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SEQUENCES OF HARMONIC MAPS IN THE 3-SPHERE

BART DIOOS, JOERI VAN DER VEKEN, AND LUC VRANCKEN

Abstract. We define two transforms between non-conformal harmonic maps
from a surface into the 3-sphere. With these transforms one can construct,
from one such harmonic map, a sequence of harmonic maps. We show that
there is a correspondence between non-conformal harmonic maps into the 3-
sphere, H-surfaces in Euclidean 3-space and almost complex surfaces in the
nearly Kähler manifold S3

×S3. As a consequence we can construct sequences
of H-surfaces and almost complex surfaces.

1. Introduction

Consider a map f : S → S3 from a Riemann surface S into the unit 3-sphere.
The map f is harmonic if it satisfies the equation ∆f + |df |2f = 0 where ∆ is
the Laplacian on the surface S ([7]). The map f is conformal if it preserves the
conformal structure on S, that is, 〈∂f, ∂f〉 = 0 where ∂ stands for ∂

∂z
. In this

case, f is a minimal immersion of the surface in the 3-sphere. For a recent and
broad survey on harmonic maps, the reader is referred to [8]. In this article we
will almost always assume that f is not conformal: 〈∂f, ∂f〉 6= 0. We will show
that to a non-conformal harmonic map from S to S3 one can associate two new
maps from S to S3 which are also non-conformal and harmonic. In fact one can
define a sequence {fp | p ∈ Z} of non-conformal harmonic maps from S into S3

where f0 = f . These will be the main results of Section 3.
The transforms of harmonic maps were inspired by the work [4]. In that article

Bolton and the last author described transforms to minimal surfaces in S5 with
non-circular ellipse of curvature. Antic and the last author [1] generalized these
transforms for superconformal minimal surfaces in odd-dimensional spheres S2n+1

whose (n − 2) higher-order ellipses of curvature are circles. These transforms are
natural generalisations of the polar construction for superconformal minimal sur-
faces in odd-dimensional spheres (see [3] and for surfaces in S3 see [9]).

In Section 2 we first give some preliminaries on quaternions. Quaternions turn
out to be very convenient for describing surfaces in the 3-sphere. A study of sur-
faces in spheres using a quaternionic language can be found in [6]. In this reference
however conformal maps are studied whereas in this article we will mostly consider
non-conformal maps. Next we will define an adapted frame for non-conformal har-
monic maps and derive the moving frame equations and the compatibilty conditions
for this frame.

In Section 4 we will address the following problem. Given a non-conformal har-
monic map f from a surface into the 3-sphere we can transform it into a new
non-conformal harmonic map. When are a non-conformal map f and its trans-
formed map equal up to an isometry of S3? The maps satisfying this property are
certain parametrizations of Clifford tori. Since the transforms are generalizations
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of Lawson’s polar construction for minimal surfaces, this question is analogue to
the question when a minimal surface is congruent to its polar surface. The only
minimal surface in S3 congruent to its polar is the Clifford torus S1( 1√

2
)×S1( 1√

2
).

In order to answer our question we will prove an existence and uniqueness theorem
(Proposition 4.1) that very much resembles the classical existence and uniqueness
theorem of Bonnet. Using the Bonnet-type theorem and a technical lemma, we can
answer our question in Theorem 4.3.

The original motivation of the authors to investigate these transforms of har-
monic maps is the study of almost complex surfaces in the nearly Kähler mani-
fold S3 × S3. In the paper [2], Bolton, Dillen, Dioos and Vrancken found a corre-
spondence between almost complex surfaces in S3 × S3 and H-surfaces X in R3,
that is, surfaces that satisfy the Wente H-equation Xxx + Xyy = − 4√

3
Xx × Xy.

Moreover, on such an almost complex surface there exists a quadratic holomorphic
differential. In Section 5 of the present paper we will discuss the relation between
harmonic maps to S3, H-surfaces in R3 and almost complex surfaces in S3 × S3.
In Theorem 5.3 we prove that almost complex surfaces in S3 × S3 correspond to
harmonic maps in the 3-sphere, and vice versa. This correspondence follows quickly
from the results in [2] we just mentioned and a non-conformal analogue of Law-
son’s correspondence Theorem (Proposition 5.2). As a corollary one can associate
a whole sequence of such surfaces to one given almost complex surface in S3 × S3

with non-vanishing differential.

2. Harmonic maps to S3

The ring of quaternions H can be identified with the vector space R4. If quater-
nions are written as real linear combinations of the basis elements 1, e1, e2 and e3,
then the quaternion multiplication is determined completely by the identities

e21 = e22 = e23 = e1e2e3 = −1.

A quaternion that is a linear combination of e1, e2 and e3 is called an imaginary
quaternion. The set of imaginary quaternions ImH can be identified with the
Euclidean space R3. The product of two imaginary quaternions α and β is given
by

(1) αβ = −〈α, β〉+ α× β

where 〈 , 〉 is the Euclidean inner product and × is the usual vector product on R
3.

The quaternions are very useful to describe the 3-sphere and its tangent spaces.
The 3-sphere S3 is the set of unit quaternions {p ∈ H | ‖p‖ = 1}. One can
prove that 〈uv, uw〉 = 〈u, u〉〈v, w〉 for all quaternions u, v and w. Therefore pα is
orthogonal to p for every imaginary quaternion α and the tangent space at p is

(2) TpS
3 = {pα | α ∈ ImH}.

