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LAGRANGIAN SUBMANIFOLDS IN THE

NEARLY KÄHLER S3 × S3

BART DIOOS, LUC VRANCKEN AND XIANFENG WANG

Abstract. In this paper, we investigate Lagrangian submanifolds in the nearly
Kähler S3 ×S3. We construct a new example which is a flat Lagrangian torus.

We give a complete classification of all the Lagrangian immersions of spaces

of constant sectional curvature in the nearly Kähler S3 × S3. As a corollary,
we obtain that the radius of a round Lagrangian sphere in the nearly Kähler

S3 × S3 can only be 2√
3

or 4√
3

.

1. Introduction

The study of Lagrangian submanifolds originates from symplectic geometry and
classical mechanics. An even-dimensional manifold is called symplectic if it admits
a symplectic form, which is a closed and non-degenerate two-form. A submanifold
of a symplectic manifold is called Lagrangian if the symplectic form restricted to
the manifold vanishes and if the dimension of the submanifold is half the dimension
of the symplectic manifold. The well-known theorem of Darboux states that locally
all symplectic manifolds are indistinguishable. If one considers a Lagrangian sub-
manifold immersed in a symplectic manifold, then by the theorem of Darboux this
Lagrangian submanifold can also be locally immersed in any symplectic manifold
of the same dimension. Therefore a local classification of Lagrangian submanifolds
is trivial from the symplectic point of view.

Lagrangian submanifolds can more generally be considered in almost Hermitian
manifolds. Note that an almost Hermitian manifold is not necessarily symplectic.
We call that a submanifold of M in an almost Hermitian manifold N Lagrangian,
if the almost complex structure J interchanges the tangent and the normal spaces
and if the dimension of M is half the dimension of N . The most important class of
almost Hermitian manifolds are the Kähler manifolds. Kähler manifolds admit a
complex, Riemannian and symplectic structure which are all three compatible with
each other. The study of Lagrangian submanifolds in Kähler manifolds is a classic
topic and was initiated in the 1970’s [7]. A classification of Lagrangian submani-
folds from the Riemannian point of view is far from trivial. There is no complete
classification and this is too much to hope for. For this reason it makes sense to
study Lagrangian submanifolds with some additional Riemannian conditions. For
instance, one can study Lagrangian submanifolds that are minimal, Hamiltonian
minimal, Hamiltonian stable or unstable (see for instance [19],[20],[26]) or have con-
stant sectional curvature [14]. For a review on Riemannian geometry of Lagrangian
submanifolds we refer to [5] and the references therein.

Nearly Kähler manifolds are almost Hermitian manifolds with almost complex
structure J satisfying that ∇̃J is skew-symmetric. The geometry of nearly Kähler
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manifolds was initially studied by Gray [15, 16] in the 1970s from the point of view
of weak holonomy. Nagy ([24, 25]) made further contribution to the classification of
nearly Kähler manifolds using previous work in [8]. Butruille ([3, 4]) proved that the
only homogeneous 6-dimensional nearly Kähler manifolds are the nearly Kähler S6,
S3×S3, the complex projective space CP3 and the flag manifold SU(3)/U(1)×U(1).
In [22], Moroianu and Semmelmann studied the infinitesimal Einstein deformations
of nearly Kähler metrics. Lagrangian submanifolds of the nearly Kähler S6 are well
studied by now, see for instance [13], [9],[10],[11] and [18]. We also refer to Sec-
tion 18 of [5] and Chapter 19 of [6] for an overview. Moroianu and Semmelmann [23]
recently gave new examples of Lagrangian immersions of round spheres and Berger
spheres in the nearly Kähler S3 × S3. A broader study of Lagrangian submanifolds
in nearly Kähler manifolds was investigated in [28] by Schäfer and Smozcyk. It
was proven in [28] that Lagrangian submanifolds in a nearly Kähler manifold be-
have nicely with respect to the splitting of the nearly Kähler manifold. If a nearly
Kähler manifold is a product of nearly Kähler manifolds, then its Lagrangian sub-
manifolds split into products of Lagrangian submanifolds. Loosely speaking, this
means that Lagrangian submanifolds in six-dimensional nearly Kähler manifolds
are building blocks of Lagrangian submanifolds in general nearly Kähler manifolds.
This motivates the study of Lagrangian submanifolds in six-dimensional nearly
Kähler manifolds. The existence for Lagrangian submanifolds in nearly Kähler
manifolds is not unobstructed. Schäfer and Smozcyk [28] proved that Lagrangian
submanifolds in a strict nearly Kähler manifold of dimension six or a twistor space
over a positive quaternionic Kähler manifold are minimal and orientable. This is
different with Lagrangian submanifolds in Kähler manifolds. The reason is that
there is no Darboux theorem for nearly Kähler manifolds since these manifolds are
not symplectic. This is an extra reason to study these Lagrangian submanifolds
from a Riemannian point of view.

In this paper, we study Lagrangian submanifolds in the nearly Kähler S3 × S3.
In Section 2, we recall the basic properties of the nearly Kähler S3×S3, and present
some properties of Lagrangian submanifolds in nearly Kähler manifolds. In Sec-
tion 3, we show that on a Lagrangian submanifold in the nearly Kähler S3×S3 there
exist a local frame and three angle functions that describe the geometry and shape
of the submanifold very well. These are related to the almost product structure
P introduced in [2]. We show that most of the geometry of the submanifold M
can be described in terms of the three angle functions. For example, the deriva-
tives of these angle functions give information about most of the components of the
second fundamental form. In Section 4, we present eight examples (or families of
examples) of Lagrangian submanifolds in the nearly Kähler S3× S3. The examples
are Lagrangian immersions of respectively round spheres, Berger spheres or a flat
torus. The flat torus (see Example 4.8) is a new example. Examples 4.1- 4.3 are
the factors and the diagonal which were given by Schäfer and Smozcyk in [28]. Ex-
amples 4.4-4.7 were constructed by Moroianu and Semmelmann in [23]. In section
5, we classify the Lagrangian submanifolds of constant sectional curvature in the
nearly Kähler S3 × S3. The main result that we prove is the following:

Theorem 1.1. Let M be a Lagrangian submanifold of constant sectional curvature
in the nearly Kähler S3×S3. Then up to an isometry of the nearly Kähler S3×S3,
M is locally congruent with one of the following immersions:

(1) f : S3 → S3 × S3 : u 7→ (u, 1), which is Example 4.1,
(2) f : S3 → S3 × S3 : u 7→ (1, u), which is Example 4.2,
(3) f : S3 → S3 × S3 : u 7→ (u, u), which is Example 4.3,
(4) f : S3 → S3 × S3 : u 7→ (uiu−1, uju−1), which is Example 4.7,
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(5) f : R3 → S3×S3 : (u, v, w) 7→ (p(u,w), q(u, v)), where p and q are constant
mean curvature tori in S3 given in Example 4.8.

Remark 1.2. In view of Propsition 4.4 in [23], Moroianu and Semmelmann showed
that the radius of a round Lagrangian sphere in the nearly Kähler S3 × S3 is nec-
essarily of the form k√

3
(note that the scaling in [23] is slightly different from ours,

so the radius here has been modified to be adapted to our conventions) for some
integer k ≥ 2. As a corollary of our Theorem 1.1, we obtain that the values of the
integer k can only be 2 or 4.

We remark that in [31], the authors obtain the following complete classification
of all the totally geodesic Lagrangian immersion in the nearly Kähler S3 × S3.

Theorem 1.3 ([31]). Let M be a totally geodesic Lagrangian submanifold in the
nearly Kähler S3× S3. Then up to an isometry of the nearly Kähler S3× S3, M is
locally congruent with one of the following immersions:

(1) f : S3 → S3 × S3 : u 7→ (u, 1), which is Example 4.1,
(2) f : S3 → S3 × S3 : u 7→ (1, u), which is Example 4.2,
(3) f : S3 → S3 × S3 : u 7→ (u, u), which is Example 4.3,
(4) f : S3 → S3 × S3 : u 7→ (u, ui), which is Example 4.4,
(5) f : S3 → S3 × S3 : u 7→ (u−1, uiu−1), which is Example 4.5,
(6) f : S3 → S3 × S3 : u 7→ (uiu−1, u−1), which is Example 4.6.

Hence, combing this result together with our main theorem in this paper, one
obtain characterizations of all the eight examples (see Section 4 for details of the
examples) of Lagrangian submanifolds in the nearly Kähler S3 × S3.

2. The nearly Kähler S3 × S3 and its Lagrangian submanifolds

In this section we recall the definition of the nearly Kähler S3 × S3 from [2] and
[12] and give some basic properties of Lagrangian submanifolds which will be useful
for the rest of the paper.

Using the natural identification T(p,q)(S3×S3) ∼= TpS3⊕TqS3, we write a tangent

vector at (p, q) as Z(p, q) =
(
U(p, q), V (p, q)

)
or simply Z = (U, V ).

The 3-sphere S3 can be regarded as the set of all the unit quaternions in H, as
usual we use the notations i, j, k to denote the imaginary units of H. Define the
vector fields

E1(p, q) = (pi, 0), F1(p, q) = (0, qi),

E2(p, q) = (pj, 0), F2(p, q) = (0, qj),

E3(p, q) = −(pk, 0), F3(p, q) = −(0, qk).

These vector fields are mutually orthogonal with respect to the usual Euclidean
product metric on the nearly Kähler S3 × S3. The Lie brackets are [Ei, Ej ] =
−2εijkEk, [Fi, Fj ] = −2εijkFk and [Ei, Fj ] = 0, where

εijk =


1, if {ijk} is an even permutation of {123},
− 1, if {ijk} is an odd permutation of {123},
0, otherwise.

