(S,R) =
(
LR −

κ

n

)
Q(g, R−

κ

(n− 1)n
G) =

(
LR −

κ

n

)
Q(g, C) ,

C ·R +R · C = (R−
κ

(n− 1)n
G) · R + LRQ(g, C)

= R · R−
κ

(n− 1)n
G · R + LRQ(g, C) =

(
LR −

κ

(n− 1)n

)
Q(g, R) + LRQ(g, C)

=

(
2LR −

κ

(n− 1)n

)
Q(g, C) = Q(S, C) +

(
2LR −

κ

n− 1

)
Q(g, C),
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completing the proof.

In [86, Section 2] a class of 4-dimensional Einstein Riemannian manifolds was defined and
investigated. As it was stated in [13, Remark 5.1] those manifolds are pseudosymmetric. If a
non-quasi-Einstein semi-Riemannian manifold (M, g), n ≥ 4, satisfies on US ∩ UC ⊂ M (3.1)
and (1.8) or (3.1) and (1.9), then (1.7) holds on this set ([58, Theorem 3.2 (ii)], [41, Lemma
4.1]). We also have the following converse statement.

Theorem 3.2. [29, 60] If (M, g), n ≥ 4, is a semi-Riemannian manifold satisfying (1.7) on
US ∩ UC ⊂ M then on this set we have

S2 = α1 S + α2 g, α1 = κ+
(n− 2)µ− 1

φ
, α2 =

µκ+ (n− 1)η

φ
,

R · C = LRQ(g, C), LR =
1

φ

(
(n− 2)(µ2 − φη) − µ

)
,

R · R = LRQ(g, R), R · S = LRQ(g, S),

R · R = Q(S,R) + LQ(g, C), L = LR +
µ

φ
=

n− 2

φ
(µ2 − φη),

C · C = LC Q(g, C), LC = LR +
1

n− 2
(

κ

n− 1
− α1),

C · R = LC Q(g, R), C · S = LC Q(g, S),

R · C − C · R =
1

n− 2
Q(S,R) +

(
(n− 1)µ− 1

(n− 2)φ
+

κ

n− 1

)
Q(g, R)

+
µ((n− 1)µ− 1) − (n− 1)φη

(n− 2)φ
Q(S,G),

R · C − C · R =

(
1

φ
(µ−

1

n− 2
) +

κ

n− 1

)
Q(g, R) +

(
µ

φ
(µ−

1

n− 2
) − η

)
Q(S,G).

Remark 3.1. Let the curvature tensor R of a semi-Riemannian manifold (M, g), n ≥ 4, has the
decomposition (1.7) on US ∩UC ⊂M . In [42, Lemma 3.2] it was shown that the decomposition
(1.7) is unique on this set.

Proposition 3.3. If (M, g), n ≥ 4, is a semi-Riemannian manifold satisfying (1.7) on US ∩
UC ⊂M then (1.10) and (1.11) hold on this set.

Proof. On US ∩ UC ⊂ M we have C · R = Q(S, C) + (LR − κ
n−1

)Q(g, C) [69, eq. (37)],
where the function LR is defined by (1.10) (see also Theorem 3.1). But this, together with
R ·C = LRQ(g, C) and L+ LC − 1

(n−2)φ
= 2LR − κ

n−1
(see Theorem 3.1), completes the proof.

Theorem 3.4. Let (M, g), n ≥ 4, be a semi-Riemannian manifold. (i) The identity (1.13) is
satisfied on M . (ii) If (1.8), with some function L, is satisfied on UC ⊂ M then (1.14) holds
on this set. (iii) If (1.8) and (1.9), with some functions L and LC, are satisfied on UC ⊂ M

then (1.15) holds on this set. (iv) If (M, g) is a non-Einstein and non-conformally flat semi-
Riemannian manifold satisfying on US ∩ UC ⊂ M the conditions: (1.1), and (1.8) and (1.9),
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with some functions L and LC , then (1.16) holds on this set. (v) The equation (1.17) is satisfied
on the Gödel spacetime.

Proof. (i) We have (cf. [77, Section 1])

(n− 2)2 (C −R) · (C − R) = (g ∧ S −
κ

n− 1
G) · (g ∧ S −

κ

n− 1
G),

which yields

(n− 2)2 (C · C − R · C − C · R +R · R) = (g ∧ S) · (g ∧ S) −
κ

n− 1
G · (g ∧ S).

But this, by (2.17), turns into (1.13). (ii) It is easy to see that (1.13), by making use of (1.9)
and the identities (2.15) and (2.16) turns into (1.14). (iii) Relations (2.16), (1.9), (1.8) and
(1.13) yield

C · R +R · C = Q(S,R) + (L+ LC)Q(g, C) +
1

(n− 2)2
Q(S2 −

κ

n− 1
S,G)

= Q(S, C) + (L + LC)Q(g, C) −
1

n− 2
Q(g,

1

2
S ∧ S) +

1

(n− 2)2
Q(S2 − κS,G),

which by (2.14) turns into (1.15). (iii) It is easy to see that the conditions (1.1), (1.3), (1.4),
(1.15) and Q(g,G) = 0 lead to (1.16). (iv-v) The Ricci tensor S of the Gödel spacetime (M, g)
satisfies S = κω⊗ω, where ω is an 1-form [62]. From the last equation we get easily S ∧S = 0
and S2 = κS. It is also known that R · R = Q(S,R) and C · C = κ

6
Q(g, C) hold on M [43,

Theorem 2]. Now (1.16) yields (1.17). Our theorem is thus proved.

Remark 3.2. In [43, Section 4(v)] it was shown that on the Gödel spacetime the tensors R ·C,
C · R, Q(g, R), Q(S,R), Q(g, C) and Q(S, C) are linearly dependent.

We also have the following result.

Proposition 3.5. cf. [28, Proposition 3.2, Theorem 3.3, Theorem 4.4] If (M, g), n ≥ 4, is a
semi-Riemannian manifold satisfying on US ∩ UC ⊂M the conditions (1.8), (1.9) and

R · S = Q(g,D),(3.6)

where D is a symmetric (0, 2)-tensor, then (3.1) holds on this set. Moreover, at every point of
US∩UC we have rank (S−α1 g) = 1 or rank (S−α1 g) ≥ 2 and (1.7), where α1 = 1

2
( κ
n−1

−L+LC).

The last proposition, together with Proposition 3.3 and Theorem 3.4(iv), yields

Corollary 3.6. If (M, g), n ≥ 4, is a semi-Riemannian manifold satisfying on US ∩ UC ⊂ M

the conditions (1.8), (1.9) and (3.6) then C · R + R · C = Q(S, C) + L2Q(g, C) holds on
US ∩ UC , where L2 is some function on this set.