On a surface we will use complex coordinates, so in order to describe the complex-
ified tangent vectors we will need the complexified quaternions H ⊗ C = H ⊕ iH.
The element i must be distinguished from e1 ∈ H. The complex bilinear extension
of the Euclidean metric and vector product will also be denoted by 〈 , 〉 and ×. The
product of two complexified quaternions p1 + ip2 and q1 + iq2 is

(p1 + ip2)(q1 + iq2) = (p1q1 − p2q2) + i(p1q2 + p2q1).

The conjugate of a complexified quaternion p1 + ip2 is equal to

p1 + ip2 = p1 − ip2



SEQUENCES OF HARMONIC MAPS IN THE 3-SPHERE 3

and is denoted with a bar. In contrast, the conjugate of a quaternion p is written
as

p∗ = (a+ be1 + ce2 + de3)
∗ = a− be1 − ce2 − de3.

So ¯ means conjugation with respect to the imaginary i and ∗ is conjugation with
respect to the three imaginaries e1, e2, e3.

Now consider a harmonic map f : S → S3 ⊂ H from a Riemann surface S into
the 3-sphere S3. Choose a local complex coordinate z = x + iy on S. Denote ∂

∂z

and ∂
∂z̄

by ∂ and ∂̄ respectively. Similarly the derivatives of f with respect to the
real coordinates x and y will be written as fx and fy respectively. We introduce
the H⊗ C-valued function

f1 = ∂f.

Since 〈f, f〉 = 1, it follows that 〈f, f1〉 = 0.
Harmonicity means that ∂∂̄f = −|∂f |2f . If f is in addition a conformal map, f

is a minimal isometric immersion of S in S3. We assume that f is not conformal.
By the harmonicity of f , the function 〈f1, f1〉 is holomorphic. Since f is assumed
to be non-conformal, 〈f1, f1〉 is non-zero. Therefore there exists a complex coordi-
nate z such that 〈f1, f1〉 = −1. We will call such a coordinate an adapted complex

coordinate for f .
By (2) there exist functions α and β with values in ImH such that fx = fα

and fy = fβ. This means that f1 = 1
2f(α− iβ). It follows from 〈f1, f1〉 = −1 that

〈α, α〉 − 〈β, β〉 = −4, 〈α, β〉 = 0.

Hence there is a non-negative smooth function φ such that

|α| = 2 sinhφ, |β| = 2 coshφ.(3)

Note that β is nowhere vanishing by equation (3), but α can be zero. At points
were α is not zero the vectors f1 and f̄1 are linearly independent and φ is positive.
In the following we will tacitly assume that we are working on the open subset U
of S where α 6= 0. On this set φ is positive and the image f(U) is a surface in
the 3-sphere. At a point of U define N to be the real unit vector in the direction
of f(α× β). Then N is orthogonal to {f, f1, f̄1} and

|f(α× β)|2 = 〈α, α〉〈β, β〉 − 〈α, β〉2 = 4 sinh2 2φ,

hence f(α×β) = ±2 sinh 2φN . For definiteness we take N such that the orthogonal
frame {f, fx, fy, N} in R4 is positively oriented, so N = 1

2 csch 2φ f(α × β). We

have now defined a complex moving frame F = {f, f1, f̄1, N} for f on the set U .
The matrix A of complex inner products of the vectors of F is

(4) A =









1 0 0 0
0 −1 cosh 2φ 0
0 cosh 2φ −1 0
0 0 0 1









.

Now we give the moving frame equations for F . Write µ = 〈∂f1, N〉. An easy
calculation using (4) gives the equations in terms of φ and µ.

∂f = f1,

∂f1 = f + 2∂φ(coth 2φ f1 + csch 2φ f̄1) + µN,

∂f̄1 = − cosh2φ f,

∂N = −µ csch2φ(csch 2φ f1 + coth 2φ f̄1).

(5)
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The corresponding ∂̄-equations can be found by simply taking the conjugates of the
above ones. The compatibility conditions ∂∂̄F = ∂̄∂F for the frame F give

2∂∂̄φ = − sinh 2φ+ |µ|2 csch 2φ,
∂̄µ = −2µ̄∂φ csch 2φ.

(6)

The complex function µ measures the rate at which the image of f is pulling away
from the great 2-sphere tangent to the image of f . If f is a map into a great 2-
sphere, then µ vanishes and the above compatibility condition for φ becomes the
sinh-Gordon equation.

Remarks 2.1. (1) A non-conformal harmonic map f from a compact sur-
face S to the 2-sphere always must have a singular point. Indeed, suppose
such a map does not have singular points, then φ is a positive function
on a compact surface satisfying the sinh-Gordon equation. But then the
maximum principle gives a contradiction.

(2) Recall that by Hopf’s lemma there are no non-conformal harmonic maps
from the 2-sphere to the 3-sphere.

3. The transforms

Let f : S → S3 be a non-conformal harmonic map. In this section we will first
show how to associate to f two new non-conformal harmonic maps f+ and f−

from S into S3. Moreover, if z is an adapted complex coordinate for the map f ,
then it also is an adapted coordinate for f+ and f−. Then we will show that the
two transformations are each others inverse in the sense that (f+)− = (f−)+ = f .
Consequently we can associate a sequence {fp | p ∈ Z} of non-conformal harmonic
maps from S into S3 to the map f0 = f .