The almost complex structure J on the nearly Kähler S3 × S3 is defined by

(2.1) J(U, V )(p,q) =
1√
3

(
2pq−1V − U,−2qp−1U + V

)
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for (U, V ) ∈ T(p,q)(S3 × S3) (see [4]). Note that the definition uses the Lie group

structure of the nearly Kähler S3 × S3. The map

T(1,1)S3 × S3 → T(1,1)S3 × S3 : (U, V ) 7→ 1√
3

(2V − U,−2V + U)

defines an almost complex structure on the Lie algebra, the tangent space at (1, 1).
By using left translations on the nearly Kähler S3 × S3 this map can be extended
to an almost complex structure on the nearly Kähler S3× S3. The left translations
on the nearly Kähler S3 × S3 are given by left multiplications with a unit quater-
nion. The almost complex structure can be described as follows. The first step is
to left translate a vector (U, V ) at (p, q) ∈ S3 × S3 to (p−1U, q−1V ) at the unit ele-
ment (1, 1). Then this vector is mapped onto 1√

3
(2q−1V − p−1U,−2p−1U + q−1V )

at the point (1, 1). When this vector is translated back to T(p,q)S3×S3, it gives the
expression (2.1).

The nearly Kähler metric on S3 × S3 is the Hermitian metric associated to the
usual Euclidean product metric on S3 × S3:

g(Z,Z ′) =
1

2
(〈Z,Z ′〉+ 〈JZ, JZ ′〉)

=
4

3
(〈U,U ′〉+ 〈V, V ′〉)− 2

3

(
〈p−1U, q−1V ′〉+ 〈p−1U ′, q−1V 〉

)
,

where Z = (U, V ) and Z ′ = (U ′, V ′). In the first line 〈·, ·〉 stands for the usual
Euclidean product metric on S3×S3 and in the second line 〈·, ·〉 stands for the usual
Euclidean metric on S3. By definition the almost complex structure is compatible
with the metric g. An easy calculation gives

g(Ei, Ej) = 4/3 δij , g(Ei, Fj) = −2/3 δij , g(Fi, Fj) = 4/3 δij .

Note that this metric differs up to a constant factor from the one introduced in [4].
Here we set everything up so that it equals the Hermitian metric associated with
the usual Euclidean product metric. In [4], the factor was chosen in such a way
that the standard basis E1, E2, E3, F1, F2, F3 has volume 1.

Lemma 2.1 ([2]). The Levi-Civita connection ∇̃ on S3 × S3 with respect to the
metric g is given by

∇̃Ei
Ej = −εijkEk, ∇̃Ei

Fj =
εijk

3
(Ek − Fk),

∇̃Fi
Ej =

εijk
3

(Fk − Ek), ∇̃Fi
Fj = −εijkFk.

One easily verifies that

(∇̃EiJ)Ej = − 2

3
√

3
εijk(Ek + 2Fk), (∇̃EiJ)Fj = − 2

3
√

3
εijk(Ek − Fk),

(∇̃Fi
J)Ej = − 2

3
√

3
εijk(Ek − Fk), (∇̃Fi

J)Fj =
2

3
√

3
εijk(2Ek + Fk).

(2.2)

The tensor field G = ∇̃J is skew-symmetric, i.e., G(X,Y ) +G(Y,X) = (∇̃XJ)Y +

(∇̃Y J)X = 0, ∀ X,Y ∈ TM , hence (S3 × S3, g, J) is nearly Kähler. Moreover, G
satisfies the following properties (cf. [1], [15]):

(2.3) G(X, JY ) + JG(X,Y ) = 0, g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0.

For unitary quaternions a, b and c, the map F : S3 × S3 → S3 × S3 given by
(p, q) 7→ (apc−1, bqc−1) is an isometry of (S3×S3, g) (cf. the remark after Lemma 2.2
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in [27]). Indeed, F preserves the almost complex structure J , since

JdF(p,q)(v, w) =
1√
3

(
2(apc−1)(cq−1b−1)bwc−1 − avc−1,

−2(bqc−1)(cp−1a−1)avc−1 + bwc−1
)

= dF(p,q)

(
J(v, w)

)
(see also [21, Proposition 3.1]) and F preserves the usual metric 〈· , ·〉 as well.

Next, we introduce an almost product structure on the nearly Kähler S3 × S3.
The (1, 1)-tensor field P is defined by

(2.4) PZ = (pq−1V, qp−1U),

where Z = (U, V ) is a tangent vector at (p, q). The definition of P also makes use
of the Lie group structure of the nearly Kähler S3 × S3. At the Lie algebra level
the map

T(1,1)S3 × S3 → T(1,1)S3 × S3 : (U, V ) 7→ (V,U)

defines an almost product structure. By left translation this structure can be ex-
tended to the manifold S3 × S3, similarly as was done for the almost complex
structure J . We summarize the elementary properties of the almost product in the
following lemma.

Lemma 2.2 ([2]). The almost product structure P satisfies the following properties:

P 2 = Id, i.e. P is involutive,(2.5a)

PJ = −JP, i.e. P and J anti-commute,(2.5b)

g(PZ, PZ ′) = g(Z,Z ′), i.e. P is compatible with g,(2.5c)

g(PZ,Z ′) = g(Z,PZ ′), i.e. P is symmetric.(2.5d)

Proof. The first three equations can be verified with a direct calculation. The last
equation follows from the first and third equation. �

It is elementary to show that the isometries of (S3 × S3, g, J) also preserve
the almost product structure P . Note that PEi = Fi and PFi = Ei. From these
equations and Lemma 2.1 it follows that

(∇̃EiP )Ej =
1

3
εijk(Ek + 2Fk), (∇̃EiP )Fj = −1

3
εijk(2Ek + Fk),

(∇̃Ei
P )Fj = −1

3
εijk(Ek + 2Fk), (∇̃Fi

P )Fj =
1

3
εijk(2Ek + Fk).

(2.6)

The tensor field ∇̃P does not vanish identically, so the endomorphism P is not
a product structure. However, the almost product structure P and its covariant
derivative ∇̃P admit the following properties.

Lemma 2.3 ([2]). For tangent vector fields X, Y on (S3 × S3, g, J) the following
equations hold:

PG(X,Y ) +G(PX,PY ) = 0,(2.7)

(∇̃XP )JY = J(∇̃XP )Y,(2.8)

G(X,PY ) + PG(X,Y ) = −2J(∇̃XP )Y,(2.9)

(∇̃XP )PY + P (∇̃XP )Y = 0,(2.10)

(∇̃XP )Y + (∇̃PXP )Y = 0,(2.11)

∇P = 0.(2.12)
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The Riemannian curvature tensor R̃ on (S3 × S3, g) is given by

R̃(U, V )W =
5

12

(
g(V,W )U − g(U,W )V

)
+

1

12

(
g(JV,W )JU − g(JU,W )JV − 2g(JU, V )JW

)
+

1

3

(
g(PV,W )PU − g(PU,W )PV

+ g(JPV,W )JPU − g(JPU,W )JPV
)
.

One can now show that the nearly Kähler S3×S3 is of constant type 1
3 and therefore

we have

g
(
G(X,Y ), G(Z,W )

)
=

1

3

(
g(X,Z)g(Y,W )− g(X,W )g(Y,Z)(2.13)

+ g(JX,Z)g(JW, Y )− g(JX,W )g(JZ, Y )
)
,

G
(
X,G(Y,Z)

)
=

1

3

(
g(X,Z)Y − g(X,Y )Z(2.14)

+ g(JX,Z)JY − g(JX, Y )JZ
)
,

(∇̃G)(X,Y, Z) =
1

3
(g(X,Z)JY − g(X,Y )JZ − g(JY, Z)X).(2.15)

For later use, we also need the relation between the geometry of the nearly Kähler
manifold (S3 × S3, g) and the product manifold (S3 × S3, 〈·, ·〉), which is S3 × S3
endowed with the usual Euclidean product metric. The equations in this para-
graph shall be used every time we want to obtain an explicit parametrization of a
submanifold in the nearly Kähler S3 × S3.

The almost product structure P can be expressed in terms of the usual product
structure QZ = Q(U, V ) = (−U, V ) and vice versa:

QZ =
1√
3

(2PJZ − JZ),(2.16)

PZ =
1

2
(Z −

√
3QJZ).(2.17)

Using these equations the Euclidean product metric 〈·, ·〉 can be expressed in terms
of g and P :

(2.18) 〈Z,Z ′〉 =
3

8

(
g(Z,Z ′) + g(QZ,QZ ′)

)
= g(Z,Z ′) +

1

2
g(Z,PZ ′),

and consequently

(2.19) 〈Z,QZ ′〉 =

√
3

2
g(Z,PJZ ′).

We can now show the relation between the Levi-Civita connections ∇̃ of g and ∇E
of the usual Euclidean product metric 〈·, ·〉 on S3 × S3.

Lemma 2.4 ([12]). The relation between the nearly Kähler connection ∇̃ and the
Euclidean connection ∇E is

(2.20) ∇EXY = ∇̃XY +
1

2

(
JG(X,PY ) + JG(Y, PX)

)
.

Remark 2.5. Using the above lemma and the expression for Q one can show
that (∇EXQ)Y = 0 implies equation (2.8) and vice versa. In this sense P really is
the “nearly Kähler analogue” of the Euclidean product structure Q.
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In [28], Schäfer and Smoczyk gave a broader study of Lagrangian submanifolds in
a nearly Kähler manifold, they also showed that the classical result of Ejiri [13], that
a Lagrangian submanifold of the nearly Kähler S6 is always minimal and orientable,
holds actually for arbitrary 6-dimensional strict nearly Kähler manifolds (see also
[17]). From now on we will assume that M is a Lagrangian submanifold in the
nearly Kähler S3×S3. Hence M is 3-dimensional and the almost complex structure
J maps tangent vectors to normal vectors. Like Lagrangian submanifolds of the
nearly Kähler S6, from [17] or [28] it follows:

Lemma 2.6 (cf. [17], [28]). Let M be a Lagrangian submanifold of the nearly
Kähler S3 × S3. Then M is minimal and orientable. Moreover, for X,Y tangent
to M , G(X,Y ) is a normal vector field on M .