Let M , n = dimM ≥ 4, be a connected hypersurface isometrically immersed in a semi-
Riemannian space of constant curvature Nn+1

s (c), with signature (s, n+1−s), where c = κ̃
n(n+1)

and κ̃ is its scalar curvature. It is known that (1.8) holds on M . Precisely,

R ·R = Q(S,R) −
(n− 2)κ̃

n(n + 1)
Q(g, C)(3.7)

on M [54, Proposition 3.1]. Now, as an immediate consequence of Theorem 3.3, we have
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Theorem 3.7. Let M is a hypersurface isometrically immersed in Nn+1
s (c), n ≥ 4. Then

C · R +R · C = Q(S, C) −
(n− 2)κ̃

n(n+ 1)
Q(g, C) + C · C

−
1

(n− 2)2
Q(g,

n− 2

2
S ∧ S − κ g ∧ S + g ∧ S2)(3.8)

holds on M . Moreover, if (1.9) is satisfied on US ∩ UC ⊂M then on this set we have

C ·R +R · C = Q(S, C) +

(
LC −

(n− 2)κ̃

n(n + 1)

)
Q(g, C)

−
1

(n− 2)2
Q(g,

n− 2

2
S ∧ S − κ g ∧ S + g ∧ S2).(3.9)

If M is a quasi-Einstein hypersurface satisfying (1.1) and (1.8) on US ∩UC then on this set we
have

C · R +R · C = Q(S, C) +

(
LC −

(n− 2)κ̃

n(n+ 1)

)
Q(g, C).(3.10)

It is known that every 2-quasi-umbilical hypersurface in a semi-Riemannian space of constant
curvature Nn+1

s (c), n ≥ 4, satisfies (1.9) [57, Theorem 3.1]. Now Theorem 3.4 yields

Theorem 3.8. If M is a 2-quasi-umbilical hypersurface isometrically immersed in Nn+1
s (c),

n ≥ 4, then (3.9) holds on US ∩ UC ⊂M .

Let M be an n-dimensional Chen ideal submanifold of codimension m isometrically immersed
in an Euclidean space En+m, n ≥ 4, m ≥ 1 [9, 10]. It is known that (1.8) and (1.9) hold on
UC ⊂M ([49, Theorem 1], see also [11, Section 6] and [50, Section 3.1]). Now Theorem 3.3(ii)
yields

Theorem 3.9. If M , n ≥ 4, is a Chen ideal submanifold of codimension m, m ≥ 1, isometri-
cally immersed in an Euclidean space En+m then (1.15) holds on this set.

Remark 3.3. (i) We refer to [61] for further results on quasi-Einstein hypersurfaces M in
Nn+1

s (c), n ≥ 4, satisfying (1.9). (ii) We refer to [50] for curvature properties of pseudosymmetry
type of Chen ideal submanifolds in an Euclidean space. (iii) From (3.7) it follows that every
Einstein hypersurface M in Nn+1

s (c), n ≥ 4, is a pseudosymmetric manifold satisfying (3.1) and

LR = κ
n
− (n−2)κ̃

n(n+1)
on UR ⊂M (cf. [23, Section 5.5]). Now from Theorem 3.1 we have

R · C + C · R = Q(S, C) +
n− 2

n

(
κ

n− 1
−

2κ̃

n + 1

)
Q(g, C)

on UR. We refer to [75] for examples of semisymmetric Einstein hypersurfaces in some semi-
Riemannian spaces of constant curvature. (iv) Let M be a hypersurface in Nn+1

s (c), n ≥ 4. If
at every point of UC ⊂M the tensor H2, the square of the second fundamental tensor H of M ,
is a linear combination of H and the metric tensor g of M then (1.9) holds on UC (see, e.g.,
[57, Section 1]). Moreover, in view of Theorem 3.5(iii), (1.15) is satisfied on UC .
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4. Warped product manifolds

Let now (M, g) and (Ñ , g̃), dimM = p, dimN = n − p, 1 ≤ p < n, be semi-Riemannian
manifolds covered by systems of charts {U ; xa} and {V ; yα}, respectively. Let F be a positive

smooth function on M . The warped product M ×F N of (M, g) and (Ñ , g̃) is the product

manifold M × Ñ with the metric g = g ×F g̃ = π∗

1g + (F ◦ π1) π
∗

2 g̃, where π1 : M × Ñ −→ M

and π2 : M × Ñ −→ Ñ are the natural projections on M and Ñ , respectively [6, 71, 76].

Let {U × V ; x1, . . . , xp, xp+1 = y1, . . . , xn = yn−p} be a product chart for M × Ñ . The local
components gij of the metric g = g ×F g̃ with respect to this chart are the following gij = gab
if i = a and j = b, gij = F g̃αβ if i = α and j = β, and gij = 0 otherwise, where a, b, c, d, f ∈
{1, . . . , p}, α, β, γ, δ ∈ {p + 1, . . . , n} and h, i, j, k, l,m, r, s ∈ {1, 2, . . . , n}. We will denote by
bars (resp., by tildes) tensors formed from g (resp., g̃). The local components

Γh
ij =

1

2
ghs(∂igjs + ∂jgis − ∂sgij), ∂j =

∂

∂xj
,

of the Levi-Civita connection ∇ of M ×F Ñ are the following

Γa
bc = Γ

a

bc, Γα
βγ = Γ̃α

βγ, Γa
αβ = −

1

2
ḡabFbg̃αβ, Γα

aβ =
1

2F
Faδ

α
β , Γa

αb = Γα
ab = 0, Fa =

∂F

∂xa

(see, e.g., [48, 72]). The local components

Rhijk = ghsR
s
ijk = ghs(∂kΓs

ij − ∂jΓ
s
ik + Γr

ijΓ
s
rk − Γr

ikΓs
rj),

of the Riemann-Christoffel curvature tensor R and the local components Sij of the Ricci tensor

S of the warped product M ×F Ñ which may not vanish identically are the following:

Rabcd = Rabcd, Rαabδ = −
1

2
Tabg̃αδ, Rαβγδ = FR̃αβγβ −

1

4
∆1F G̃αβγδ ,(4.1)

Sab = Sab −
n− p

2

1

F
Tab, Sαβ = S̃αβ −

1

2
(tr(T ) +

n− p− 1

2F
∆1F ) g̃αβ,(4.2)

Tab = ∇aFb −
1

2F
FaFb, tr(T ) = gabTab, ∆1F = ∆1 gF = gabFaFb,(4.3)

where T is the (0, 2)-tensor with the local components Tab. The scalar curvature κ of M ×F Ñ

satisfies the following relation

κ = κ+
1

F
κ̃−

n− p

F
(tr(T ) +

n− p− 1

4F
∆1F ).(4.4)

Warped products play an important role in Riemannian geometry (see, e.g., [5, 6, 72, 76])
as well as in the general relativity theory (see, e.g., [7, 63, 76, 84]). Many well-known space-
times of this theory, i.e. solutions of the Einstein field equations, are warped products, e.g.
the Schwarzschild, Kottler, Reissner-Nordstrøm, Reissner-Nordstrøm-de Sitter, Vaidya, Vaidya-
Kottler, Vaidya-Reissner-Nordstrøm, Vaidya-Bonnor, as well as Robertson-Walker spacetimes.

We recall that a warped product M ×F Ñ of an 1-dimensional manifold (M, g), g11 = −1,

and a 3-dimensional Riemannian space of constant curvature (Ñ, g̃), with a warping func-
tion F , is said to be a Robertson-Walker spacetime (see, e.g., [63, 76, 84]). It is well-known
that the Robertson-Walker spacetimes are conformally flat quasi-Einstein manifolds. More
generally, one also considers warped products M ×F Ñ of (M, g), dim M = 1, g11 = −1,
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with a warping function F and an (n − 1)-dimensional Riemannian manifold (Ñ, g̃), n ≥ 4.
Such warped products are called generalized Robertson-Walker spacetimes [1, 2]. We men-
tion that Einstein generalized Robertson-Walker spacetimes were classified in [2]. Curva-
ture conditions of pseudosymmetry type on spacetimes have been considered among others
in [3, 12, 13, 15, 16, 40, 43, 48, 51, 55, 68, 69].