Fix a point p ∈ S3 and consider the vectors

± sin θ
fβ

|fβ| + cos θN(7)

in Tf(p)S
3, where θ is chosen such that cos θ = |α|/|β| = tanhφ and sin θ = sechφ.

The ellipse E with fα and fβ as minor and major semi-axes is the image of a
circle in the tangent plane to S at p under df . The cosine cos θ is the ratio between
the lengths of the minor and major axes of this ellipse and is a measure for its
eccentricity as well as for the non-conformality of f . The vectors above now have
the following geometrical meaning. Let Rθ be the rotation of Tf(p)S

3 about the
minor axis of E through the angle θ. Then the orthogonal projection of the rotated
ellipse Rθ(E) onto the plane containing E is a circle. Of course, the same holds for
the rotation R−θ = R−1

θ . The vectors above are the images of the unit normal N
under the rotations Rθ and R−θ.

We can rewrite the vectors in (7) as

f+ =
i

2
sech2 φ(f1 − f̄1) + tanhφN,

f− = − i

2
sech2 φ(f1 − f̄1) + tanhφN,

(8)

where we have used fβ = i(f1− f̄1) and |fβ| = 2 coshφ. By varying the point p, we
can look at f+ and f− as maps from S to S3 again and we call them the (+)transform
and (−)transform of f respectively. If f were conformal, that is if |α| = |β| every-
where, the expressions (7) would still make sense. In fact, we get θ = 0 and recover
the polar surface of the minimal surface f , see [9]. From now on we restrict to the
non-conformal case and we denote the transforms (8) by f ε where ε is 1 or −1.
All objects and functions related to f ε will be denoted with a superscript ε. For
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instance, αε and βε are the functions such that ∂fε = 1
2f

ε(αε − iβε) and φε is the
non-negative smooth function that satisfies the ε-analogue of (3).

Remark 3.1. In [7, p. 64-65] Hélein describes how to associate to a harmonic map
from a surface to S2 two new harmonic maps from the surface into the 3-sphere.
These harmonic maps are conformal, so they are different from the transforms we
describe here.

Theorem 3.2. Let f : S → S3 be a non-conformal harmonic map from a Riemann

surface S into the 3-sphere. Then the tranforms f+ and f− are also non-conformal

harmonic maps from S to S3. Furthermore, an adapted complex coordinate for f
is also an adapted complex coordinate for f+ and f−.

Proof. First we define f ε
1 = ∂f ε. Using the definition (8) of f ε and the moving

frame equations (5) for F one gets

(9) f ε
1 = εif − 1

2
(µ− 2εi∂φ) sech2 φ(csch 2φ f1 + coth 2φ f̄1 − εiN).

A computation using the inner products (4) then gives

〈f ε
1 , f

ε
1 〉 = −1,

|f ε
1 |2 = 1 +

1

2
|µ− 2εi∂φ|2 sech2 φ.(10)

So the coordinate z is an adapted complex coordinate for f ε as well.
Next we will show that f ε is a non-conformal harmonic map. We have just

showed that 〈f ε
1 , f

ε
1 〉 is non-zero, so f ε

1 clearly is non-conformal. We still have to
check that ∂∂̄f ε is a multiple of f ε. An easy calculation using (4) gives

〈f ε, f〉 = 0,

〈f ε, f1〉 = −εi,
〈f ε, f̄1〉 = εi,

〈f ε, N〉 = tanhφ.

(11)

Equation (9) gives

〈f ε
1 , f〉 = εi,

〈f ε
1 , f1〉 = − tanhφ(µ− 2εi∂φ),

〈f ε
1 , f̄1〉 = 0,

〈f ε
1 , N〉 = εi

2
sech2 φ(µ − 2εi∂φ).

(12)

Now we can calculate the inner products of ∂∂̄fε with the frame vectors of F . The
first inner product is

〈∂∂̄f ε, f〉 = ∂̄〈f ε
1 , f〉 − 〈f ε

1 , f̄1〉 = 0.

With a similar calculation using the compatibility conditions (6) and equation (10)
the other inner products become

〈∂∂̄f ε, f1〉 = εi|f ε
1 |2,

〈∂∂̄f ε, f̄1〉 = −εi|f ε
1 |2,

〈∂∂̄f ε, N〉 = − tanhφ|f ε
1 |2.

Comparing with (11) we have now shown that ∂∂̄f ε = −|f ε
1 |2f ε and thus f ε is an

harmonic map into the 3-sphere. �

Lemma 3.3. The function φε is positive on an open dense subset Uε of S.
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Proof. From the expressions for 〈f ε
1 , f

ε
1 〉 and |f ε

1 |2 it follows that 〈αε, αε〉 = |µ −
2εi∂φ|2 sech2 φ. So φε is non-negative and is zero if and only if µ = 2εi∂φ. The
compatibility conditions (6) for the moving frame F give

∂̄(µ− 2εi∂φ) = εi
(

sinh 2φ− µ̄ csch 2φ(µ− 2εi∂φ)
)

.

If µ = 2εi∂φ on an open set, the equation gives sinh 2φ = 0, which means φ = 0.
This gives a contradiction. �

By Lemma 3.3 the normal Nε and the moving frame Fε = {f ε, f ε
1 , f̄

ε
1 , N

ε} of the
new harmonic map f ε are well-defined on an open dense set Uε. The ε-analogues
of the moving frame equations and compatibility conditions for Fε hold on Uε.