If we denote the immersion by f , the formulas of Gauss and Weingarten are
respectively given by

∇̃Xf∗Y = f∗(∇XY ) + h(X,Y ),(2.21)

∇̃Xη = −f∗(SηX) +∇⊥Xη,(2.22)

for tangent vector fields X and Y and a normal vector field η. The second fun-
damental form h is related to Sη by g(h(X,Y ), η) = g(SηX,Y ). From (2.21) and
(2.22), we find that

∇⊥XJf∗(Y ) = Jf∗(∇XY ) +G(f∗X, f∗Y ),(2.23)

f∗(SJYX) = −Jh(X,Y ).(2.24)

The above formulas immediately imply that

(2.25) g(h(X,Y ), Jf∗Z) = g(h(X,Z), Jf∗Y ),

i.e. g(h(X,Y ), Jf∗Z) is totally symmetric. Of course as usual whenever there is no
confusion, we will drop the immersion f from the notations.

3. Lagrangian submanifolds of the nearly Kähler S3 × S3

Note that in the previous section most of the results remain valid for Lagrangian
submanifolds of arbitrary 6-dimensional strict nearly Kähler manifolds. Here how-
ever we will restrict ourselves to the case that the ambient space is the nearly
Kähler S3 × S3. We will show how the properties of the almost product structure
P , related to the product structure on the nearly Kähler S3×S3 incorporates most
of the geometry of the Lagrangian submanifold. The key idea is to “decompose”
the almost product structure P into a tangent part A and a normal part B.

Let M be a Lagrangian submanifold of the nearly Kähler S3 × S3. Since M is
Lagrangian, the pull-back of T (S3 × S3) to M splits into TM ⊕ JTM . Therefore
there are two endomorphisms A,B : TM → TM such that the restriction P |TM of P
to the submanifold M equals A+ JB, that is PX = AX + JBX for all X ∈ TM .
Note that the above formula, together with the fact that P and J anticommute,
also determine P on the normal space by PJX = −JPX = BX − JAX. The
following lemma gives the basic properties of A and B.

Lemma 3.1. The endomorphisms A and B are symmetric commuting endomor-
phisms that satisfy A2 +B2 = Id.

Proof. The lemma follows easily from the basic properties of P and J (P is sym-
metric, J is compatible with g). For X,Y ∈ TM we have g(AX,Y ) = g(PX, Y ) =
g(X,PY ) = g(X,AY ). Similarly one finds g(BX,Y ) = g(PJX, Y ) = g(PY, JX) =
g(JBY, JX) = g(BY,X). Since P is involutive, we also have

X = P 2X = (A2 +B2)X + J(BA−AB)X.
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Comparing the tangent and normals parts gives A2 +B2 = Id and [A,B] = 0. �

As A and B are symmetric operators whose Lie bracket vanishes, we know that
they can be diagonalized simultaneously at a point of M . Therefore, at each point
p there is an orthonormal basis e1, e2, e3 ∈ TpM such that

Pei = cos 2θiei + sin 2θiJei, ∀ i = 1, 2, 3.

The factor 2 in the arguments of the sines and cosines is there for convenience as
it will simplify many of the following expressions.

Now we extend the orthonormal basis e1, e2, e3 at a point p to a frame on a
neighborhood of p in the Lagrangian submanifold. By Lemma 1.1-1.2 in [29] the
orthonormal basis at a point can be extended to a differentiable frame E1, E2 E3

on an open dense neighborhood where the multiplicities of the eigenvalues of A
and B are constant. Taking also into account the properties of G we know that
there exists a local orthonormal frame {E1, E2, E3} on an open dense subset of M
such that

(3.1) AEi = cos(2θi)Ei, BEi = sin(2θi)Ei, JG(Ei, Ej) = 1√
3
εijkEk.

Lemma 3.2. The sum of the angles θ1 + θ2 + θ3 is zero modulo π.

Proof. Using equation (2.7) and (2.4b), we get

PE1 =
√

3PJG(E2, E3) =
√

3JG(PE2, PE3)

and thus cos 2θ1E1 + sin 2θ1JE1(= PE1) is equal to

√
3
(

cos(2(θ2 + θ3))JG(E2, E3) + sin(2(θ2 + θ3))G(E2, E3)
)
.

Comparing tangent and normal parts gives

cos 2θ1 = cos(2(θ2 + θ3)), sin 2θ1 = − sin(2(θ2 + θ3).

Therefore

cos(2(θ1 + θ2 + θ3)) = cos 2θ1 cos(2(θ2 + θ3))− sin 2θ1 sin(2(θ2 + θ3)) = 1,

so θ1 + θ2 + θ3 = 0 mod π. �

Using the decomposition of P and the expression of the curvature tensor of the
nearly Kähler S3 × S3 we can now write down the expressions for the equations of
Gauss and Codazzi. We have the equation of Gauss as follows.

R(X,Y )Z =
5

12

(
g(Y,Z)X − g(X,Z)Y

)
+

1

3

(
g(AY,Z)AX − g(AX,Z)AY + g(BY,Z)BX − g(BX,Z)BY

)
+ Sh(Y,Z)X − Sh(X,Z)Y.

(3.2)

Note that in view of the symmetry of the second fundamental form the above Gauss
equation can be rewritten as

R(X,Y )Z =
5

12

(
g(Y,Z)X − g(X,Z)Y

)
+

1

3

(
g(AY,Z)AX − g(AX,Z)AY + g(BY,Z)BX − g(BX,Z)BY

)
+ [SJX , SJY ]Z.

(3.3)
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By taking the normal part of the curvature tensor, we have that the Codazzi equa-
tion is given by

(∇h)(X,Y, Z))− (∇h)(Y,X,Z) =

1

3

(
g(AY,Z)JBX − g(AX,Z)JBY − g(BY,Z)JAX + g(BX,Z)JAY

)
.

(3.4)

Analogously, like Lagrangian immersions of the nearly Kähler S6, we find that
the Ricci equation is equivalent with the Gauss equation. Indeed from (2.23), (2.15)
and the fact that G(X,Y ) is a normal vector field we get that

(3.5) R⊥(X,Y )JZ = JR(X,Y )Z + 1
3 (g(X,Z)JY − g(Y,Z)JX).

Therefore by applying the Gauss equation (3.2), we recover that

R⊥(X,Y )JZ =
1

12

(
g(Y, Z)JX − g(X,Z)JY

)
+

1

3

(
g(AY,Z)JAX − g(AX,Z)JAY + g(BY,Z)JBX − g(BX,Z)JBY

)
+ J [SJX , SJY ]Z.

(3.6)

Hence by taking the inner product with JW we get the Ricci equation

g(R⊥(X,Y )JZ, JW ) = g(R̃(X,Y )JZ, JW ) + g([SJX , SJY ]Z,W )

= g(R̃(X,Y )JZ, JW ) + g(SJZ , SJW ]X,Y ).

We now calculate the covariant derivatives of A and B.

Lemma 3.3. The covariant derivatives of the endomorphisms A and B are

(∇XA)Y = BSJXY − Jh(X,BY ) +
1

2

(
JG(X,AY )−AJG(X,Y )

)
,

(∇XB)Y = Jh(X,AY )−ASJXY +
1

2

(
JG(X,BY )−BJG(X,Y )

)
.

Proof. We express equation (2.9) in terms of A and B. By the Gauss and Wein-
garten formula and Lemma 2.6 we get on one hand

(∇̃XP )Y = ∇̃XAY + ∇̃XJBY − P∇XY − Ph(X,Y )

= ∇XAY + h(X,AY ) + J∇̃XBY +G(X,BY )

−A∇XY − JB∇XY − PJSJXY
= (∇XA)Y + J(∇XB)Y + Jh(X,BY )−BSJXY

+ h(X,AY ) + JASJXY +G(X,BY ).

On the other hand we have

1

2
(JG(X,PY ) + JPG(X,Y ))

=
1

2
(JG(X,AY ) +G(X,BY )−AJG(X,Y )− JBJG(X,Y )).

Using Lemma 2.6 we can compare the tangent and normal parts in equation (2.9).
This gives us the covariant derivatives of A and B. �

It would be interesting to ask whether it is possible to prove an existence and
uniqueness theorem like for submanifolds of real space forms or lagrangian subman-
ifolds of complex space forms. Although such a theorem would simplify some of the
later proofs, it is outside the scope of the present paper.
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For the Levi-Civita connection ∇ on M we introduce the functions ωkij satisfy-

ing ∇Ei
Ej = ωkijEk and ωkij = −ωjik, where we have used Einstein summation. We

write hkij = g(h(Ei, Ej), JEk). The tensor hkij is a totally symmetric tensor on the

Lagrangian submanifold. The covariant derivative on the nearly Kähler S3×S3 will
be denoted by ∇̃ as usual. In the following, we will use equation (2.9) to obtain
extra information on the angles θi and second fundamental form hkij .

Lemma 3.4. The derivatives of the angles θi give the components of the second
fundamental form

Ei(θj) = −hijj
except h312. The second fundamental form and covariant derivative are related by

hkij cos(θj − θk) =
(√3

6
εkij − ωkij

)
sin(θj − θk), ∀ j 6= k, where εkij := εijk.

Proof. We will not do all the calculations explicitly, instead we give one calculation
as an example. Choose X = Y = E1 in (2.9). Then the equation 2(∇̃E1

P )E1 =
JG(E1, PE1) gives

−2
(
h111 + E1(θ1)

)
sin(2θ1) = 0,

2
(
h111 + E1(θ1)

)
cos(2θ1) = 0,

−2
(
h211 cos(θ1 − θ2) + ω2

11 sin(θ1 − θ2)
)

sin(θ1 + θ2) = 0,

2
(
h211 cos(θ1 − θ2) + ω2

11 sin(θ1 − θ2)
)

cos(θ1 + θ2) = 0,

−2
(
h311 cos(θ1 − θ3) + ω3

11 sin(θ1 − θ3)
)

sin(θ1 + θ3) = 0,

2
(
h311 cos(θ1 − θ3) + ω3

11 sin(θ1 − θ3)
)

cos(θ1 + θ3) = 0.