Example 4.1. The warped product manifold M ×F Ñ , of an 1-dimensional manifold (M, g),

g11 = ±1, and an (n−1)-dimensional semi-Riemannian Einstein manifold (Ñ , g̃), n ≥ 5, which

is not of constant curvature, with a warping function F , satisfies on US ∩ UC ⊂M ×F Ñ :

R · S = LS Q(g, S), LS = −
trT

2F
, rank(S − α g) = 1, α =

κ

n− 1
− LS ,

(n− 2) (R · C − C · R) = Q(S,R) − LS Q(g, R),(4.5)

[12, Theorem 4.1]. Furthermore, using (1.3), (1.5), (2.15), (2.16) and (4.5) we get

Q(g, R) = Q(g, C) −
1

n− 2
Q(S,G),

Q(S,R) = Q(S, C) +
1

n− 2

(
α−

κ

n− 1

)
Q(S,G),

(n− 2) (R · C − C · R) = Q(S, C) − LS Q(g, C).

Using Theorem 3.4(i)-(iii), [17, Theorem 4.1] and [56, Theorem 2] we obtain

Theorem 4.1. Let M ×F Ñ be the warped product manifold of an 1-dimensional manifold

(M, g), g11 = ±1, and a 3-dimensional semi-Riemannian manifold (Ñ, g̃). If (Ñ, g̃) is not a

space of constant curvature then (1.8) and (1.14) hold on UC ⊂ M ×F Ñ . Moreover, if (Ñ, g̃)

is a quasi-Einstein manifold then (1.9) and (1.15) hold on US ∩ UC ⊂M ×F Ñ .

The Ricci tensor of the following 3-dimensional Riemannian manifolds (Ñ, g̃): the Berger

spheres, the Heisenberg group Nil3, ˜PSL(2,R) - the universal covering of the Lie group
PSL(2,R) and the Lie group Sol3 [74, Section 3], a Riemannian manifold isometric to an
open part of the Cartan hypersurface [27, Section 2] and some three-spheres of Kaluza-Klein
type [8, Theorem 2 (ii)a] have exactly two distinct eigenvalues. Evidently, these manifolds are
quasi-Einstein, and in a consequence, pseudosymmetric (see, e.g., [56, Theorem 1]). For further
examples of 3-dimensional quasi-Einstein manifolds we refer to [4] (Thurston geometries and
warped product manifolds) and [70] (manifolds with constant Ricci principal curvatures).

Theorem 4.1 leads to the following result.

Theorem 4.2. The conditions (1.8), (1.9) and (1.15) are satisfied on the warped product

manifold M ×F Ñ of an 1-dimensional manifold (M, g), g11 = ±1, and the 3-dimensional

Riemannian manifold (Ñ, g̃) such as: the Berger sphere, Nil3, ˜PSL(2,R), Sol3, a Riemannian
manifold isometric to an open part of the Cartan hypersurface, or some three-spheres of Kaluza-
Klein type.

Using [17, Theorem 4.2], [21, Theorem 3.5] and [56, Theorem 3] we can prove
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Theorem 4.3. IfM×F Ñ is the warped product manifold of an 1-dimensional manifold (M, g),
g11 = ±1, and an (n− 1)-dimensional quasi-Einstein conformally flat semi-Riemannian mani-

fold (Ñ, g̃), n ≥ 5, then the conditions (1.8), (1.9) and (1.15) are satisfied on UC ⊂ M ×F Ñ .

We mention that recently curvature conditions of pseudosymmetry type of four-dimensional
Thurston geometries were investigated in [67].

5. Pseudosymmetric warped product manifolds

In this section we present some results on pseudosymmetric warped product manifolds.

Theorem 5.1. [24] The Riemann-Christoffel curvature tensor R of the warped product manifold

M ×F Ñ , with dimM = p, dim Ñ = n − p, 1 ≤ p ≤ n − 1, n ≥ 3, satisfies (3.1), i.e.

R · R = LRQ(g, R), on some coordinate domain of a point x ∈ UR ⊂ M ×F Ñ if and only if
the following relations are satisfied on this set

(R · R)abcdef = LRQ(g, R)abcdef ,

2Hf
dRfabc =

1

F
(TacHbd − TabHcd),

Had (R̃δαβγ −
∆1F

4F
G̃δαβγ) = −

1

2
T

f
dHfa G̃δαβγ ,

(R̃ · R̃)αβγδλµ = (FLR +
∆1F

4F
)Q(g̃, R̃)αβγδλµ,

where Tab is defined by (4.3) and

Hab =
1

2
Tab + FLR gab .(5.1)

Proposition 5.2. Let M ×F Ñ be the warped product of semi-Riemannian manifolds (M, g)

and (Ñ , g̃), dimM = p, dim Ñ = n − p, 2 ≤ p ≤ n − 1, n ≥ 4, with the warping function F ,

and let (M, g) and (Ñ, g̃) be a spaces of constant curvature, provided that p ≥ 3 and n− p ≥ 3,

respectively. (i) cf. [24, Corollary 2.1] The warped productM×F Ñ satisfies R ·R = LRQ(g, R),

i.e. (3.1), on some coordinate domain of a point x ∈ UR ⊂M ×F Ñ if and only if the following
two relations are satisfied on this set

HacHbd −HabHcd = F

(
κ

(p− 1)p
− LR

)
(gabHcd − gacHbd),(5.2)

κ̃Had = (n− p)(n− p− 1)

(
(FLR +

∆1F

4F
)Had −H2

ad

)
,(5.3)

where H2
ad = gefHaeHdf and κ and κ̃ are the scalar curvatures of (M, g) and (Ñ , g̃), respectively.

Moreover, if n− p ≥ 2 then (5.3) is equivalent to

H2
ad =

(
Fκ

(p− 1)p
−

κ̃

(n− p− 1)(n− p)
+

∆1F

4F

)
Had.(5.4)

(ii) If H = tr H
p
g is satisfied on some coordinate domain U of a point x ∈ UR ⊂ M ×F Ñ , for

certain function LR, then T = tr T
p
g on U . Moreover, H = 0 and (3.1) hold on U , provided
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that LR = − tr T
2pF

. (iii) Let M ×F Ñ be the warped product satisfying R · R = LRQ(g, R). If

H 6= tr H
p
g at a point x ∈ UR ⊂M ×F Ñ then on some neighbourhood U ⊂ UR of x we have

(a) LR =
κ

(p− 1)p
, (b) rank (H) = 1.(5.5)

Proof. (i) This assertion is a consequence of Theorem 5.1 and the definition of Hab (see
(5.1)). (ii) From our assumption, by (5.1), it follows that T is proportional to g. It is obvious
that if we set LR = − tr T

2pF
then (5.1) gives H = 0. Now (i) completes the proof of (ii). (iii)

From (5.2) we have

HcdHab −HacHbd = F

(
κ

(p− 1)p
− LR

)
(gbdHac − gcdHab),

This, together with (5.2), yields
(

κ

(p− 1)p
− LR

)
(gabHcd − gacHbd + gbdHac − gcdHab) = 0,

which by contraction with gab gives ( κ
(p−1)p

− LR)(Hcd − tr H
p
gcd) = 0. From this, by our

assumption, we get immediately (5.5)(a). Now (5.2), by (5.5)(a), reduces to

HacHbd −HabHcd = 0,(5.6)

which is equivalent to (5.5)(b). Our proposition is thus proved.