Next we prove that the (+)transform and (−)transform are mutual inverses.
Before doing so, we calculate the functions αε, βε and αε × βε in terms of α, β, φ
and µ.

Lemma 3.4. If µ = µ1 + iµ2 and φx = ∂φ
∂x

and φx = ∂φ
∂y

, then

αε = (µ2 − εφx) csch 2φα

+
1

2
(µ1 − εφy) tanhφ sech

2 φ
(

β − ε

2
csch2 φα × β

)

,

βε = (µ1 − εφy) csch 2φα+ sech2 φ
(

1− 1
2 (µ2 − εφx) tanhφ

)

β

+
ε

2
sech2 φ

(

1 + (µ2 − εφx) csch 2φ
)

α× β,

αε × βε = 2ε csch 2φ(µ1 − εφy)α− ε

2
sech4 φ

(

|µ|2 + (µ2 − εφx) sinh 2φ
)

β

− 1

4
sech4 φ

(

|µ|2 + 2(µ2 − εφx) cothφ
)

α× β.

Proof. The ε-transform f ε is a map to S3, so f ε(f ε)∗ = 1. Hence αε − iβε =
2(f ε)∗f ε

1 . The definition of the transform f ε and expression (9) for f ε
1 give

αε − iβε =
(

εi sech2 φ(f1 − f̄1)
∗ + 2 tanhφN∗

)

·
(

εif − 1

2
(µ− 2εi∂φ) sech2 φ(csch 2φ f1 + coth 2φ f̄1 − εiN

)

The equality (pα)∗ = −αp∗ holds for every quaternion p and every imaginary
quaternion α. This equality and (3) give

N∗f = −1

2
csch 2φα× β, (f1 − f̄1)

∗f = iβ,

N∗f1 = −1

2

(

tanhφβ + i cothφα
)

, (f1 − f̄1)
∗f1 = −2 cosh2 φ− i

2
α× β,

N∗f̄1 = −1

2

(

tanhφβ − i cothφα
)

, (f1 − f̄1)
∗N = i cothφα.

Substitution of these equations give

αε − iβε = −i sech2 φ
(

β +
ε

2
α× β

)

− (µ− 2εi∂φ)
(

i csch 2φα

− 1
2 tanhφ sech

2 φβ + ε
4 cothφ sech

4 φα× β
)

.

After expanding the product in the last term and simplifying some hyperbolic
trigonometric identities, one obtains the expressions for αε and βε. The expression
for αε × βε can be calculated by using the formula u× (v ×w) = 〈u,w〉v − 〈u, v〉w
and the inproducts (3). �

Theorem 3.5. Let f : S → S3 be a non-conformal harmonic map. Then the

(+)transform and (−)transform of f are mutual inverses in the sense that

(f+)− = (f−)+ = f.
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Proof. Consider a non-conformal harmonic map f : S → S3. Let ε and ε̃ be such
that εε̃ = −1. Note that

f ε =
1

2
sech2 φf

(

εβ +
1

2
α× β

)

.

Therefore

(f ε)
ε̃
=

1

2
sech2 φεf ε

(

ε̃βε +
1

2
αε × βε

)

=
1

4
sech2 φ sech2 φεf

(

εβ +
1

2
α× β

)(

ε̃βε +
1

2
αε × βε

)

.

Lemma 3.4 and a good amount of arithmetic then yield

(13) (f ε)
ε̃
=

1

4
sech2 φ sech2 φεf

(

|µ− 2εi∂φ|2 + 4 cosh2 φ
)

= f.

So the (+)transform and (−)transform are each others inverses. �

Theorem 3.5 allows us to associate to a non-conformal harmonic map f : S → S3

a sequence {fp | p ∈ Z} of such harmonic maps by defining f0 = f and, for every
integer p, fp+1 = (fp)+ and fp−1 = (fp)−. Moreover, if z is an adapted complex
coordinate for one of the maps fp in the sequence, then it is an adapted complex
coordinate for every map in the sequence. In the rest of the article we will refer to
this sequence as the sequence associated to the map f .

4. Sequences of harmonic maps

In this section we answer the following question: when is a non-conformal har-
monic map f from a surface to the 3-sphere the same as its ε-transform f ε? Two
maps are considered to be the same if they are equal up to an isometry of the
3-sphere. Note that in this case all maps in the sequence associated to f are con-
gruent by Theorem 3.5. Proposition 4.1 gives a criterium for this. It tells us that
two non-conformal harmonic maps are equal, up to an isometry of S3, if their re-
spective functions φ and µ as defined in Section 2 agree. Proposition 4.1 is an
analogue of the classical existence and uniqueness theorem of Bonnet. Next we
find two relations between the functions φε and µε of the ε-transform f ε and φ
and µ of the original map f . With the use of the Bonnet-type theorem and the
relations between φ, µ and φε, µε, we determine all the non-conformal maps that
are congruent to their ε-transforms.

Proposition 4.1. Let φ be a real positive smooth function and µ a complex function

on a simply connected surface S satisfying the differential equations (6). Then there

exists a non-conformal harmonic map f : S → S3 such that all the inner products

of the frame F = {f, f1, f̄1, N} are given by (4) and 〈∂f1, N〉 = µ. Furthermore

such a map f is unique up to isometries of S3: if g is another map satisfying the

above conditions, then g = R ◦ f where R ∈ O(4).