Since the sines and cosines cannot be zero at the same time, we find that E1(θ1) =
−h111 and two expressions relating ωkij and hkij . Doing the same calculations for X =
Ei and Y = Ej with i, j = 1, 2, 3, we get the lemma. �

Note that from Lemma 3.4 we have that

Ei(θj) = −hijj .
Therefore we also have the compatibility conditions that

(3.7)

−Ek(hijj) + Ei(h
k
jj) = [Ek, Ei](θj)

=

3∑
`=1

(ω`ki − ω`ik)E`(θj)

=

3∑
`=1

(−ω`ki + ω`ik)h`jj .

So we have six additional independent equations. One can show, using Lemma 3.4,
that the above equations are equivalent with six of the Codazzi equations. One does
not obtain all the equations of Gauss and Codazzi this way, but the compatibility
conditions for the θi are easier to calculate.

Remark 3.5. We note that from Lemma 3.4 and Lemma 3.2, we obtain that
hi11 + hi22 + hi33 = −Ei(θ1 + θ2 + θ3) = 0, ∀ i = 1, 2, 3. Hence, we obtain a new
proof of the fact that M is minimal (see Lemma 2.6).

Another consequence of Lemma 3.4 is

Corollary 3.6. Let M be a Lagrangian submanifold of the nearly Kähler S3× S3.
If M is totally geodesic, then the angles θ1, θ2 and θ3 are constant. Conversely, if
the angles are constant and h312 = 0, then M is totally geodesic.
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Remark 3.7. We must assume that h312 = 0 in the converse statement of Corollary
3.6. Examples 4.7-4.8 in the next section show that this assumption is necessary.

In the following, we give two other corollaries of Lemma 3.4. Lemma 3.8 gives a
sufficient condition for a Lagrangian submanifold in the nearly Kähler S3 × S3 to
be totally geodesic. Lemma 3.9 gives a necessary condition and shows us that the
converse statement of Lemma 3.8 also holds.

Lemma 3.8. If two of the angles are equal modulo π, then the Lagrangian sub-
manifold is totally geodesic.

Proof. Without loss of generality we may assume that θ1 = θ2 mod π. It follows
from Lemma 3.4 that hi11 = hi22 and hi12 = 0 for i = 1, 2, 3. Combining the
equations, together with the symmetry of h, gives h111 = h222 = h211 = h122 = h312 = 0
and by minimality also h133 and h233 vanish. The three remaining components are
related by h322 = h311 and h333 = −2h311. The compatibility condition for θ1 with
respect to E1 and E2 (take k = j = 1, i = 2 in (3.7)) gives

(3.8) (ω3
12 − ω3

21)h311 = 0.

Now we use the Codazzi equation (3.4) applied to X = E1, Y = E2, Z = E2. As
θ1 and θ2 are equal modulo π, the term on the right hand side of (3.4)vanishes and
so we obtain by taking the component in the direction of JE2 that

(3.9) (
1√
3

+ ω3
21 − 3ω3

12)h311 = 0.

We claim that h311 = 0. If h311 6= 0, then from (3.8) and (3.9) we get ω3
21 = ω3

12 =
√
3
6 .

It follows from the second equation of Lemma 3.4 that 0 = (−
√
3
6 −ω

3
21) sin(θ1−θ3),

taking into account that ω3
21 =

√
3
6 we obtain that sin(θ1 − θ3) = 0, hence θ1 =

θ3 +aπ, where a is a constant integer. Then using the first equation of Lemma 3.4,
we derive that h233 = −E3(θ3) = −E3(θ1) = h311, but we have that h333 = −2h311,
so we get that h311 = h333 = 0, which is a contradiction. Thus h311 = 0 and the
submanifold is totally geodesic. �

Lemma 3.9. Consider a totally geodesic Lagrangian submanifold in the nearly
Kähler S3 × S3. After a possible permutation of the angles and the choice of the
angles 2θi at an initial point belonging to the interval [0, 2π), we must have one of
the following possibilities:

(1) (2θ1, 2θ2, 2θ3) = ( 4π
3 ,

4π
3 ,

4π
3 ), (2) (2θ1, 2θ2, 2θ3) = ( 2π

3 ,
2π
3 ,

2π
3 ),

(3) (2θ1, 2θ2, 2θ3) = (0, 0, 0), (4) (2θ1, 2θ2, 2θ3) = (0, π, π),
(5) (2θ1, 2θ2, 2θ3) = (π3 ,

π
3 ,

4π
3 ), (6) (2θ1, 2θ2, 2θ3) = ( 2π

3 ,
5π
3 ,

5π
3 ).

Proof. The Codazzi equation (3.4) gives

g(AY,Z)BX − g(AX,Z)BY = g(BY,Z)AX − g(BX,Z)AY.

Taking X = Ei and Y = Z = Ej , this yields sin
(
2(θi − θj)

)
= 0 for i 6= j. So

the angles 2θi are equal up to an integer multiple of π. Together with Lemma 3.2
we deduce that the angles need to be constant, and therefore after a choice at an
initial point one obtains the possibilities in the statement. �

4. Examples of Lagrangian submanifolds in the nearly Kähler S3× S3

In this section we present eight examples (or families of examples) of Lagrangian
submanifolds in the nearly Kähler S3×S3. Example 4.8 (a flat Lagrangian torus) is
a new example. Examples 4.1- 4.3 are the factors and the diagonal which were given
by Schäfer and Smozcyk in [28]. Examples 4.4-4.7 were constructed by Moroianu
and Semmelmann in [23], where they studied generalized Killing spinors on the
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standard sphere S3, which turn out to be related to Lagrangian embeddings in the
nearly Kähler S3× S3. The first seven examples are immersions of round 3-spheres
or Berger spheres. On these 3-sphere S3 as the set of all the unit quaternions in
H, we consider the left invariant tangent vector fields X1, X2, X3 on S3, which are
given by

(4.1) X1(u) = u i, X2(u) = u j, X3(u) = −uk,

where u = x1 + x2i + x3j + x4k ∈ S3 is viewed as a unit quaternion, and i, j, k are
the imaginary units of H. Obviously, X1, X2, X3 form a basis of the tangent bundle
TS3. We refer to [31] for more details of Examples 4.1-4.6.

Example 4.1. Consider the immersion: f : S3 → S3×S3 : u 7→ (u, 1). f is a totally
geodesic Lagrangian immersion, f(S3) is isometric to a round sphere. The angles
correspond to case (1) of Lemma 3.9.

Example 4.2. Consider the immersion:f : S3 → S3 × S3 : u 7→ (1, u). f is a totally
geodesic Lagrangian immersion, f(S3) is isometric to a round sphere. The angles
correspond to case (2) of Lemma 3.9.

Example 4.3. Consider the immersion: f : S3 → S3×S3 : u 7→ (u, u). f is a totally
geodesic Lagrangian immersion, f(S3) is isometric to a round sphere. The angles
correspond to case (3) of Lemma 3.9.

Example 4.4. Consider the immersion f : S3 → S3 × S3 : u 7→ (u, ub) with b ∈
ImH, ‖b‖ = 1. First we note that after an isometry (p, q) 7→ (pa−1, qa−1) and
a reparametrization u 7→ ua of the 3-sphere with a ∈ ImH, the immersion be-
comes u 7→ (u, uaba−1). We now choose a such that aba−1 = i. This is always
possible, because conjugation with a unit quaternion gives a rotation of ImH and
the group of rotations acts transitively on ImH. Therefore we may always consider
the immersion: f : S3 → S3 × S3 : u 7→ (u, ui). f is a totally geodesic Lagrangian
immersion, f(S3) is isometric to a Berger sphere. The angles correspond to case
(4) of Lemma 3.9.

Note that by changing the parametrization of S3, we can also reduce the potential
immersion f(u) = (ui, u) to the preceding example.

Example 4.5. Consider the immersion f : S3 → S3× S3 : u 7→ (u, u−1bu) with b ∈
ImH, ‖b‖ = 1. After an isometry of the nearly Kähler S3×S3 and a reparametriza-
tion of u as in the previous example, we can always consider the immersion:

f : S3 → S3 × S3 : u 7→ (u−1, uiu−1).

f is a totally geodesic Lagrangian immersion, f(S3) is isometric to a Berger sphere.
The angles correspond to case (5) of Lemma 3.9.

Example 4.6. Consider the immersion: f : S3 → S3×S3 : u 7→ (uiu−1, u−1). f is a
totally geodesic Lagrangian immersion, f(S3) is isometric to a Berger sphere. The
angles correspond to case (6) of Lemma 3.9.

Example 4.7. Consider the immersion f : S3 → S3 × S3 : u 7→ (uau−1, ubu−1)
with unit quaternions a, b ∈ ImH and 〈a, b〉 = 0. After an isometry of the nearly
Kähler S3 × S3 and a reparametrization we can always consider the immersion

f : S3 → S3 × S3 : u 7→ (uiu−1, uju−1).

For the tangent map we have df(X1) = (0, 2uku−1), df(X2) = (−2uku−1, 0),
df(X3) = 2(−uju−1, uiu−1). The inner products are given by g

(
df(Xi), df(Xj)

)
=

16
3 δij , so f is an immersion of a round sphere. We have that Jdf(X1) = 2√

3
(2, uku−1),
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Jdf(X2) = 2√
3
(uku−1,−2) and Jdf(X3) = − 2√

3
(uju−1, uiu−1). One can now easily

verify that f is a Lagrangian immersion. We also have

Pdf(X1) = (2, 0) = − 1
2 (df(X1)−

√
3Jdf(X1)),

Pdf(X2) = (0, 2) = − 1
2 (df(X2) +

√
3Jdf(X2)),

Pdf(X3) = −2(uju−1,−uiu−1) = df(X3).

The angles 2θi are thus equal to 0, 2π
3 and 4π

3 . Therefore by Lemma 3.9 this

immersion is not totally geodesic. Since the angles are constant, h312 is the only
non-zero component of the second fundamental form. This example shows that we
cannot omit the condition h312 = 0 in Corollary 3.6.