Let M ×F Ñ be the warped product of semi-Riemannian manifolds (M, g), dimM = p, and

(Ñ , g̃), dim Ñ = n− p, 2 ≤ p ≤ n− 2, with the warping function F , and let (M, g) and (Ñ, g̃)
be spaces of constant curvature, provided that p ≥ 3 and n − p ≥ 3, respectively, satisfying

(3.1) on UR ⊂ M ×F Ñ . Moreover, let H 6= tr H
p
g at a point x ∈ UR. We note that from (4.2)

it follows that S 6= κ
n
g at this point. Further, in view of Proposition 5.2, (5.4), (5.5) and (5.6)

hold on some neighbourhood U ⊂ UR of x. From (5.6), by a suitable contraction, it follows
that H2 = trHH on U . The last equation and (5.4) yield

κ

p
+

κ̃

(n− p− 1)(n− p)F
+

tr T

2F
−

∆1F

4F 2
= 0.(5.7)

We note that if p = 2 then (7.2), (7.4), (7.5) and (5.7) lead to ρ0 = ρ = 0, and C = 0.

From the above presented considerations it follows

Theorem 5.3. Let M ×F Ñ be the warped product of a 2-dimensional semi-Riemannian man-

ifold (M, g) and an (n − 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, with the

warping function F , and let (Ñ, g̃) be a space of constant curvature, provided that n ≥ 5. The

manifold M ×F Ñ satisfies (3.1), i.e. R · R = LRQ(g, R), on some coordinate domain U of a

point x ∈ US ∩ UC ⊂M ×F Ñ if and only if on U we have

H =
1

2
T + FLR g =

1

2
T + F (−

tr T

4F
) g =

1

2
(T −

tr T

2
g) = 0,

i.e. Tab is proportional to gab on U .
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At the end of this section we recall the following result of [47].

Theorem 5.4. cf. [47, Theorem 4.1] Let M ×F Ñ be the warped product of a 2-dimensional

semi-Riemannian manifold (M, g) and an (n−2)-dimensional semi-Riemannian manifold (Ñ, g̃),

n ≥ 4, with the warping function F , and let (Ñ, g̃) be a space of constant curvature, pro-
vided that n ≥ 5. If the tensor Tab, defined by (4.3), is proportional to gab at every point of

US ∩ UC ⊂ M ×F Ñ then (1.7) holds on this set.

6. Warped product manifolds with 2-dimensional base and Einsteinian fibre

Let M ×F Ñ be the warped product manifold of a 2-dimensional manifold (M, g) and an

(n− 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with a warping function F , and

let (Ñ , g̃) be an Einstein manifold, provided that n ≥ 5. Now (4.2) turns into

Sad =
κ

2
gab −

n− 2

2F
Tab, Sαβ = τ1 gαβ,(6.1)

τ1 =
κ̃

(n− 2)F
−

tr(T )

2F
− (n− 3)

∆1F

4F 2
.(6.2)

From (6.1) it follows that Tab is proportional to gab at a point of US ∩UC ⊂M ×F Ñ if and only
if Sab is proportional to gab at this point. Furthermore, from (6.1) also it follows that (1.2) is

satisfied on US ⊂M×F Ñ , i.e. rank (S−τ1 g) ≤ 2 on this set. In addition, if rank (S−τ1 g) = 2

then M ×F Ñ is a 2-quasi-Einstein manifold. Thus we have

Theorem 6.1. LetM×F Ñ be the warped product manifold of a 2-dimensional semi-Riemannian
manifold (M, g) and an (n − 2)-dimensional semi-Riemannian manifold (Ñ , g̃), n ≥ 4, with

a warping function F , and let (Ñ, g̃) be an Einstein manifold, provided that n ≥ 5. Then on

US ⊂M×F Ñ we have rank (S−τ1 g) ≤ 2, where the function τ1 is defined by (6.2). Moreover,

if rank (S−τ1 g) = 2 on some open non-empty subset of US then M×F Ñ is a 2-quasi-Einstein
manifold.

Let now A be the (0, 2)-tensor with the local components Aij defined by

Aij = Sij − τ1 gij,(6.3)

where τ1 is the function defined by (6.2). Using (6.1) and (6.3) we get

Aad = Sad − τ1 gad, Aαβ = Sαβ − τ1 gαβ = 0, Aaα = 0.(6.4)

From (6.4) it follows immediately that Aab is proportional to gab if and only if Sab is proportional
to gab. Further, let A2 be the (0, 2)-tensor with the local components A2

ij = grsAirAjs. We have

A2
ij = S2

ij − 2τ1 Sij + τ 21 gij, A2
ad = S2

ad − 2τ1 Sad + τ 21 gad, A2
αβ = 0, A2

aα = 0,(6.5)

tr(A) = grsArs = κ− nτ1, tr(A2) = grsA2
rs = tr(S2) − 2κτ1 + nτ 21 ,

tr(A2) − (tr(A))2 = tr(S2) − κ2 + (n− 1)τ1(2κ− nτ1),(6.6)
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and

tr(A2) − (tr(A))2 = grsA2
rs − (grsArs)

2

= g11A2
11 + 2 g12A2

12 + g22A2
22 − (g11A11 + 2 g12A12 + g22A22)

2

= g11grsA1rA1s + 2g12grsA1rA2s + g22grsA2rA2s − (g11A11 + 2 g12A12 + g22A22)
2

= g11 (g11(A11)
2 + 2g12A11A12 + g22(A12)

2) + g22 (g11(A12)
2 + 2g12A12A22 + g22(A22)

2)

+2 g12 (g11A11A12 + g12A11A22 + g12(A12)
2 + g22A12A22) − (g11A11 + 2 g12A12 + g22A22)

2

= −2 (g11g22 − (g12)2)(A11A22 − (A12)
2),

i.e.

tr(A2) − (tr(A))2 = −2(det(g))−1 (A11A22 − (A12)
2).(6.7)

From (6.4) and (6.7) it follows that at every point of x ∈ US ⊂ M ×F Ñ the conditions:
rank(A) = 2 and tr(A2) − (tr(A))2 6= 0 are equivalent. Therefore on the set of at all points of
US at which rank(A) = 2 we can define the function τ2 by

τ2 = (tr(A2) − (tr(A))2)−1.(6.8)

We also note that in view of Lemma 2.2 we have

A2
ad = tr(A)Aad +

1

2
(tr(A2) − (tr(A))2) gad,

Q(A,A2)abcd = −
1

2
(tr(A2) − (tr(A))2)Q(g, A)abcd.(6.9)

We have

Theorem 6.2. LetM×F Ñ be the warped product manifold of a 2-dimensional semi-Riemannian

manifold (M, g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with a

warping function F , and let (Ñ , g̃) be an Einstein manifold, provided that n ≥ 5. Moreover, let

V be the set of all points of US ∩ UC ⊂M ×F Ñ at which Sad is not proportional to gad. Then
on V we have

R · S = (φ1 − 2τ1φ2 + τ 21φ3)Q(g, S) + (φ2 − τ1φ3)Q(g, S2) + φ3Q(S, S2),(6.10)

φ1 =
2τ1 − κ

2(n− 2)
, φ2 =

1

n− 2
, φ3 =

τ2(2κ− κ− 2(n− 1)τ1)

n− 2
.(6.11)

The condition (3.3) holds on the set (US ∩ UC) \ V .