Proof. (Existence.) Fix a point p in S. We consider the moving frame equations (5)
as a system of first order differential equations with the R4-valued functions f , f1,
f̄1 and N as variables. Since the integrability conditions are assumed to hold, there
exists a unique solution f , f1, f̄1 andN on S such that the ten inner products 〈f, f〉,
〈f, f1〉, . . . , 〈N,N〉 are given by the matrix (4) at the point p.

The inner products satisfy the system of twenty linear differential equations

∂〈f, f〉 = F1(〈f, f〉, . . . , 〈N,N〉, φ, µ), ∂̄〈f, f〉 = F ′
1(〈f, f〉, . . . , 〈N,N〉, φ, µ),

...
...

∂〈N,N〉 = F10(〈f, f〉, . . . , 〈N,N〉, φ, µ), ∂̄〈N,N〉 = F ′
10(〈f, f〉, . . . , 〈N,N〉, φ, µ).
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The functions F1, . . . , F
′
10 are linear with respect to the inner products and depend

on φ and µ. It is a straightforward task to check that the functions in the entries
of the matrix A also satisfy this system of equations. Since both solutions agree at
the point p, they must be the same at all points of S.

Finally note that the two differential equations ∂f = f1, ∂̄f = f̄1 are integrable,
so there exists a smooth map f from S to R4. The inner products 〈f, f1〉 and 〈f, f̄1〉
are zero, so f is a map into a 3-sphere. The first and third moving frame equations
imply that f is harmonic. The non-conformality is clear. The existence part is now
proven.

(Uniqueness.) Assume that there are two non-conformal harmonic maps f and g
from S into S3 such that φf = φg and µf = µg. After applying an isometry of the
3-sphere we may assume that the tangent vectors and normals of f and g agree
at p:

f(p) = g(p), f1(p) = g1(p), Nf (p) = Ng(p).

Moreover by the assumption the maps f and g satisfy the same moving frame
equations (5). By the uniqueness for solutions of ordinary differential equations f
and g are the same. �

This proposition will allow us to give an alternative proof of two uniqueness and
existence theorems in [5]. We come back to this remark in Remark 5.4 (2).

Lemma 4.2. Let f : S → S3 be a non-conformal harmonic map and f ε its ε-
transform. Then the functions φ, µ and φε, µε satisfy the following relations.

4 sinh2 φε = |µ− 2εi∂φ|2 sech2 φ(14)

4 sinh2 φ = |µε + 2εi∂φε|2 sech2 φε(15)

tanhφε(µε + 2εi∂φε) = tanhφ(µ − 2εi∂φ)(16)

Proof. Equation (14) was already found in the proof of Lemma 3.3. By Theorem 3.5
we know that (φε)ε̃ = φ for ε̃ = −ε, so equation (15) follows from (14):

4 sinh2 φ = 4 sinh2(φε)ε̃ = |µε + 2εi∂φε|2 sechφε.
For equation (16) we consider the matrices M and M ε such that





αε

βε

αε × βε



 =M ε
0





α
β

α× β



 ,





(αε)ε̃

(βε)ε̃

(αε)ε̃ × (βε)ε̃



 =M ε̃
ε





αε

βε

αε × βε



 .

The first equation is just the matrix notation of the three equations in Lemma 3.4,
so the elements of M ε

0 can readily be read from those equations. The expression
for the matrix M ε̃

ε is the same as the one for M ε
0 , but one has to perform the

changes ε → −ε, φ→ φε and µ → µε. By Theorem 3.5 we know that M ε̃
εM

ε
0 = I.

The equations in the (1, 1)- and the (2, 1)-entry ofM ε̃
εM

ε
0 = I give us the equations

(µ1 − εφy)(µ
ε
1 + εφεy) + (µ2 − εφx)(µ

ε
2 + εφεx) = sinh 2φ sinh 2φε,

(µ2 − εφx)(µ
ε
1 + εφεy)− (µ1 − εφy)(µ

ε
2 + εφεx) = 0.

(17)

The diligent reader can check that the other seven equations in M ε̃
εM

ε
0 = I be-

come trivial after substitution of (14), (15) and the equations (17). The sys-
tem of equations (17) is linear in µε

1 + εφεy and µε
2 + εφεx and its determinant

is −|µ − 2εi∂φ|2 = −4 sinh2 φε cosh2 φ, which by Lemma 3.3 is non-zero on the
open dense subset Uε. Solving the system of equations gives

µε
1 + εφεy = tanhφ cothφε(µ1 − εφy),

µε
2 + εφεx = tanhφ cothφε(µ2 − εφx),

which are the real and the imaginary part of equation (16). �
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Theorem 4.3. The following statements are equivalent.

(a) a non-conformal harmonic map f is congruent to its ε-transform f ε;

(b) φ = φε and µ = µε;

(c) the function φ is constant; and

(d) the function µ is constant and non-zero.

If one of these statements holds, all maps in the sequence associated to f are the

same up to congruence.

Proof. The first equivalence is an immediate corollary of Proposition 4.1.
Now we prove the equivalence of (b) and (c). If φ = φε and µ = µε, then

it follows from equation (16) that ∂φ is zero, so φ is constant. This proves one
implication. For the converse implication the equations (14) and (6) give

4 sinh2 φε = |µ|2 sech2 φ = 4 sinh2 φ,

so φ = φε and therefore µ = µε by (16).
Next we prove the equivalence of (c) and (d). If φ is constant, the two com-

patibility conditions (6) give |µ|2 = sinh2 2φ and ∂̄µ = 0. So µ is a holomorphic
function with constant modulus. By the maximum modulus principle µ is a con-
stant function. Since φ is positive, µ is non-zero. Conversely if µ is a non-zero
constant then φ also is constant by the second compatibility condition in (6) and
the positiveness of φ.