Example 4.8. Consider the immersion f : R3 → S3×S3 : (u, v, w) 7→ (p(u,w), q(u, v))
where p and q are constant mean curvature tori in S3 given by

p(u,w) =

(
cos

(√
3u

2

)
cos

(√
3w

2

)
, cos

(√
3u

2

)
sin

(√
3w

2

)
, sin

(√
3u

2

)
cos

(√
3w

2

)
, sin

(√
3u

2

)
sin

(√
3w

2

))
,

q(u, v) =
1
√

2

(
cos

(√
3v

2

)(
sin

(√
3u

2

)
+ cos

(√
3u

2

))
, sin

(√
3v

2

)(
sin

(√
3u

2

)
+ cos

(√
3u

2

))
,

cos

(√
3v

2

)(
sin

(√
3u

2

)
− cos

(√
3u

2

))
, sin

(√
3v

2

)(
sin

(√
3u

2

)
− cos

(√
3u

2

)))
.

It follows that

fu =

((
−
√

3

2
sin (ũ) cos (w̃) ,−

√
3

2
sin (ũ) sin (w̃) ,

√
3

2
cos (ũ) cos (w̃) ,

√
3

2
cos (ũ) sin (w̃)

)
,

 1

2

√
3

2
cos (ṽ) (cos (ũ)− sin (ũ)) ,

1

2

√
3

2
sin (ṽ) (cos (ũ)− sin (ũ)) ,

1

2

√
3

2
cos (ṽ) (sin (ũ) + cos (ũ)) ,

1

2

√
3

2
sin (ṽ) (sin (ũ) + cos (ũ))

 ,

fv =

(0, 0, 0, 0) ,

− 1

2

√
3

2
sin (ṽ) (sin (ũ) + cos (ũ)) ,

1

2

√
3

2
cos (ṽ) (sin (ũ) + cos (ũ)) ,

−
1

2

√
3

2
sin (ṽ) (sin (ũ)− cos (ũ)) ,

1

2

√
3

2
cos (ṽ) (sin (ũ)− cos (ũ))

 ,

fw =

((
−
√
3

2
cos (ũ) sin (w̃) ,

√
3

2
cos (ũ) cos (w̃) ,−

√
3

2
sin (ũ) sin (w̃) ,

√
3

2
sin (ũ) cos (w̃)

)
, (0, 0, 0, 0)

)
,

where in order to simplify expressions we have written ũ =
√
3
2 u, ṽ =

√
3
2 v and

w̃ =
√
3
2 w. A straightforward computations gives that

Jfu =

(
1

2
(− sin (ũ) cos (w̃) ,− sin (ũ) sin (w̃) , cos (ũ) cos (w̃) , cos (ũ) sin (w̃)) ,

1

2
√

2
(cos (ṽ) (sin (ũ)− cos (ũ)) , sin (ṽ) (sin (ũ)− cos (ũ)) ,

− cos (ṽ) (sin (ũ) + cos (ũ)) ,− sin (ṽ) (sin (ũ) + cos (ũ)))) ,

Jfv = ((− sin (ũ) sin (w̃) , sin (ũ) cos (w̃) , cos (ũ) sin (w̃) ,− cos (ũ) cos (w̃)) ,

1

2
√

2
(− sin (ṽ) (sin (ũ) + cos (ũ)) , cos (ṽ) (sin (ũ) + cos (ũ)) ,

sin (ṽ) (cos (ũ)− sin (ũ)) , cos (ṽ) (sin (ũ)− cos (ũ)))) ,

Jfw =

(
1

2
(cos (ũ) sin (w̃) ,− cos (ũ) cos (w̃) , sin (ũ) sin (w̃) ,− sin (ũ) cos (w̃)) ,

1√
2

(sin (ṽ) (cos (ũ)− sin (ũ)) , cos (ṽ) (sin (ũ)− cos (ũ)) ,

sin (ṽ) (sin (ũ) + cos (ũ)) ,− cos (ṽ) (sin (ũ) + cos (ũ)))) .
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From this we get that f is a Lagrangian immersion and that {fu, fv, fw} is an
orthonormal basis of the tangent space. Hence it is a flat Lagrangian torus. By a
lengthy but straightforward computation we also get that

Pfu = fu, Pfv = − 1
2fv +

√
3
2 Jfv, Pfw = − 1

2fw −
√
3
2 Jfw.

The angles 2θi are therefore again equal to 0, 2π
3 and 4π

3 . Therefore by Lemma 3.9

this immersion is also not totally geodesic. Since the angles are constant, h312 is
again the only non-zero component of the second fundamental form. This exam-
ple is another example that shows that we cannot omit the condition h312 = 0 in
Corollary 3.6.

5. Lagrangian submanifolds of constant sectional curvature

In this section we classify all Lagrangian submanifolds of constant sectional cur-
vature in the nearly Kähler S3 × S3 . We will prove that those Lagrangian sub-
manifolds of the nearly Kähler S3 × S3 are congruent with one of the examples of
constant sectional curvature listed in the previous section. As a corollary, we obtain
that the radius of a round Lagrangian sphere in the nearly Kähler S3×S3 can only
be 2√

3
or 4√

3
. This improves Proposition 4.4 of [23].

In order to prove the classification, the first step is to find all the components hkij
of the second fundamental form. As we have already obtained the complete classifi-
cation of the totally geodesic Lagrangian submanifolds in the nearly kähler S3×S3
in [31] (see Theorem 1.3), we can assume now that the immersion is not totally
geodesic. Then from Lemma 3.8 we may assume that all the angle functions are
different (modulo π). Therefore, we have that there exists a local orthonormal
frame {E1, E2, E3} on an open dense subset of M such that (3.1) holds.

We note that it is not possible to follow the approach introduced by Ejiri for
studying Lagrangian submanifolds of constant sectional curvature in the complex
space forms ([14]) or in the nearly Kähler 6-sphere ([13]). Indeed the Gauss equa-
tions give quadratic equations for the hkij and it turns out that these are not easy to
solve directly without additional information. We therefore use another approach.
The next lemma gives us linear equations for the components hkij . The key idea is
to calculate the expression x given by

(5.1) x = 3 S
WXY

(
(∇2h)(W,X, Y, Z)− (∇2h)(W,Y,X,Z)

)
,

where S stands for the cyclic sum, in two different ways. On one hand we can
calculate this using the covariant derivative of the Codazzi equation (3.4), which
tells us that x equals the expression (5.3). On the other hand we can rewrite x as

(5.2) x = 3 S
WXY

(
(∇2h)(W,X, Y, Z)− (∇2h)(X,W, Y, Z)

)
,

and then by applying the Ricci identity we obtain that this expression x vanishes.

More precisely, we have the following key lemma.

Lemma 5.1. Let M be a Lagrangian submanifold of constant sectional curvature
in the nearly Kähler S3 × S3 . Then for all tangent vector fields W,X, Y, Z ∈ TM
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the expression

S
WXY

{{
g(JG(Y,W ), AZ) +

1

2
g(JG(Y, Z), AW )− 1

2
g(JG(W,Z), AY )

+ g(h(W,Z), JBY )− g(h(Y,Z), JBW )
}
JBX

+
{
g(JG(W,Y ), BZ) +

1

2
g(JG(W,Z), BY )− 1

2
g(JG(Y, Z), BW )

+ g(h(W,Z), JAY )− g(h(Y,Z), JAW )
}
JAX

+ g(AX,Z)
{
JBJG(W,Y ) +

1

2
G(Y,BW )− 1

2
G(W,BY )

+ h(W,AY )− h(Y,AW )
}

+ g(BX,Z)
{
−JAJG(W,Y ) +

1

2
G(W,AY )− 1

2
G(Y,AW )

+ h(W,BY )− h(Y,BW )
}}

(5.3)

is zero.

Proof. As we have mentioned before, we calculate expression (5.1) in two different
ways.

First, we calculate x using the covariant derivative of the Codazzi equation (3.4),

which gives us the long expression (5.3). We denote the normal part (R̃(X,Y )Z)⊥

as T1(X,Y, Z). This is the righthandside of the Codazzi equation (3.4). So we have
that

(5.4)
3((∇h)(X,Y, Z))− (∇h)(Y,X,Z)) = 3T1(X,Y, Z)

= g(AY,Z)JBX − g(AX,Z)JBY + g(BX,Z)JAY − g(BY,Z)JAX.

Using Lemma 2.6 and (2.23), the covariant derivative ∇T1, where ∇ is the covariant
derivative on M , can be written as

(5.5) 3(∇T1)(W,X, Y, Z) = T2(W,X, Y, Z)− T2(W,Y,X,Z),

where

T2(W,X, Y, Z) = g((∇WA)Y,Z)JBX + g((∇WB)X,Z)JAY

+ g(AY,Z)G(W,BX) + g(BX,Z)G(W,AY )

+ g(AY,Z)J(∇WB)X + g(BX,Z)J(∇WA)Y.

(5.6)

By Lemma 2.6 and Lemma 3.3 the tensor T2 can be expressed completely in terms
of A and B in the following way:

T2(W,X, Y, Z) = g(BSJWY,Z)JBX + g(h(W,BY ), JZ)JBX)

− 1
2g(G(W,AY ), JZ)JBX + 1

2g(G(W,Y ), JAZ)JBX

− g(AY,Z)h(W,AX)− g(AY,Z)JASJWX

+ 1
2g(AY,Z)G(W,BX)− 1

2g(AY,Z)JBJG(W,X)

− g(h(W,AX), JZ)JAY − g(SJWX,AZ)JAY

− 1
2g(G(W,BX), JZ)JAY + 1

2g(G(W,X), JBZ)JAY

+ g(BX,Z)JBSJWY + g(BX,Z)h(W,BY )

+ 1
2g(BX,Z)G(W,AY )− 1

2g(BX,Z)JAJG(W,Y ).