Proof. Let A be the (0, 2)-tensor defined by (6.4). Using now (2.4), (2.5), (4.1), (4.2), (6.1)
and (6.4) we get

−
1

2F
Tad =

1

n− 2
(Aad +

2τ1 − κ

2
gad),

Rabcd =
κ

2
Gabcd, Raαβd =

1

n− 2
(Aad +

2τ1 − κ

2(n− 2)
gad) gαβ,

(R · A)abcd =
κ

2
Q(g, A)abcd, (R · A)aαβd =

1

n− 2
(A2

ad +
2τ1 − κ

2
Aad) gαβ,

(R · A)αβγδ = 0, Q(g, A)αβγδ = Q(g, A2)αβγδ = Q(A,A2)αβγδ = 0.
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Using the above presented relations and (6.9) we obtain on V the following condition

R · A = φ1Q(g, A) + φ2Q(g, A2) + φ3Q(A,A2),(6.12)

where φ1, φ2 and φ3 are defined on V by (6.11). Now (6.12), by (6.4) and (6.5), turns into
(6.10). Finally, from (6.1) and the fact that Sab is proportional to gab on (US ∩UC)\V it follows
that Tab also is proportional to gab on this set. Therefore, in view of [20, Corollary 4.1], (3.3)
holds on (US ∩ UC) \ V . The last remark completes proof.

7. Warped product manifolds with 2-dimensional base and fibre of constant

curvature

We consider the warped product manifold M×F Ñ of a 2-dimensional manifold (M, g) and an

(n− 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with a warping function F , and

let (Ñ, g̃) be a space of constant curvature, provided that n ≥ 5. Using Lemma 1.1, (4.1)-(4.4)
and [22, eqs. (12)-(16)] we can check that the local components Chijk of the tensor Ricci tensor

S and the Weyl conformal curvature tensor C of M ×F Ñ are expressed by

Cabcd =
(n− 3)ρ0
n− 1

Gabcd, Cαbcδ = −
(n− 3)ρ0

(n− 2)(n− 1)
Gαbcδ,

Cαβγδ =
2ρ0

(n− 2)(n− 1)
Gαβγδ, Cabcδ = Cabγδ = Caβγδ = 0,(7.1)

respectively, where

ρ0 =
κ

2
+

κ̃

(n− 3)(n− 2)F
+

tr(T )

2F
−

∆1F

4F 2
.(7.2)

We also have

Fτ1 + (n− 3)
κ

2
F + (n− 2)

tr(T )

2

= (n− 3)
κ

2
F +

κ̃

n− 2
+ (n− 3)

tr(T )

2
− (n− 3)

∆1F

4F

= (n− 3)F

(
κ

2
+

κ̃

(n− 3)(n− 2)F
+

tr(T )

2F
−

∆1F

4F 2

)
= (n− 3)Fρ0 =

n− 1

2
Fρ,(7.3)

where

ρ =
2(n− 3)ρ0
n− 1

.(7.4)

Now the condition (7.1), by (7.4), turns into

Cabcd =
ρ

2
Gabcd, Cαbcδ = −

ρ

2(n− 2)
Gαbcδ,

Cαβγδ =
ρ

(n− 3)(n− 2)
Gαβγδ, Cabcδ = Cabγδ = Caβγδ = 0.(7.5)

Remark 7.1. Let M×F Ñ be the warped product manifold of a 2-dimensional manifold (M, g)

and an (n− 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with a warping function

F , and let (Ñ , g̃) be a space of constant curvature, provided that n ≥ 5. (i) From (7.1) it
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follows immediately that the manifold M×F Ñ is conformally flat if and only if the function ρ0,
defined by (7.2), vanishes on M . (ii) We refer to [18, Lemma 3.3, Lemma 4.1, Lemma 4.3], [14,
Example 5.4 (i), (ii)] and [73, Sections 4 and 5] for examples of conformally flat warped product

manifolds M ×F Ñ , with dimM ≥ 2. (iii) Recently warped product spacetimes M ×F Ñ , with

dimM = Ñ = 2, satisfying curvature conditions of pseudosymmetry type were studied in [40].

Theorem 7.1. LetM×F Ñ be the warped product manifold of a 2-dimensional semi-Riemannian

manifold (M, g) and an (n− 2)-dimensional semi-Riemannian manifold (Ñ, g̃), n ≥ 4, with a

warping function F , and let (Ñ, g̃) be a space of constant curvature, provided that n ≥ 5.

(i) The following three conditions are satisfied on the set UC ⊂ M ×F Ñ :

C · C = −
ρ

2(n− 2)
Q(g, C),(7.6)

where ρ is defined by (7.4), (1.8) with the function L be defined by

L = −
n− 2

(n− 1)ρ

(
κ

(
τ1 +

tr(T )

2F

)
+
n− 3

4F 2
(tr(T 2) − (tr(T ))2)

)
,(7.7)

where τ1 is defined by (6.2), and (1.15) with LC = − ρ

2(n−2)
and L defined by (7.7).

(ii) Let V be the set of all points of US ∩UC ⊂ M ×F Ñ at which Sad is not proportional to gad.
Then on V we have:

C = −
(n− 1)ρτ2

(n− 3)(n− 2)

(
n− 2

2
S ∧ S − κ g ∧ S + g ∧ S2 −

tr(S2) − κ2

n− 1
G

)
,(7.8)

R · C + C ·R = Q(S, C) +

(
L−

ρ

2(n− 2)
+

n− 3

(n− 2)(n− 1)ρτ2

)
Q(g, C),(7.9)

C ·R = −
1

(n− 2)2
Q((

ρ

2
+ (n− 1) ρτ 21 τ2)S − (n− 1) ρτ1τ2 S

2, G)

−
(n− 1) ρτ2

(n− 2)2
g ∧Q(S, S2) −

ρ

2(n− 2)
Q(g, C),(7.10)

R · C = Q(S, C) +

(
L +

n− 3

(n− 2)(n− 1)ρτ2

)
Q(g, C) +

(n− 1) ρτ2
(n− 2)2

g ∧Q(S, S2)

+
1

(n− 2)2
Q((

ρ

2
+ (n− 1) ρτ 21 τ2)S − (n− 1) ρτ1τ2 S

2, G).(7.11)

On the set (US∩UC)\V the Weyl tensor C is expressed by a linear combination of the Kulkarni-
Nomizu products S ∧ S, g ∧ S and g ∧ g.

