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Abstract

We consider a control problem where the system is driven by a decoupled as well as a coupled forward-

backward stochastic differential equation. We prove the existence of an optimal control in the class of

relaxed controls, which are measure-valued processes, generalizing the usual strict controls. The proof is

based on some tightness properties and weak convergence on the space D of càdlàg functions, endowed

with the Jakubowsky S-topology. Moreover, under some convexity assumptions, we show that the relaxed

optimal control is realized by a strict control.
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1 Introduction

In this paper, we investigate the existence of optimal controls, for systems driven by forward-backward
stochastic differential equations (FBSDEs), of the form:





dXt = b (t,Xt, Yt, Ut) dt+ σ (t,Xt, Yt, Ut) dWt,
−dYt = h (t,Xt, Yt, Ut) dt− ZtdWt − dMt,
X0 = x, YT = ϕ (XT ) ,

(1.1)

where (Mt) is a square integrable martingale, which is orthogonal to the Brownian motion (Wt) . The
expected cost over the time interval [0, T ] is given by

J (U.) = E

[
ψ (XT ) + g (Y0) +

∫ T

0

l (t,Xt, Yt, Ut) dt

]
. (1.2)

Backward stochastic differential equations (BSDEs) have been first introduced by Pardoux and Peng,
in the seminal paper [20]. Since then, the BSDE theory became a powerful tool in many fields, such as
mathematical finance, optimal control, semi-linear and quasi-linear partial differential equations. When the
BSDE is associated to some forward stochastic differential equation, the system is called a forward-backward
stochastic differential equation (FBSDE). The earliest version of such an equation appeared in Bismut [7], in
the stochastic version of Pontriagin maximum principle. See [11, 16] for a complete account on the subject,
and the references therein.

Control problems for systems governed by BSDEs and FBSDEs model many problems arising in financial
mathematics, especially the minimization of risk measures (El Karoui and Barrieu [6], Oksendal and Sulem
[18]), the recursive utility problems and the portfolio optimization problems. Therefore it becomes quite
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natural to investigate this kind of problems, for themselves as a class of interesting dynamical systems
and for their connections to real life problems. Many papers have been devoted to this subject, see e.g.
[3, 9, 12, 21, 22, 24] and the references therein. These papers have been concerned by various forms of
the stochastic maximum principle. Existence of optimal relaxed controls for systems driven by BSDEs has
been studied for the first time in Buckdahn and al. [8], by combining probabilistic arguments as well as
PDEs techniques. Then, Bahlali and al. [1] investigate a control problem, with a general cost functional
by using probabilistic tools. The authors suppose that the generator is linear and assume convexity of the
cost function, as well as the action space. They showed existence of an optimal strong control, that is an
optimal control adapted to the original filtration of the Brownian motion. In a second paper [2], they proved
existence of a relaxed as well as of a strict control for a system of controlled decoupled non linear FBSDE,
where the diffusion coefficient is not controlled and the generator does not depend on the second variable Z.

Our aim is to prove existence of optimal controls for systems driven by FBSDEs. In the first part,
we suppose that our FBSDE is decoupled, that is the forward part of the equation does not contain the
backward parts Y and Z and the diffusion coefficient depends explicitly on the control variable. We use
the formulation by martingale problems for the forward SDE and the Meyer-Zheng compactness criteria,
to prove the existence result. The proof is inspired from a technique used by Pardoux [19]. Note that,
our result improves [2] to the case where the diffusion coefficient is controlled, [10] to FBSDEs and [8]
to continuous confficients in the case where the generator does not depend upon Z. Moreover, note that
under our assumptions (the continuity of the coefficients b and σ) there are difficulties to apply directly HJB
techniques as in [8], to obtain the necessary estimates of the solution of the HJB PDE, as well as its gradient.
It should be mentioned that in [8], the coefficients of the forward equation are Lipschitz continuous. Moreover,
our approach based on probabilistic techniques could be used for more general FBSDEs and BSDEs, namely
non Markov BSDEs, for which PDE (HJB) techniques do not work. Of course, it should be mentioned that
in [8], the authors treat the case of a generator depending explicitely upon Z.

In the second part, we deal with a coupled FBSDEs, where the coefficients depend on X and Y, but
not on the second variable Z, with an uncontrolled diffusion coefficient. We use Jakubowsky’s S-topology
and a suitable version of the Skorokhod theorem to prove the main result. Under some additional convexity
assumption, we show that the relaxed optimal control, which is a measure-valued process, is in fact realized
as a strict control.