(5.7)

Now we can compute x. From (5.1), (5.4) and (5.5), we have that

x = T2(W,X, Y, Z) + T2(X,Y,W,Z) + T2(Y,W,X,Z)

− T2(W,Y,X,Z)− T2(X,W, Y, Z)− T2(Y,X,W,Z).



16 BART DIOOS, LUC VRANCKEN AND XIANFENG WANG

Therefore when we compute x we can omit in (5.7) all terms which are symmetric
in two of the variables W , X, Y . So we get x by omitting these terms in (5.7) and
by taking the cyclic sum of the difference of remainder of (5.7) with itself with two
variables interchanged. Hence we can write

x = T3(W,X, Y, Z) + T3(X,Y,W,Z) + T3(Y,W,X,Z)

− T3(W,Y,X,Z)− T3(X,W, Y, Z)− T3(Y,X,W,Z),

where

T3(W,X, Y, Z) = g(h(W,BY ), JZ)JBX)− 1
2g(G(W,AY ), JZ)JBX

+ 1
2g(G(W,Y ), JAZ)JBX − g(AY,Z)h(W,AX)

+ 1
2g(AY,Z)G(W,BX)− 1

2g(AY,Z)JBJG(W,X)

− g(h(W,AX), JZ)JAY − 1
2g(G(W,BX), JZ)JAY

+ 1
2g(G(W,X), JBZ)JAY + g(BX,Z)h(W,BY )

+ 1
2g(BX,Z)G(W,AY )− 1

2g(BX,Z)JAJG(W,Y ).

From this we immediately get that x equals the expression (5.3).
Next, we can rewrite x as

(5.8) x = 3 S
WXY

(
(∇2h)(W,X, Y, Z)− (∇2h)(X,W, Y, Z)

)
.

By the Ricci identity, we have that

(5.9) x = 3 S
WXY

(
R⊥(W,X)h(Y,Z)− h

(
R(W,X)Y,Z

)
− h
(
Y,R(W,X)Z

))
.

Equations (2.24) and (3.5) give

R⊥(W,X)h(Y, Z)

= R⊥(W,X)JSJY Z

= JR(W,X)SJY Z +
1

3

(
g(h(W,Y ), JZ)JX − g(h(X,Y ), JZ)JW

)
.

Since M has constant curvature the curvature tensor (we denote the constant by
c), we have R(X,Y )Z = c(g(Y,Z)X − g(X,Z)Y ). An easy calculation shows that
x vanishes. This completes the proof of the lemma. �

We are now in a position to prove the classification result. We consider again the
endomorphisms A and B that satisfy P |TM = A + JB and take the orthonormal
basis E1, E2, E3 such that AEi = λiEi and BEi = µiEi for i = 1, 2, 3. In the
notation of the previous sections λi = cos 2θi and µi = sin 2θi. As sometimes the
expressions in terms of λi and µi are shorter, so we will not always express equations
in terms of the angles θi. Taking into account of the properties of G, we may also

assume that JG(E1, E2) =
√
3
3 E3 by replacing E3 by −E3 if necessary. Thus we

obtain that JG(Ei, Ej) = 1√
3
εijkEk. By taking X = E1, Y = E2 and Z = W = E3

in formula (5.3) in Lemma 5.1, we obtain six equations, namely(
λi(λj − λk) + µi(µj − µk)

)
hjkk +

(
λk(λi − λj) + µk(µi − µj)

)
hjii = 0,(5.10) (

λi(λj − λk) + µi(µj − µk)
)
h312 = 0,(5.11)

for every positive permutation (ijk) of (123). Only four of the above equations are
linearly independent.

We now distinguish two cases: Case 1: h312 6= 0 and Case 2: h312 = 0.
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Case 1: h3
12 6= 0. First we note that

λ1(λ2 − λ3) + µ1(µ2 − µ3) = cos(2(θ1 − θ2))− cos(2(θ1 − θ3))

= −2 sin(2θ1 − θ2 − θ3) sin(θ3 − θ2).

So from equation (5.11) we find that sin(2θ1 − θ2 − θ3) sin(θ3 − θ2), sin(2θ2 − θ3 −
θ1) sin(θ1−θ3) and sin(2θ3−θ2−θ3) sin(θ2−θ1) have to vanish. As the immersion is
not totally geodesic, from Lemma 3.8 we have that the angle functions are mutually
different which in turn implies that for i different from j, we have that sin(θj − θi)
is different from 0. Hence

sin(2θ1 − θ2 − θ3) = sin(2θ2 − θ3 − θ1) = sin(2θ3 − θ2 − θ3) = 0.

So (2θ1−θ2−θ3) is a multiple of π. By Lemma 3.2, (θ1 + θ2 +θ3) is also a multiple
of π. Hence θ1 is a multiple of π

3 . A same argument can be applied for the other
angles θ2 and θ3. As the immersion is not totally geodesic, from Lemma 3.8 we
have that no two angle functions are the same and therefore the angles must be
different modulo π. So the only possibility for the angles are 0, π

3 and 2π
3 .

Since all the angles θi are constant all the hijj are zero except h312 by Lemma 3.4.

By Lemma 3.4 it now follows that all the connection coefficients ωkij are zero except

the cases that i, j, k are all different. These non-zero coefficients ωkij can be written

in terms of h312 in the following way

(5.12) ω3
12 = ω1

23 = ω2
31 =

√
3
3 h

3
12 +

√
3
6 .

Note also that from the Gauss equation (3.2) it follows that the constant curvature
c is related to the second fundamental form by

(5.13)

cE2 = R(E2, E1)E1

= ( 5
12 −

1
6 )E2 + [SJE2 , SJE1 ]E1

= 1
4E2 − SJE1

(h312E3)

= 1
4E2 − (h312)2E2.

This implies that h312 and therefore also ω3
12, ω1

23 and ω2
31 are all constants. So

computing the curvature by the definition we have that

(5.14)

cE2 = R(E2, E1)E1

= ∇E2∇E1E1 −∇E1∇E2E1 −∇[E2,E1]E1

= −ω3
21ω

2
13E2 − (ω3

21 − ω3
12)ω2

31E2

= (ω3
12)2E2

= (
√
3
3 h

3
12 +

√
3
6 )2E2.

Comparing both expressions (5.13) and (5.14), we get that 8(h312)2 + 2h312 = 1,
which implies that h312 = 1

4 or − 1
2 . In the following, we will discuss two subcases

of case 1 respectively: Case 1a: h312 = 1
4 and Case 1b: h312 = − 1

2 .

Case 1a: h3
12 = 1

4 . In this case, we have that ω3
12 = ω1

23 = ω2
31 =

√
3
4 and the

sectional curvature is equal to 3
16 .

In the next theorem we will prove that in this case (Case 1a) the submanifold
M is locally congruent with the immersion in Example 4.7. In order to prove this,
we first recall that the Berger sphere can be constructed by looking at S3 as a
hypersurface of the quaternions. As before we take the frame X1(u) = ui, X2(u) =
uj, X3(u) = −uk of left invariant vector fields. It follows by a straightforward
calculation that

[X1, X2] = −2X3, [X2, X3] = −2X1, [X3, X1] = −2X2.
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We now define a new metric gb, depending on two constants τ and κ on S3 by

gb(X,Y ) =
4

κ

(
〈X,Y 〉+ (

4τ2

κ
− 1)〈X,X1〉〈Y,X1〉

)
.

This implies that the vector fields E1 = κ
4τX1, E2 =

√
κ
2 X2 and E3 =

√
κ
2 X3 form

an orthonormal basis of the tangent space with respect to gb. It follows immediately
from the Koszul formula that ∇EiEi = 0 and that

(5.15)

∇E2
E3 = −τE1, ∇E2

E1 = τE3,

∇E3
E2 = τE1, ∇E3

E1 = −τE2,

∇E1
E2 = (τ − κ

2τ
)E3, ∇E1

E3 = (−τ +
κ

2τ
)E2.

Note that the following theorem of [10] which can be proved similarly to the local
version of the Cartan-Ambrose-Hicks theorem (cf. the proof of Theorem 1.7.18 of
[30]), then shows that a manifold admitting such vector fields is locally isometric
with a Berger sphere.

Proposition 5.2. Let Mn and M̃n be Riemannian manifolds with Levi-Civita
connections ∇ and ∇̃. Suppose that there exists constant ckij, i, j, k ∈ {1, . . . , n} such

that for all p ∈ M and p̃ ∈ M̃ there exist orthonormal frame fields {E1, . . . , En}
around p and {Ẽ1, . . . , Ẽn} around p̃ such that ∇EiEj =

∑n
k=1 c

k
ijEk and ∇Ẽi

Ẽj =∑n
k=1 c

k
ijẼk. Then for every point p ∈ M and p̃ ∈ M̃ there exists a local isometry

which maps a neighborhood of p onto a neighborhood of p̃ and Ei on Ẽi.

The previous proposition can of course be also applied in case that κ = 4τ2. In
that case we simply have a regular sphere of constant sectional curvature.

Theorem 5.3. Let M be a Lagrangian submanifold of the nearly Kähler S3 × S3.
Assume that there exists a local orthonormal frame as in Case 1a. Then M is
locally congruent with the immersion f : S3 → S3 × S3 : u 7→ (uiu−1, uju−1), which
is Example 4.7.

Proof. We have that

ωkij =
√
3
4 ε

k
ij

and the only non vanishing component of the second fundamental form is

g(h(E1, E2), JE3) = 1
4 .

This implies immediately that M is congruent with a space of constant sectional
curvature 3

16 . Moreover, from the beginning of the discussion about Case 1, we

know that the angle functions are given by (2θ1, 2θ2, 2θ3) = (0, 2π3 ,
4π
3 ). So we can

find a local basis such that
√

3JG(E1, E2) = E3 and

PE1 = E1, PE2 = − 1
2E2 +

√
3
2 JE2, PE3 = − 1

2E3 −
√
3
2 JE3.

From this and (2.16) it follows that

QE1 = −
√

3JE1, QE2 = E2, QE3 = −E3.