Proof. (i) Using (2.2) and (2.3) we can verify that the local components (C · C)hijklm and
Q(g, C)hijklm of the tensors C · C and Q(g, C) which may not vanish are those related to

(C · C)αabcdβ = −
(n− 1)ρ2

4(n− 2)2
gαβGdabc, (C · C)aαβγdβ =

(n− 1)ρ2

4(n− 2)2(n− 3)
gadGδαβγ ,(7.12)

Q(g, C)αabcdβ =
(n− 1)ρ

2(n− 2)
gαβGdabc, Q(g, C)aαβγdδ = −

(n− 1)ρ

2(n− 2)(n− 3)
gadGδαβγ(7.13)
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(cf. [15, eqs. (8)-(11)]). From (7.12) and (7.13) it follows that (1.9) holds on UC ⊂ M ×F Ñ ,
where LC = − ρ

2(n−2)
and ρ is defined by (7.4).

We prove now that (1.8) is satisfied. First of all, we recall that necessary and sufficient
conditions for warped products of two semi-Riemannian spaces of constant curvature satisfying
that condition are given in [17]. In particular, when the base (M, g) is a 2-dimensional manifold,

(Ñ , g̃) a space of constant curvature (when n ≥ 5), then (1.8) holds on UC ⊂ M ×F Ñ if and
only if

((
κ̃

n− 2
−

1

2

(
tr(T ) +

n− 3

2F
∆1F

))(
κ

2
+

L

n− 2

)
+
n− 3

n− 2

FLκ

2

)
Gdabc

=
n− 3

4F
(TabTcd − TacTbd) −

(
κ

4
+
L

2

)
(gabTcd + gcdTab − gacTbd − gbdTac)(7.14)

on UC (cf., [17, Section 7, eq. (40)]). Applying in (7.14) the relation (6.2) and the definitions
of the tensors g ∧ T and T ∧ T we obtain

((
κ+

2L

n− 2

)
Fτ1 +

n− 3

n− 2
FLκ

)
Gdabc =

n− 3

2F

1

2
(T ∧ T )dabc −

(
κ

2
+ L

)
(g ∧ T )dabc.

Thie last equation, together with

(g ∧ T )1221 = tr(T )G1221 = tr(T ) det(g),

1

2
(T ∧ T )1221 = T11T22 − (T12)

2 = −
1

2
det(g) (tr(T 2) − (tr(T ))2),

leads to
((

κ+
2L

n− 2

)
Fτ1 +

n− 3

n− 2
FLκ

)
det(g)

= −
n− 3

2F

1

2
(tr(T 2) − (tr(T ))2) det(g) −

(
κ

2
+ L

)
tr(T ) det(g),

((
κ+

2L

n− 2

)
Fτ1 +

n− 3

n− 2
FLκ

)
= −

n− 3

2F

1

2
(tr(T 2) − (tr(T ))2) −

(
κ

2
+ L

)
tr(T ),

(
2

n− 2
Fτ1 +

n− 3

n− 2
Fκ+ tr(T )

)
L = −Fκτ1 −

n− 3

4F
(tr(T 2) − (tr(T ))2) −

κ

2
tr(T ),

(
Fτ1 + (n− 3)F

κ

2
+ (n− 2)

tr(T )

2

)
L

= −
n− 2

2

(
Fκ

(
τ1 +

tr(T )

2F

)
+
n− 3

4F
(tr(T 2) − (tr(T ))2)

)
.

This, by making use of (6.2), (7.2) and (7.4), turns into

(n− 1) ρL = −(n− 2)

(
κ

(
τ1 +

tr(T )

2F

)
+
n− 3

4F 2
(tr(T 2) − (tr(T ))2)

)
,
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which, together with (7.3) and (7.4), yields (7.7). Now Theorem 3.3(ii) completes the proof of
(i). (ii) First we prove that the following relation is satisfied on V :

C =
φ1

2
A ∧ A+ φ2 g ∧ A+ φ3G+ φ4 g ∧ A

2

= −
(n− 1)ρτ2

(n− 3)(n− 2)

(
n− 2

2
A ∧A− tr(A) g ∧ A+ g ∧ A2 −

1

(n− 1)τ2
G

)
,(7.15)

φ1 = −
(n− 1)ρτ2
n− 3

, φ2 =
(n− 1)ρτ2tr(A)

(n− 3)(n− 2)
,

φ3 =
ρ

(n− 3)(n− 2)
, φ4 = −

(n− 1)ρτ2
(n− 3)(n− 2)

,(7.16)

where the (0, 2)-tensor A is defined on V by (6.4). Let B be the (0, 4)-tensor defined on V by

B = C −
φ1

2
A ∧A− φ2 g ∧ A− φ3G− φ4 g ∧ A

2,

where φ1, . . . , φ4 are some functions on V . Evidently, B is generalized curvature tensor. Let
Bhijk be the local components of B. We have

Bhijk = Chijk − φ1 (AhkAij − AhjAik) − φ2 (ghkAij + gijAhk − ghjAik − gikAhj)

−φ3 (ghkgij − ghjgik) − φ4 (ghkA
2
ij + gijA

2
hk − ghjA

2
ik − gikA

2
hj).

It is clear that B vanish at a point x ∈ V if and only if

Chijk = φ1 (AhkAij − AhjAik) + φ2 (ghkAij + gijAhk − ghjAik − gikAhj)

+φ3 (ghkgij − ghjgik) + φ4 (ghkA
2
ij + gijA

2
hk − ghjA

2
ik − gikA

2
hj)

at x. We note that from (6.4) and (7.1) it follows immediately that the local components Bhijk

of the tensor B which may not vanish identically are the following: Babcd, Bαbcδ and Bαβγδ.
Thus we see that B = 0 at x if and only if

(ρ
2
− φ3

)
Gabcd = φ1 (AadAbc − AacAbd) + φ2 (gadAbc + bbcAad − gacAbd − gbdAac)

+φ4 (gadA
2
bc + bbcA

2
ad − gacA

2
bd − gbdA

2
ac),

−

(
ρ

2(n− 2)
+ φ3

)
gbcgαδ = φ2Abcgαδ + φ4A

2
bcgαδ,

(
ρ

(n− 3)(n− 2)
− φ3

)
Gαβγδ = 0(7.17)

at x. Further, (7.17), by (6.9), is equivalent to

φ1 (A11A22 −A12A12) =
(n− 1)ρ

2(n− 3)
G1221,

−(φ2 + tr(A)φ4)Abc =

(
(n− 1)ρ

2(n− 3)(n− 2)
+

1

2
(tr(A2) − (tr(A))2)φ4

)
gbc,

φ3 =
ρ

(n− 3)(n− 2)
.



23

But this, together with (6.7), (6.8) and the fact that Aab is not proportional to gab, leads
immediately to (7.16).

From (7.15), by (6.3), (6.5), (6.6) and (7.16), we get (7.8). Now (1.15), together with (7.7)
and (7.8), yields (7.9). Using (1.5), (2.14) and (7.6) we obtain

C · R = C ·

(
C +

1

n− 2
g ∧ S −

κ

(n− 2)(n− 1)
G

)
= C · C +

1

n− 2
g ∧ (C · S)

= −
1

(n− 2)2
g ∧Q(g, (

ρ

2
+ (n− 1) ρτ 21 τ2)S − (n− 1) ρτ1τ2 S

2)

−
(n− 1) ρτ2

(n− 2)2
g ∧Q(S, S2) −

ρ

2(n− 2)
Q(g, C)

and in a consequence (7.10). From (7.9) and (7.10) it follows immediately (7.11).
From (6.1) and the fact that Sab is proportional to gab on (US ∩ UC) \ V it follows that

Tab also is proportional to gab on this set. Therefore, in view of Theorem 5.4, (1.7) holds on
(US ∩ UC) \ V . Now using (1.5) and (1.7) we can express the tensor C by a linear combination
of the Kulkarni-Nomizu products S∧S, g∧S and g∧g. The last remark completes proof of (ii).