2 Formulation of the problem

We study the existence of optimal controls for systems driven by FBSDEs of the form (1.1) where the cost
functional over the time interval [0, T ] is given by (1.2).

We assume that b, σ, l, h, g and ψ are given mappings, (Wt, t ≥ 0) is a standard Brownian motion, defined
on some filtered probability space (Ω,F ,Ft, P ), satisfying the usual conditions, where (Ft) is not necessarily
the Brownian filtration. (Mt) is a square integrable martingale which is orthogonal to the Brownian motion
(Wt) and X,Y, Z are square integrable adapted processes. The control variable Ut, called strict control, is a
measurable, Ft− adapted process with values in some compact metric space K.

The objective of the controller is to minimize this cost functional, over the class U of admissible controls,

that is, adapted processes with values in the set K, called the action space. A control Û satisfying J
(
Û
)
=

inf {J (U) , U ∈ U} is called optimal.
Without additional convexity conditions, an optimal control may fail to exist in the set U of strict controls

even in deterministic control. It should be noted that the set U is not equipped with a compact topology.
The idea is then to introduce a new class of admissible controls, in which the controller chooses at time t, a
probability measure qt(du) on the control set K, rather than an element Ut ∈ U. These are called relaxed
controls. It turns out that this class of controls enjoys good topological properties. If qt(du) = δUt

(du) is a
Dirac measure charging Ut for each t, then we get a strict control as a special case. Thus the set of strict
controls may be identified as a subset of relaxed controls.

To be convinced on the fact that strict controls may not exist even in the simplest cases, let us consider
a deterministic example.

The problem is to minimize the following cost function: J(U) =
∫ T

0

(
XU (t)

)2
dt over the set U of

measurable functions U : [0, T ] → {−1, 1}, where XU (t) denotes the solution of dXU.(t) = U(t)dt, X(0) = 0.
We have infU.∈U J(U.) = 0.

Indeed, consider the following sequence of controls:
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Un(t) = (−1)k if kT
n

≤ t ≤ (k+1)T
n

, 0 ≤ k ≤ n− 1.

Then clearly |XUn(t)| ≤ 1/n and |J(Un)| ≤ T/n2 which implies that infu∈U J(u) = 0. There is however
no control U such that J(U.) = 0. If this would have been the case, then for every t, XU.(t) = 0. This in
turn would imply that Ut = 0, which is impossible. The problem is that the sequence (Un) has no limit in
the space of strict controls. This limit, if it exists, will be the natural candidate for optimality. If we identify
Un(t) with the Dirac measure δUn(t)(du) and set qn(dt, du) = δUn(t)(du).dt, we get a measure on [0, T ]×K.
Then (qn(dt, du))n converges weakly to (T/2)dt·[δ−1 + δ1](du). This suggests that the set of strict controls
is too narrow and should be embedded into a wider class enjoying compactness properties. The idea of a
relaxed control is to replace the K-valued process (Ut) with a P(K)-valued process (qt), where P(K) is the
space of probability measures equipped with the topology of weak convergence.

Let V be the set of Radon measures on [0, T ]×K, whose projections on [0, T ] coincide with the Lebesgue
measure dt. Equipped with the topology of stable convergence of measures, V is a compact metric space
(see [15]). Stable convergence is required for bounded measurable functions φ(t, u), such that for each fixed
t ∈ [0, T ], φ(t,·) is continuous. That is, a sequence (µn) in V converges in the stable topology to µ, if for
every bounded measurable function φ : [0, T ]×K → R such that for each fixed t ∈ [0, T ], φ(t,·) is continuous,

∫ T

0

∫
K
φ(t, u).µn(dt, du) converges to

∫ T

0

∫
K
φ(t, u).µ(dt, du).

Definition 2.1. A measure-valued control on the filtered probability space (Ω,F ,Ft, P ) is a random variable
q with values in V, such that q(ω, dt, du) = dt.q(ω, t, du) and where q(ω, t, du) is progressively measurable
with respect to (Ft) and such that for each t, 1(0,t].q is Ft−measurable. We denote by R the set of such
processes q.

Definition 2.2. A strict control is a term α = (Ω,F ,Ft, P, Ut,Wt, Xt, Yt, Zt) such that
(1) (Ω,F ,Ft, P ) is a probability space equipped with a filtration (Ft)t≥0 satisfying the usual conditions.
(2) Ut is a K-valued process, progressively measurable with respect to (Ft).
(3) Wt is a (Ft, P )- Brownian motion and (Wt, Xt, Yt, Zt,Mt) satisfies FBSDE (1.1), where (Mt) is a

square integrable martingale, orthogonal to (Wt).