Applying Proposition 5.2 and comparing with (5.15) (take κ = 3
4 , τ =

√
3
4 ), we

have that we can identify M with S3, with a proportional metric and that we may
assume that

E1 = −
√
3
4 X3, E2 = −

√
3
4 X1, E3 = −

√
3
4 X2.

We now write the immersion f = (p, q) and df(Ei) = DEi
f = (pαi, qβi) where

αi, βi are imaginary quaternions. In view of the above properties of Q, it immedi-
ately follows that β1 = α1, α2 = 0 and β3 = 0.
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Moreover using the expression for P and the fact that JG(E1, E2) =
√
3
3 E3 we

have that ∇EE1
E1 = ∇EE2

E2 = ∇EE3
E3 = 0 and

∇EE1
E2 = 0, ∇EE1

E3 = 0,

∇EE2
E1 = −

√
3
2 E3 = −

√
3
2 (pα3, 0),

∇EE2
E3 =

√
3
4 (E1 −QE1) =

√
3
2 (pα1, 0),

∇EE3
E2 = −

√
3
4 (E1 +QE1) = −

√
3
2 (0, qα1),

∇EE3
E1 =

√
3
2 E2 =

√
3
2 (0, qβ2).

From the relation between the nearly Kähler metric and the usual Euclidean
product metric (see (2.18)), we have that E1, E2, E3 are orthogonal with respect to
the induced Euclidean product metric and that their lengths are given by

〈E1, E1〉 = 3
2 , 〈E2, E2〉 = 〈E3, E3〉 = 3

4 .

This in turn implies that α1, β2, α3 are mutually orthogonal imaginary quaternions
and

|α1|2 = 3
4 , |β2|2 = |α3|2 = 3

4 .

On the other hand, from

DEj
DEi

f = (pαjαi + pEj(αi), qβjβi + qEj(βi)),

it follows that

∇EEj
Ei = (p(αj × αi + Ej(αi)), q(βj × βi + Ej(βi)).

Hence substituting α2 = 0, β1 = α1 and β3 = 0 it follows that

β2 × α1 =
√
3
2 α3,

as well as

E2(α1) = −
√
3
2 α3, E3(α1) =

√
3
2 β2, E1(α1) = 0,

E2(β2) = 0, E3(β2) = −
√
3
2 α1, E1(β2) =

√
3
2 α3,

E2(α3) =
√
3
2 α1, E3(α3) = 0, E1(α3) = −

√
3
2 β2.

In terms of the standard vector fields X1, X2, X3 this gives

X1(α1) = 2α3, X2(α1) = −2β2, X3(α1) = 0,

X1(β2) = 0, X2(β2) = 2α1, X3(β2) = −2α3,

X1(α3) = −2α1, X2(α3) = 0, X3(α3) = 2β2.

We can choose a rotation (unitary quaternion h) such that

β2(1) =
√
3
2 hih

−1, α3(1) =
√
3
2 hjh

−1, α1(1) = −
√
3
2 hkh

−1,

and we can pick the initial conditions such that f(1) = (hih−1, hjh−1). As the
differential equations for αi, βi, p and q are linear systems of differential equations
with fixed initial conditions we can apply a standard uniqueness theorem. It is
therefore sufficient to give a solution which satisfies the above system with the
given initial conditions.

We have that

β2(u) =
√
3
2 huiu

−1h−1, α3(u) =
√
3
2 huju

−1h−1, α1(u) = −
√
3
2 huku

−1h−1,
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satisfy X1(β2) = X2(α3) = X3(α1) = 0 and

X1(α1) = −2
√
3
2 huiku

−1h−1 = 2
√
3
2 huju

−1h−1 = 2α3,

X2(α1) = −2
√
3
2 hujku

−1h−1 = −2
√
3
2 huiu

−1h−1 = −2β2,

X3(α3) = 2
√
3
2 hu(−k)ju−1h−1 = 2

√
3
2 huiu

−1h−1 = 2β2,

X3(β2) = 2
√
3
2 hu(−k)iu−1h−1 = −2

√
3
2 huju

−1h−1 = −2α3,

X1(α3) = 2
√
3
2 huiju

−1h−1 = 2
√
3
2 huku

−1h−1 = −2α1,

X2(β2) = 2
√
3
2 hujiu

−1h−1 = −2
√
3
2 huku

−1h−1 = 2α1.

Next, if we take p = huiu−1h−1 and q = huju−1h−1, we have that

DE1
p = −

√
3
4 DX3

p =
√
3
2 huju

−1h−1 = huiu−1h−1(−
√
3
2 huku

−1h−1) = pα1,

DE2p = −
√
3
4 DX1p = 0 = pα2,

DE3
p = −

√
3
4 DX2

p =
√
3
2 huku

−1h−1 = huiu−1h−1(
√
3
2 huju

−1h−1) = pα3,

DE1
q = −

√
3
4 DX3

q =
√
3
2 hu(−i)u−1h−1 = huju−1h−1(−

√
3
2 huku

−1h−1) = qβ1,

DE2q = −
√
3
4 DX1q = −

√
3
2 huku

−1h−1 = huju−1h−1(
√
3
2 huiu

−1h−1) = qβ2,

DE3
q = −

√
3
4 DX2

q = 0 = qβ3.

After applying an isometry of the nearly Kähler S3× S3, we completes the proof of
the theorem. �

Case 1b: h3
12 = −1

2 . In this case, all connection coefficients are zero and the
submanifold M is flat. In that case we have

Theorem 5.4. Let M be a Lagrangian submanifold of the nearly Kähler S3 × S3.
Assume that there exists a local orthonormal frame as in Case 1b. Then M is lo-
cally congruent with the immersion f : R3 → S3×S3 : (u, v, w) 7→ (p(u,w), q(u, v)),
where p and q are constant mean curvature tori in S3 given in Example 4.8.

Proof. We know that all connection coefficients vanish and that the only non vanish-
ing component of the second fundamental form is g(h(E1, E2), JE3) = − 1

2 . More-
over, from the beginning of the discussion about Case 1, we know that the angle
functions are given by (2θ1, 2θ2, 2θ3) = (0, 2π3 ,

4π
3 ). So we can find a local basis such

that
√

3JG(E1, E2) = E3 and

PE1 = E1, PE2 = − 1
2E2 +

√
3
2 JE2, PE3 = − 1

2E3 −
√
3
2 JE3.

From this it follows that

QE1 = −
√

3JE1, QE2 = E2, QE3 = −E3.

As the connection coefficients vanish we may identify E1, E2, E3 with coordinate
vector fields. As before we write the f = (p, q) and we denote the coordinates by
u, v, w. Therefore, we have E1 = fu, E2 = fv, E3 = fw. It immediately follows
from the above expression of Q that p does not depend on v, q does not depend on
w (i.e., pv = qw = 0) and that p−1pu = q−1qu.

Moreover using the above expression for P and the fact that JG(fu, fv) =
√
3
3 fw,

we have that ∇Efufu = ∇Efvfv = ∇Efwfw = 0 and

∇Efufv = ∇Efvfu = − 1
2Jfw −

√
3
4 fw −

1
4Jfw = − 3

4Jfw −
√
3
4 fw,

∇Efufw = ∇Efwfu = − 1
2Jfv +

√
3
4 fv −

1
4Jfv = − 3

4Jfv +
√
3
4 fv,

∇Efvfw = ∇Efwfv = − 1
2Jfu + 1

2Jfu = 0.
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From the relation between the nearly Kähler metric and the usual Euclidean
product metric (see (2.18)), we have that fu, fv, fw are also orthogonal with respect
to the induced Euclidean product metric and that their lengths are given by

〈fu, fu〉 = 3
2 , 〈fv, fv〉 = 〈fw, fw〉 = 3

4 .

Moreover from (2.16) and (2.18), we have 〈X,QY 〉 = −
√
3
2 g(X,JPY 〉, hence

〈fu, Qfv〉 = 〈fv, Qfw〉 = 〈fu, Qfw〉 = 0,

〈fu, Qfu〉 = 0, 〈fv, Qfv〉 = 3
4 , 〈fw, Qfw〉 = − 3

4 .

As
DXY = ∇EXY − 1

2 〈X,Y 〉f −
1
2 〈X,QY 〉Qf,

where D denotes the usual covariant derivative on H2 = R8, we deduce by com-
bining the above equations that the immersion f is determined by the following
system of partial differential equations:

fuu = − 3
4f, fvv = − 3

8f −
3
8Qf, fww = − 3

8f + 3
8Qf,

fvw = 0, fuv = − 3
4Jfw −

√
3
4 fw, fuw = − 3

4Jfv +
√
3
4 fv.

In terms of the components p and q this reduces to

(5.16) puu = − 3
4p, pww = − 3

4p, puw = −
√
3
2 pq

−1qv.

and

(5.17) quu = − 3
4q, qvv = − 3

4q, quv =
√
3
2 qp

−1pw.

In order to simplify expressions, in the following we will write ũ =
√
3
2 u, ṽ =

√
3
2 v

and w̃ =
√
3
2 w.

We first look at the system of differential equations for p (see (5.16)). Solving
the first two equations in (5.16), it follows that we can write

p = A1 cos(ũ) cos(w̃) +A2 cos(ũ) sin(w̃) +A3 sin(ũ) cos(w̃) +A4 sin(ũ) sin(w̃)),

where in order to simplify expressions we have written ũ =
√
3
2 u, ṽ =

√
3
2 v and

w̃ =
√
3
2 w. Using now the fact that 〈p, p〉 = 1 together with 〈pu, pw〉 = 0 (as fu and

fw are mutually orthogonal with respect to the induced Euclidean product metric)
if follows that by applying an isometry of SO(4) we may write A1 = (1, 0, 0, 0),
A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0) and A4 = (0, 0, 0, ε1), where ε1 = ±1.