Remark 7.1. (i) Let the curvature tensor R of a semi-Riemannian manifold (M, g), n ≥ 4,
satisfies

R =
φ1

2
S ∧ S + φ2 g ∧ S + φ3G+ φ4 g ∧ S

2(7.18)

on US ∩ UC ⊂ M , where φ1, φ2, . . . , φ4 are some functions on this set. Evidently, if (1.4) holds
at a point of US ∩UC then (7.18) reduces to (1.7) at this point. We can prove that if the tensor
S3 is not a linear combination of g, S and S2 at a point US ∩UC then the decomposition (7.18)
is unique at this point. We also note that (7.18), by (1.5), yields

C =
φ1

2
S ∧ S +

(
φ2 −

1

n− 2

)
g ∧ S +

(
φ3 +

κ

(n− 2)(n− 1)

)
G + φ4 g ∧ S

2.

(ii) Warped product manifolds M ×F Ñ , dimM = 1, satisfying (7.18) are investigated in [34].

Example 7.1. (i) Let M 1 = {(v, r) ∈ R2 : r > 0}, resp., M 2 = {(u, r) ∈ R2 : r > 0}, be an
open connected non-empty subset of R2 and let on M1, resp., M 2, the metric tensor g1, resp.,
g2, be defined by

g1abdx
adxb = −f1 dv

2 + 2 dvdr, g2abdx
adxb = −f2 du

2 − 2 dudr,

where x1 = v, x2 = r and f1 = f1(v, r), resp., x1 = u, x2 = r and f2 = f2(u, r), is a smooth

function on M 1, resp., M 2, and a, b = 1, 2. We consider the warped product manifold M i×F Ñ ,

i = 1, 2, of (M i, gi), i = 1, 2, and the 2-dimensional standard unit sphere (Ñ, g̃) with the warping
function F = F (r) = r2. (ii) (a) According to [7, Section 29.5.2] (see also [63, Section 9.5])
the Vaidya metrics form a simple class of timedependent generalizations of the Schwarzschild
metric [87]. They can be obtained from the Schwarzschild metric written in ingoing or outgoing
Eddington-Finkelstein coordinates by replacing the constant mass m by a mass function m(v)
or m(u) depending on an advanced or retarded time coordinate. The metrics of the warped

products manifolds M i ×F Ñ , i = 1, 2, defined in (i), provided that f1(v, r) = 1 − 2m(v)
r

,
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resp., f2(u, r) = 1 − 2m(u)
r

, are the Vaidya metrics (see, e.g., [7, eq. (29.15)] and [63, eq.

(9.32)]). (b) The metric of M1 ×F Ñ , resp., M 2 ×F Ñ , is called the generalized Vaidya ingoing

metric, resp., outgoing metric (see, e.g. [7, eq. (39.16)]. In particular, the metric of M 1 ×F Ñ

with the function f = f(v, r) = f1(v, r) defined by f(v, r) = 1 − 2m(v)
r

− Λr2

3
,Λ = const.,

f(v, r) = 1 − 2m(v)
r

− q2

r2
, q = const., f(v, r) = 1 − 2m(v)

r
− q2(v)

r2
, respectively, is named

the Vaidya-Kottler, the Vaidya-Reissner-Nordstrøm and the Vaidya-Bonnor ingoing metric,

respectively, (see, e.g. [7, eqs. (39.18), (39.19), (39.20)]). (iii) (a) For the manifold M 1 ×F Ñ ,

with f1(v, r) = 1 − 2m(v)
r

, we have: Svv = 2m′

r2
, m′ = dm

dv
, m = m(v), and Shk = 0, if h 6= v or

k 6= v, S2 = 0, κ = 0, S ·R = 2m
r3
g ∧ S, C 6= 0, in particular Cvrrv = −2m

r3
. Moreover,

C · C = R · R −Q(S,R) =
1

2
(R · C + C · R−Q(S, C)) = −

m

r3
Q(g, C) .(7.19)

(b) For the manifold M 2 ×F Ñ , with f2(u, r) = 1 − 2m(u)
r

, we have: Suu = −2m′

r2
, m′ = dm

du
,

m = m(u), and Shk = 0, if h 6= u or k 6= u, S2 = 0, κ = 0, S · R = 2m
r3
g ∧ S, C 6= 0, in

particular Curru = −2m
r3

. Moreover, we also have (7.19) (with m = m(u)). (iv) For the metric

of the manifold M 1 ×F Ñ , with the function f = f(v, r) = f1(v, r), we have

Svv =
1

r2

(
r2

2
f ′′

rr + rf ′

r −
r

f
f ′

v

)
gvv, Svr = −

1

r2

(
r2

2
f ′′

rr + rf ′

r

)
gvr,

Sαβ = τ1 gαβ, τ1 =
1

r2
(−rf ′

r − f + 1) , κ = −
2

r2

(
r2

2
f ′′

rr + 2rf ′

r + f − 1

)
,

Avv = Svv − τ1 gvv =
1

r2

(
r2

2
f ′′

rr + 2rf ′

r + f − 1 −
r

f
f ′

v

)
gvv,

Avr = Svr − τ1 gvr =
1

r2

(
−
r2

2
f ′′

rr + f − 1

)
gvr,

Arr = Srr − τ1 grr = 0, Aαβ = Sαβ − τ1 gαβ = 0,

where f ′′

rr = ∂2f

∂r2
, f ′

r = ∂f

∂r
and f ′

v = ∂f

∂v
. We set τ3 = r2

2
f ′′

rr − rf ′

r + f − 1. Now we can state

that M 1 ×F Ñ is a conformally flat manifold if and only if the function τ3 is a zero function.

Furthermore, on UC ⊂M 1 ×F Ñ we have (7.5) and (7.6), with n = 4 and ρ = −2
3
τ3r

−2, as well

as (1.8) with L = ((f −1)f ′′

rr−
1
2

(f ′

r)
2)τ−1

3 . We also note that M 1×F Ñ is an Einstein manifold

if and only if the function f satisfies on M 1 the following system of differential equations

r2

2
f ′′

rr − f + 1 = 0,
r2

2
f ′′

rr + 2rf ′

r −
r

f
f ′

v + f − 1 = 0.

It is easy to see that at every point of M 1×F Ñ we have rankA = 2 if and only if at every point

of M 1 we have r2

2
f ′′

rr + f − 1 6= 0. Finally, Aab is proportional to gab at a point of M 1 ×F Ñ if

and only if at this point we have rf ′′

rr + 2f ′

r −
1
f
f ′

v = 0.