The last assertion follows directly from the fact that the (+) and (−)transforms
are each others inverse. �

In order to find explicit expressions for the maps that satisfy the conditions
in the previous theorem one can in principle integrate the moving frame equa-
tions (5). This approach however is not very practical. Therefore we will follow
another approach. Note that the images of the harmonic maps with constant φ
and µ are surfaces with constant principal curvatures. Furthermore these surfaces
are flat, because the frame vectors f , fx, fy and N are orthogonal and have con-
stant length. Therefore the harmonic maps with constant φ and µ must be certain
reparametrizations of Clifford tori, because these tori are the only flat surfaces with
constant principal curvatures in S3. This observation leads to the next classifica-
tion.

Theorem 4.4. Consider the maps f : R2 → S3 defined by

(18) f(x, y) =
(

r cos(ax+ by), r sin(ax+ by), s cos(cx+ dy), s sin(cx+ dy)
)

,

where r and s are non-zero real constants satisfying r2 + s2 = 1 and

a =
2

r
sinhφ cos θ, b = −2

r
coshφ sin θ, c =

2

s
sinhφ sin θ, d =

2

s
coshφ cos θ(19)

for some real constants φ > 0 and θ related by

θ =
1

2
arccos

(

(s2 − r2) cosh 2φ
)

.(20)

These maps are non-conformal harmonic maps with adapted coordinate z = x+ iy
and the constant φ plays the role of the function φ in the moving frame equa-

tions (5), in particular 〈fx, fx〉 = 4 sinh2 φ and 〈fy, fy〉 = 4 cosh2 φ are constant.

The function µ appearing in (5) is also constant, more precisely,

(21) µ =
sinh 2φ

2rs

(

(r2 − s2) sinh 2φ− i

√

1− (r2 − s2)2 cosh2 2φ

)

.

Moreover, these maps are congruent to their ε-transforms and, conversely, all non-

conformal harmonic maps congruent to their ε-transform are of the form (18).
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Proof. Consider a map f of the form (18). An easy calculation gives

〈fx, fx〉 = a2r2 + c2s2,

〈fx, fy〉 = abr2 + cds2,

〈fy, fy〉 = b2r2 + d2s2.

It follows from (19) that 〈fx, fx〉 = 4 sinh2 φ, 〈fx, fy〉 = 0 and 〈fy, fy〉 = 4 cosh2 φ,
so f is non-conformal and the coordinate z = x + iy is adapted. The map f is
harmonic if and only if fxx+ fyy = −(|fx|2+ |fy|2)f . A calculation shows that this
is equivalent to a2 + b2 = c2 + d2, or, by (19), to

cos 2θ + (r2 − s2) cosh 2φ = 0.

By the definition (20) of θ, this condition is satisfied. Now we only have to calcu-
late µ = 〈∂f1, N〉. The normal N is

N =
(

s cos(ax+ by), s sin(ax+ by),−r cos(cx+ dy),−r sin(cx+ dy)
)

.

Hence, the real and imaginary parts of µ are given respectively by

µ1 =
1

4
〈fxx − fyy, N〉 = r2 − s2

2rs
sinh2 2φ,

µ2 = −1

2
〈fxy, N〉 = −

√

1− (r2 − s2)2 cosh2 2φ

2rs
sinh 2φ.

Since φ and µ are constant, f is congruent to its ε-transform by Theorem 4.3.
The converse statement is now easy to prove. By the uniqueness clausule of

Proposition 4.1 it suffices to show that for the maps (18) every positive real number
φ and every complex number µ with modulus sinh 2φ can occur. For φ this is trivial.
We will now show that every complex number µ0 = sinh 2φ eiτ can occur. If we
write r = cos ρ and s = sin ρ, the expression (21) for µ becomes

µ = sinh 2φ

(

cot 2ρ sinh 2φ− i csc 2ρ

√

1− cos2 2ρ cosh2 2φ

)

Requiring this to be equal to µ0 = sinh 2φ eiτ gives

ρ =
1

2
arccot

(

cos τ csch 2φ
)

+
kπ

2
,

for some integer k depending on τ . Since (s2 − r2) cosh 2φ = − cos 2ρ cosh 2φ is
contained in [−1, 1], we can use (20) to define θ and (19) to determine a, b, c and d.
So by Proposition 4.1 we have classified all the non-conformal harmonic maps that
are congruent to their ε-transforms. �

Theorem 4.3 (b) says that if φ = φε and µ = µε, then a non-conformal harmonic
map f is congruent to its ε-transform. In view of this result, it is interesting to ask
what we can say about the map f if only φ = φε or only µ = µε hold.

Lemma 4.5. If φ = φε, then the following equations hold:

(a) µε = µ− 4εi∂φ;
(b) |µ| = |µε|;
(c) |µ|2 − 4|∂φ|2 = sinh2 2φ; and
(d) the function cothφ∂φ is holomorphic.

Proof. Equation (a) follows immediately from φ = φε and equation (16). The
compatibility conditions (6) for φ and φε give

0 = 2∂∂̄(φ− φε) = (|µ|2 − |µε|2) csch 2φ.
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This gives (b). The compatibility conditions (6) for µ and µε give

∂̄(µ− µε) = −2(µ̄− µ̄ε)∂φ csch 2φ.