A similar argument is of course valid for the second map q. Also it is well known
that S3 × S3 = SU(2)× SU(2) is the double cover of SO(4), so any rotation R ∈
SO(4) can be written as R(x) = αxβ, where α, β ∈ S3. Therefore, applying an
isometry of the nearly Kähler S3 × S3, we can write that

p = (cos(ũ) cos(w̃), cos(ũ) sin(w̃), sin(ũ) cos(w̃), ε1 sin(ũ) sin(w̃)),

q = (cos(ũ) cos(ṽ), cos(ũ) sin(ṽ), sin(ũ) cos(ṽ), ε2 sin(ũ) sin(w̃))d,

where εi = ±1 and d = (d1, d2, d3, d4) is a unitary quaternion. Note that taking d or

−d gives up to an isometry the same example. Looking now at p−1puw+
√
3
2 q
−1qv =

0 (see (5.16)) it immediately follows that ε1 = ε2 = 1.

Moreover we get from puw = −
√
3
2 pq

−1qv, quv =
√
3
2 qp

−1pw (see (5.16) and
(5.17)) that the unit quaternion d has to satisfy:

d21 + d22 + d23 + d24 = 1,

d1d2 + d3d4 = d1d4 − d2d3 = 0,

d21 + d22 − d23 − d24 = d21 − d22 − d23 + d24 = 0,

− 1− 2d1d3 + 2d2d4 = 1 + 2d1d3 + 2d2d4 = 0.
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This reduces to

d23 = d21, d
2
4 = d22, d

2
1 + d22 = 1

2 , d1d3 = − 1
2 , d4d2 = 0.

This system has solutions d = ( 1√
2
, 0,− 1√

2
, 0) and d = (− 1√

2
, 0, 1√

2
, 0). This com-

pletes the proof of the theorem. �

Case 2: h3
12 = 0. In this case, recall that

(
λi(λj−λk)+µi(µj−µk)

)
= 2 sin(θj−

θk) sin(2θi − θj − θk). Therefore, the general solution of (5.10) is

(5.18)
hjii = −2αj sin(θj − θk) sin(2θi − θj − θk),

hjkk = 2αj sin(θi − θj) sin(2θk − θi − θj),
where here and throughout the remainder of case, (ijk) denotes a positive per-
mutations of (123) and α1, α2 and α3 are some real functions. The components hiii
can be calculated using the minimality of M .

As before we may assume that M is not totally geodesic. Then from Lemma
3.8 we may assume that all the angle functions are different (modulo π). Hence,
sin (θi − θj) 6= 0, ∀ i 6= j. We will show by contradiction that Case 2 cannot occur.

By the second equation in Lemma 3.4 and (5.18), one then can express the ωkij
in terms of the hkij (since sin (θj − θk) 6= 0, ∀ j 6= k). This gives us for all positive
permutations (ijk) of (123) that

ωjii = 2αj cot(θj − θi) sin(θk − θj) sin(2θi − θj − θk),

ωjkk = 2αj cot(θj − θk) sin(θi − θj) sin(2θk − θi − θj),

ωkij = −ωjik =
√
3
6 .

Using Lemma 3.4 and (5.18), the differential equations for the angles become

(5.19)
Ej(θi) = 2αj sin(θj − θk) sin(2θi − θj − θk),

Ej(θk) = −2αj sin(θi − θj) sin(2θk − θi − θj),
and

(5.20)

E1(θ1) = −α1(cos(2(θ1 − θ2)) + cos(2(θ1 − θ3))− 2 cos(2(θ2 − θ3))),

E2(θ2) = −α2(cos(2(θ2 − θ3)) + cos(2(θ2 − θ1))− 2 cos(2(θ3 − θ1))),

E3(θ3) = −α3(cos(2(θ3 − θ1)) + cos(2(θ3 − θ2))− 2 cos(2(θ1 − θ2))).

First, we deal with the case that cos(θi−θj) 6= 0 6= sin(2θi−θj−θk), ∀ i, j, k distinct.
In that case, we find using the above expressions for ωkij together with the Gauss
equation (3.2) for R(Ei, Ej)Ek that

Ei(αj) = −1

6
csc(θi − θj) sin(θi − θk) csc(θi + θj − 2θk)×[

6αiαj sin(θi + θj − 2θk)(−7 sin(θj − θk) + 2 sin(2θi − θj − θk) + sin(2θi − 3θj + θk))

+ 2
√

3αk sin(θi − 2θj + θk)
]

and

Ej(αi) =
1

6
csc(θi − θj) sin(θj − θk) csc(θi + θj − 2θk)×[

6αiαj sin(θi + θj − 2θk)(−7 sin(θi − θk) + 2 sin(2θj − θi − θk) + sin(2θj − 3θi + θk))

+ 2
√

3α2 sin(2θi − θj − θk)
]
.

Substituting these derivatives into the compatibility conditions,

Ei(Ej(θi))− Ej(Ei(θi)) = (∇Ei
Ej −∇Ej

Ei)(θi),
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gives the following three equations relating the functions α1, α2 and α3:
(5.21)

αi
(
sin(2θk− θi− θj) sin(θk + θi− 2θj)

)
= 8
√

3αjαk sin3(θk− θj) sin2(θk− 2θi + θj),

for every positive permutation (ijk) of (123). So we have equations of the form xiαi =
αjαk, where

xi =
sin(2θk − θi − θj) sin(θk + θi − 2θj)

8
√

3 sin3(θk − θj) sin2(θk − 2θi + θj)
6= 0.

As the lagrangian submanifold M is not totally geodesic, from (5.18) we know that
not all the αi can vanish at the same time. Therefore it follows from the above
system of equations (5.21) that

α2
i = xjxk = − sin2(2θi−θj−θj)

192 sin3(θi−θj) sin3(θi−θk) sin(θi+θj−2θk) sin(θi−2θj+θk) .

Using the Gauss equation (3.2) to calculate the sectional curvature K of the plane
spanned by Ei and Ej , we have that K = 5

12 + 1
3 cos(2(θi − θj)) for all i 6= j. As

the sectional curvature is constant, this implies that

cos(2(θi − θj)) = cos(2(θk − θj)),
which means that all the angles are constant, hence by Lemma 3.4 and the assump-
tion of Case 2 that h312 = 0, the submanifold M is totally geodesic. So we get a
contradiction with the assumption that M is not totally geodesic.

Next, we deal with the case that there exist some i, j, k which are distinct such
that sin(2θi − θj − θk) = 0. As the sum of the angles is a multiple of π and all the
angles are determined up to a multiple of π, in this case it is sufficient to consider
the case that θ1 = bπ

3 and θ3 = aπ − θ1 − θ2 = aπ − bπ
3 − θ2, where a and b are

some constant integers and θ2 is not constant. As θ2 + θ3 = aπ − bπ
3 = constant,

θ2 is not constant, using (5.19), we get from

0 = E1(θ2 + θ3) = 2α1[1− 2 cos2 (aπ − bπ

3
− 2θ2) + (−1)a−b cos (aπ − bπ

3
− 2θ2)]

that α1 has to vanish. Then from the Gauss equation (3.2) we obtain that the
sectional curvature K of the plane spanned by E1 and E2 is given by

K = 5
12 + 1

3 cos(2θ2 −
2bπ

3
).

As M has constant sectional curvature this implies that θ2, and therefore all angle
functions, are constant. Hence by Lemma 3.4 and the assumption of Case 2 that
h312 = 0, the submanifold M is totally geodesic. So we get a contradiction with the
assumption that M is not totally geodesic.

Finally, we deal with the case that there exist some i, j such that cos(θi−θj) = 0.
As the sum of the angles is a multiple of π and all the angles are only determined
up to a multiple of π, in this case it is sufficient to consider the case that

θ2 = θ1 − bπ
2 , θ3 = aπ − θ1 − θ2 = aπ + bπ

2 − 2θ1,

where a is a constant integer, b is an odd constant integer and θ1 is not constant.
As θ1 − θ2 = bπ

2 = constant, θ1 is not constant, using (5.19)-(5.20), we get from

0 = E1(θ1 − θ2) = −α1

(
2 cos (bπ)− 3 cos (6θ1) + cos (bπ − 6θ1)

)
,

0 = E2(θ1 − θ2) = α2

(
2 cos (bπ) + cos (6θ1)− 3 cos (bπ − 6θ1)

)
,

0 = E3(θ1 − θ2) = 2α3 sin (
bπ

2
) sin (

3bπ

2
− 6θ1),

that α1 = α2 = α3 = 0. Hence by Lemma 3.4 and the assumption of Case 2 that
h312 = 0, the submanifold M is totally geodesic. So we get a contradiction with the
assumption that M is not totally geodesic.
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Therefore, we have proved that Case 2 cannot occur.

Proof of Theorem 1.1 : Assume that M is a Lagrangian submanifold of con-
stant sectional curvature in the nearly Kähler S3 × S3. First, we consider the
case that M is totally geodesic, then applying Theorem 1.3 obtained by Zhang-Hu-
Dioos-Vrancken-Wang, we get that M is locally congruent with one of the following
immersions:

(1) f : S3 → S3 × S3 : u 7→ (u, 1), which is Example 4.1,
(2) f : S3 → S3 × S3 : u 7→ (1, u), which is Example 4.2,
(3) f : S3 → S3 × S3 : u 7→ (u, u), which is Example 4.3.
Second, we consider the case that M is not totally geodesic. They applying our

discussions for Case 1a (see Theorem 5.3), Case 1b (see Theorem 5.4) and Case 2
(we have proved that this case cannot occur), we obtain that M is locally congruent
with one of the following immersions:

(4) f : S3 → S3 × S3 : u 7→ (uiu−1, uju−1), which is Example 4.7,
(5) f : R3 → S3 × S3 : (u, v, w) 7→ (p(u,w), q(u, v)), where p and q are constant

mean curvature tori in S3 given in Example 4.8.
This complete the proof of Theorem 1.1. �
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Kähler S3 × S3, Tôhoku Math. J. 67 (2015), no. 1, 1–17.
[3] J-B. Butruille, Classification des variétés approximativement kähleriennes homogènes, Ann.
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