Example 7.2. (i) Let M1 = {(u, r) ∈ R2 : r−2m > 0 (or r−2m < 0)} be an open connected
non-empty subset of R2 and let on M 1 the metric tensor g be defined by

guudu
2 + 2gurdudr + grrdr

2 = − exp(2β) f du2 + 2 exp(β) dudr,
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where x1 = u, x2 = r, f = 1− 2m
r

, and m = m(u, r) and β = β(u, r) are some smooth functions

on M . Further, let g̃ be the standard metric on the 2-dimensional unit sphere Ñ = S2(1).

We denote by g = g ×F g̃, where F = F (r) = r2, the warped product metric of M ×F Ñ .
The metric g is said to be the general spherically symmetric metric in advanced Eddington-
Filkenstein coordinates, see, e.g., [80, Section 4.1]. (ii) The local components of the Ricci tensor

S of M ×F Ñ which may not vanish identically are the following

Suu =
1

r2(r − 2m)
(−2r exp(−β)m′

u − (−3r2 + 6rm)β ′

rm
′

r − (−r2 + 2rm)m′′

rr

−(r3 − 2r2m) exp(−β)β ′′

ur − (2r2 − 5rm+ 2m2)β ′

r

−(r3 − 4r2m + 4rm2)((β ′

r)
2 + β ′′

rr)) guu,

Sur =
1

r2
(−r2 exp(−β)β ′′

ur + 3rm′

rβ
′

r + rm′′

rr + (−2r +m)β ′

r + (−r2 + 2rm)((β ′

r)
2 + β ′′

rr))gur,

Srr =
2

r
β ′

r, Sφφ = τ1 gφφ, Sθθ = τ1 gθθ, τ1 =
1

r2
(2m′

r − (r − 2m)β ′

r),

where gφφ = r2 g̃φφ, g̃φφ = 1, gθθ = r2 g̃θθ, g̃θθ = sin2 φ and m′

r = ∂m
∂r
, m′′

rr = ∂2m
∂r2

, m′

u = ∂m
∂u
, β ′

r =
∂β

∂r
, β ′′

rr = ∂2β

∂r2
, β ′′

ur = ∂2β

∂u ∂r
. (iii) In the class of the general spherically symmetric metrics g we

also have non-Einstein metrics. For instance, from the above formulas it follows immediately
that the metrics g with Srr 6= 0, i.e. with β ′

r 6= 0, are non-Einstein metrics. Moreover, for such
metrics Sab are non-proportional to gab, a, b = 1, 2. Some general spherically symmetric g also
are non-conformally flat metrics. Namely, the metrics g satisfying

r3(exp(−β)β ′′

ru + (β ′

r)
2 + β ′′

rr) − r2(m′′

rr + β ′

r + 2m(β ′

r)
2 + 2mβ ′′

rr + 3β ′

rm
′

r)

−r(5mβ ′

r + 4m′

r) − 6m = 0

are non-conformally flat. This means that for some general spherically symmetric metrics g the

set V , defined in Theorem 7.1, is a non-empty subset of US ∩ UC ⊂M ×F Ñ .

Example 7.3. (i) Let M = {(t, r) ∈ R2 : t > 0 and r > 0} be an open connected non-empty
subset of R2 and let on M the metric tensor g be defined by gabdx

adxb = dt2 + R2(t)dr2,
a, b = 1, 2, where x1 = t, x2 = r, and R = R(t) is a smooth positive (or negative) function on

M . Let M×F Ñ be the warped product manifold of the manifold (M, g) and the 2-dimensional

standard unit sphere (Ñ , g̃) with the warping function F = F (t, r) = (f(r)R(t))2, where
f = f(r) is a smooth positive (or negative) function on M . We denote by g = g ×F g̃ the

metric of M ×F Ñ . We mention that the metric g was considerd in [65, Section 4] (see also [66,

Section 6]). (ii) We set ρ0 = (ff ′′

rr − (f ′

r)
2 + 1)(fR)−2, where f ′

r = df

dr
and f ′′

rr = df ′

r

dr
. We can

check that the Weyl conformal curvature tensor C of g is a zero tensor if and only if ρ0 = 0
on M . Further, we have S12 = S21 = 0, S11 = λ1 g11, S22 = λ2 g22, Sαβ = τ1 gαβ = (fR)2τ1 g̃αβ,
α, β = 3, 4, where

λ1 = −3R′′

ttR
−1, R′

t =
dR

dt
, R′′

tt =
dR′

t

dt
, λ2 = −(fRR′′

tt + 2f(R′

t)
2 + 2f ′′

rr)f
−1R−2 ,

τ1 = −(f 2RR′′

tt + 2f 2(R′

t)
2 + ff ′′

rr + (f ′

r)
2 − 1)(fR)−2 = λ2 + ρ0
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and g̃αβ are the local components of the metric g̃. (iii) From (ii) it follows that λ1 = λ2 if
and only if RR′′

rr − (R′

r)
2 = c1 and f ′′

rr = c1f and c1 = const. on M . (iv) If ρ0 is non-zero

at a point of UC ⊂ M ×F Ñ then in view of (ii) S − κ
4
g 6= 0 at this point. Thus we have

UC ⊂ US ⊂M ×F Ñ . Moreover, the following relations are satisfied on UC

R · R−Q(S,R) = −
2

3
ρ0Q(g, C) , C · C = −

1

6
ρ0Q(g, C) ,

R · C + C · R = Q(S, C) −
1

6
(κ+ 2ρ0)Q(g, C) .

(v) If λ = λ1 = λ2 at a point of UC then Sab = λ gab, and by (4.2), Tab = tr T
2
gab at this point.

Let V be the set of all points of UC having this property. From (iii) it follows that for some
functions f and R the set V is non-empty and in view of [47, Theorem 4.1] we can state that
(1.7) holds on this set. (vi) If λ1 6= λ2 at a point of UC then Sab is not proportional to gab at
this point. Let V be the set of all points of UC having this property. From (iii) it follows that
for some functions f and R the set V is non-empty and in view of Theorem 7.1(ii) we can state
that (7.8)-(7.11) hold on this set.
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[31] R. Deszcz, M. G logowska, M. Hotloś and G. Zafindratafa, On some curvature conditions of pseudosymmetry

type, Period. Math. Hung. 70 (2015), 153–170.
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compatible tensors, Publ. Inst. Math. (Beograd) (N.S.) 94 (108) (2013), 111–124.
[34] R. Deszcz, M. G logowska, J. Je lowicki, M. Petrović-Torgašev and L. Verstraelen, Manifolds satisfying some
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[62] K. Gödel, An example of a new type of cosmological solutions of Einsteins field equations of gravitation,

Rev. Mod. Phys. 21 (1949) 447–450.
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[81] A.A. Shaikh, R. Deszcz, M. Hotloś, J. Je lowicki and H. Kundu, On pseudosymmetric manifolds, Publ.

Math. Debrecen, in print.
[82] A.A. Shaikh and H. Kundu, On generalized Roter type manifolds, arXiv: 1411.0841v1 [math.DG] 4 Nov

2014.
[83] A.A. Shaikh and H. Kundu, On warped product generalized Roter type manifolds, arXiv: 1411.0845v1

[math.DG] 4 Nov 2014.
[84] H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein’s Field

Equations, second ed. Cambridge Monographs on Mathematical Physics, Cambridge U.P., 2003.
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Laboratoire de Mathématiques et Applications de Valenciennes
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