Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3 - Archive ouverte HAL Access content directly
Journal Articles Results in mathematics = Resultate der Mathematik Year : 2018

Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3

(1) , (2) , (2) , (1, 3)
1
2
3

Abstract

By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kähler manifold S3×S3. The proof uses a local correspondence between almost complex surfaces in S3×S3 and surfaces in R3 that satisfy the Wente H-surface equation. Furthermore we give a complete classification of flat almost complex surfaces in the homogeneous nearly Kähler S3×S3.
Fichier principal
Vignette du fichier
flatsurfacesS3S310.pdf (404 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03148536 , version 1 (13-07-2022)

Identifiers

Cite

Bart Dioos, Haizhong Li, Hui Ma, Luc Vrancken. Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler S3×S3. Results in mathematics = Resultate der Mathematik, 2018, 73 (1), 24 pp. ⟨10.1007/s00025-018-0784-y⟩. ⟨hal-03148536⟩
22 View
3 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More