After substitution of equation (a) this becomes

(22) ∂∂̄φ = 2|∂φ|2 csch 2φ.
Substituting the compatibility conditions (6) for φ then gives equation (c). Deriving
the function cothφ∂φ and using equation (22) directly shows that the function is
holomorphic. �

Lemma 4.6. Assume that µ = µε.

(a) If µ is zero, then coshφ coshφε = c for some constant c.
(b) If µ is non-zero, then φ = φε and f is congruent to f ε.

Proof. If we assume that µ is zero, then (16) gives ∂φ tanhφ = −∂φε tanhφε, which
after integration becomes ln(coshφ coshφε) = ln c where c is a positive constant.
We note that taking the ∂̄-derivative of the first mentioned equation does not yield
any new information.

Now assume that µ does not vanish. The second compatibility condition of (6)
gives 0 = ∂̄(µ− µε) = −2µ̄(∂φ csch 2φ− ∂φε csch 2φε), hence

(23) ∂φ csch 2φ = ∂φε csch 2φε.

Deriving this equation with respect to ∂̄ and using the first compatibility condition
of (6) yields

|µ|2(csch2 2φ− csch2 2φε) = 4(|∂φ|2 coth 2φ csch 2φ− |∂φε|2 coth 2φε csch 2φε).
After substitution of (23) this equation becomes

|µ|2(csch2 2φ− csch2 2φε) = 4|∂φ|2 csch2 2φ(cosh 2φ− cosh 2φε).

Now note that the left and right hand side have opposite signs, so both sides have to
vanish. Therefore, since µ is non-zero, it follows that φ = φε. By Theorem 4.3 (b)
the map f and its ε-transform are congruent. �

5. Almost complex surfaces in S3 × S3

In this section we discuss the relation between harmonic maps f : S → S3 and
almost complex surfaces in the nearly Kähler manifold S3 × S3. Before showing
this relation, we first briefly recall some definitions and the necessary background
on almost complex surfaces in S3×S3. For more details the reader is referred to [2].

An almost Hermitian manifold is a manifold endowed with an almost complex
structure J and a Riemannian metric that is compatible with J . If in addition
the tensor field ∇J is skew-symmetric, where ∇ is the Levi-Civita connection of
the metric, then the manifold is called nearly Kähler. The product manifold S3 ×
S3 of two 3-spheres admits such a nearly Kähler structure. The almost complex
structure J on S3 × S3 is defined by

J(X,Y )(p,q) =
1√
3

(

2pq−1Y −X,−2qp−1X + Y
)

for (X,Y ) ∈ T(p,q)S
3×S3. It is easy to check that J is anti-involutive. If we denote

the usual product metric on S3 × S3 by 〈 , 〉, then the nearly Kähler metric g is
given by

g(Z,W ) =
1

2

(

〈Z,W 〉+ 〈JZ, JW 〉
)

and it is easily seen that g is compatible with J . Almost complex surfaces in S3×S3,
also known as pseudo-holomorphic curves, are surfaces for which the almost complex
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structure J maps tangent vectors onto tangent vectors. On S3 × S3 there is also
an almost product structure P (i.e. an involutive endomorphism) defined by

P (X,Y )(p,q) = (pq−1Y, qp−1X).

If ψ : S → S3 × S3 is an almost complex surface and z a complex coordinate,
then g(Pψz, ψz) dz

2 defines a holomorphic quadratic differential on the surface.
A H-surface in the Euclidean 3-space is a surface X satisfying the equation

(24) Xxx +Xyy = 2HXx ×Xy

where z = x+ iy is a complex coordinate and H is a real function. In this article H
always is constant. It is important to note that the definition of a H-surface does
not depend on the choice of complex coordinates. To show this we follow [10]. The
solutions of (24) are the critical maps of the functional EH(X) = D(X)+4HV (X).
Here D(X) is the Dirichlet energy functional

D(X) =

∫

S

|dX |2 dxdy

and V (X) is the volume integral

V (X) =
1

3

∫

S

〈X,Xx ×Xy〉 dxdy.

The functional EH is invariant under changes of complex coordinates, so we may
change the complex coordinate on the H-surface. Furthermore note that the qua-
dratic differential 〈Xz , Xz〉 dz2 is holomorphic. If 〈Xz , Xz〉 dz2 vanishes, X is a
surface of constant mean curvature H .

We want to warn the reader that by a H-surface many authors mean a con-
stant mean curvature surface. We will not follow this terminology; instead we
follow Wente [10]. So in this article a H-surface is not necessarily a constant mean
curvature surface and the differential 〈Xz, Xz〉 dz2 must not be zero.

The results of [2] we need in this section will be summarised in the following
theorem.

Theorem 5.1 ([2]). Let ψ : S → S3 × S3 be a simply connected almost complex

surface and z = x + iy a complex coordinate. To such an almost complex surface

one can associate a surface X in Euclidean 3-space satisfying the H-equation

(25) Xxx +Xyy = − 4√
3
Xx ×Xy,

and vice versa. Two almost complex surfaces are congruent in S3 × S3 if and only

if their corresponding surfaces in R3 are congruent.

Moreover, the holomorphic differential on the almost complex surface satisfies

g(Pψz, ψz) = ei
π

3 〈Xz , Xz〉. Thus an almost complex surface with vanishing holo-

morphic differential corresponds to a surface in R3 with constant mean curva-

ture − 2√
3
.

We can now easily prove a correspondence (Theorem 5.3) between almost com-
plex surfaces in S3 × S3 and harmonic maps in S3. The proof follows from Theo-
rem 5.1 and the following proposition.

Proposition 5.2. To a harmonic map from a simply connected surface into the

3-sphere S3 one can associate an H-surface X in Euclidean 3-space satisfying

(26) Xxx +Xyy = −2Xx ×Xy,

and vice versa. Moreover the harmonic map is non-conformal if and only if the asso-

ciated H-surface has non-vanishing holomorphic differential 〈Xz, Xz〉 dz2 where z =
x+ iy.
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Proof. Consider a harmonic map f : S → S3 and take a complex coordinate z =
x+ iy. Then fx = fα and fy = fβ. From the integrability condition fxy = fyx we
obtain

(27) αy − βx = 2α× β.

The map f is harmonic, so fxx + fyy is parallel with f . In terms of α and β this
equation gives

(28) αx + βy = 0.

Since S is a simply connected surface, there exists a R3-valued map X , unique up
to a real constant vector in R3, such that

Xx = −β, Xy = α.

Indeed, equation (28) exactly is the integrability condition for this system of dif-
ferential equations. Equation (27) now becomes (26). If the harmonic map is non-
conformal, we can assume that z is an adapted coordinate. Then clearly 〈Xx, Xx〉−
〈Xy, Xy〉 = 〈β, β〉 − 〈α, α〉 = 4 is non-zero.

In order to prove the other implication, one proceeds through the previous con-
struction in the opposite direction. �

Theorem 5.3. To a harmonic map from a simply connected surface into the 3-

sphere S3 one can associate an almost complex surface in S3 × S3, and vice versa.

Moreover the harmonic map is non-conformal if and only if the associated almost

complex surface has a non-vanishing holomorphic differential.

Proof. By Theorem 5.1 the harmonic map yields a H-surface X satisfying (26)
(here H = −1). After a suitable dilation we can assume that the surface satis-
fies (25) (here H = − 2√

3
). Observe now that the quadratic differential of the H-

surface X vanishes if and only if the quadratic differential of the dilated surface
vanishes. We then only have to apply Proposition 5.2 and the proof is done. �

Remarks 5.4. (1) Proposition 5.2 says that a harmonic map into the 3-sphere
corresponds to an H-surface in Euclidean 3-space and vice versa. This is
just the non-conformal analogue of the Lawson correspondence [9]: each
minimal surface in S3 has a constant mean curvature “cousin surface” in R3.
By Lawson’s correspondence Theorem almost complex surfaces with vanish-
ing holomorphic differential in S3 ×S3 are in correspondence with surfaces
of constant mean curvature − 2√

4
in R3 and with minimal surfaces in S3.

(2) In [5] Li, Ma and the first and last author proved two Bonnet-type existence
and uniqueness theorems for almost complex surfaces in S3×S3. Combining
Proposition 4.1 and Theorem 5.3 gives an alternative prove of this theorems.

Corollary 5.5. Let ψ : S → S3×S3 be a simply connected almost complex surface

with non-vanishing holomorphic differential. To this surface we can associate two

almost complex surfaces that both have a non-vanishing holomorphic differential.

Proof. This is a simple consequence of Theorems 3.2 and 5.3. Let f be the non-
conformal harmonic map corresponding to ψ via Theorem 5.3. Then the harmonic
maps f+ and f− obviously also correspond to two almost complex surfaces. �

The remark after Theorem 3.5 tells us one can associate to an almost complex
surface in S3 × S3 with non-vanishing holomorphic differential a sequence {ψp |
p ∈ Z} of such surfaces. One just has to define ψp as the almost complex surface
in S3 × S3 associated to the harmonic map fp for each p ∈ Z. In a similar fashion
a H-surface in Euclidean 3-space induces a sequence {Xp | p ∈ Z} of H-surfaces.
The derivatives of Xε are Xε

x = −βε and Xε
y = αε. The expressions for αε and βε
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given in Lemma 3.4 are complicated so it is not practical to integrate this system
to obtain the associated H-surfaces Xε. An explicit expression for Xε in terms of
the original H-surface X is given in the next lemma.

Lemma 5.6. Consider an H-surface X in the Euclidean 3-space with H = −1.
Let z = x + iy be an adapted coordinate and φ the function such that 〈Xx, Xx〉 =
4 coshφ and 〈Xy, Xy〉 = 4 sinhφ. The ε-transform Xε of X is given by

(29) Xε = X − 1

2
sech2 φ

(

εXx − 1

2
Xx ×Xy

)

and satisfies equation (24).

Proof. Recall that the definition of a H-surface is independent of the choice of
complex coordinate, so we may assume that z is an adapted complex coordinate
for X . By Theorem 5.3 it is sufficient to show that the derivatives of the right hand
side of (29) are equal to −βε and αε respectively. The moving frame equations (5)
in terms of α and β are

αx = φx cothφα− φy tanhφβ + µ1 csch 2φα× β,

αy = φy cothφα+ φx tanhφβ + (1− µ2 csch 2φ)α× β,

βx = φy cothφα+ φx tanhφβ − (1 + µ2 csch 2φ)α× β,

βy = −φx cothφα+ φy tanhφβ − µ1 csch 2φα× β.

A direct calculation using these equations shows that the derivatives of the expres-
sion in (29) are indeed −βε and αε. �
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