The controls, as defined in the last definition, are called weak controls, because of the possible change of
the probability space and the Brownian motion with Ut.

Definition 2.3. A relaxed control is a term α = (Ω,F ,Ft, P, qt,Wt, Xt, Yt, Zt,Mt) such that
(1) (Ω,F ,Ft, P ) is a probability space equipped with a filtration (Ft)t≥0 satisfying the usual conditions.
(2) q is a measure-valued control on (Ω,F ,Ft, P ) .
(3) Wt is a (Ft, P )- Brownian motion and (Wt, Xt, Yt, Zt,Mt) satisfies the following FBSDE

{
Xt = x+

∫ t

0

∫
K
b (s,Xs, Ys, u) q(s, du).ds+

∫ t

0 σ (s,Xs, Ys, Zs) dWs,

Yt = ϕ (XT ) +
∫ T

t

∫
K
h (s,Xs, Ys, u) q(s, du).ds−

∫ T

t
ZsdWs − (MT −Mt).

(2.1)

where (Mt) is a square integrable martingale, orthogonal to (Wt) .

Accordingly, the relaxed cost functional is defined by

J (q) = E

[
ψ(XT ) + g (Y0) +

∫ T

0

∫

K

l (s,Xs, Ys, , Zs, u) q(s, du)ds

]
. (2.2)

Remark 2.4. The appearance of the orthogonal martingale (Mt) in 1.1 is due to the fact that the filtration
associated to the optimal control is usually larger than the Brownian filtration. By the Kunita-Watanabe
representation theorem, the conditional expectation with respect to this filtration is a sum of a Brownian
stochastic integral and an orthogonal martingale.

Remark 2.5. As in classical control problems driven by Itô SDEs, the cost functional 1.2 may be defined as
J (U) = E

[
g
(
Y 0

)]
where Y t =

(
Yt, Y

k+1
t

)
, with Y k+1

t the solution of the one-dimensional BSDE

{
−dY k+1

t = l (t,Xt, Yt, Ut) dt− ZtdWt − dM t,

Y k+1
T = ψ(XT ),

and g
(
Y 0

)
= g (Y0)+ Y k+1

0 .
This property is known in optimal control as the equivalence between the Bolza and Mayer problems.

3



Notations
In the sequel we denote by:

• C([0, T ];Rd): the space of continuous functions from [0, T ] into Rd, equipped with the topology of
uniform convergence,

• D([0, T ];Rm): the Skorohod space of càdlàg functions from [0, T ] into Rm, that is functions which are
continuous from the right with left hand limits endowed with the Meyer-Zheng topology of convergence
in dt-measure,

• S2([0, T ];Rn) = {X : [0, T ]× Ω → Rn;X is progressively measurable and E(sup0≤t≤T |Xt|
2) < +∞},

• M2([0, T ];Rk×m) = {Z : [0, T ]× Ω → Rk×m; Z is progressively measurable and E
∫ T

0 |Zt|
2dt < +∞},

• L2
F([0, T ];R

k) = {f (t, ω) : [0, T ]× Ω → Rk; Ft - adapted such that E
[∫ T

0
|f (t, ω) |2dt

]
< +∞}.

3 Control of decoupled FBSDEs

In this section we deal with decoupled FBSDEs, that is the forward part does not contain (Y, Z) the solution
of the backward part. We suppose that the diffusion coefficient σ depends explicitly on the control variable
and the driver h as well as the instantaneous cost l do not depend on Z. More precisely, our system is
governed by the following equation





dXt = b (t,Xt, Ut) dt+ σ (t,Xt, Ut) dWt,
X (0) = x,
−dYt = h (t,Xt, Yt, Ut) dt− ZtdWt − dMt,
YT = ϕ (XT ) ,

(3.1)

defined on some filtered probability space (Ω,F ,Ft, P ), (Wt) is anm-dimensional Brownian motion and (Mt)
is a square integrable martingale which is orthogonal to (Wt) . The coefficients of our FBSDE are defined as
follows

b : [0, T ]× Rd ×K → Rd,

σ : [0, T ]× Rd ×K → Rd×m,

h : [0, T ]× Rd × Rk ×K → Rk

ϕ : Rd → Rk.

Let us define the cost functional over [0, T ] by

J (U) = E

[
ψ(XT ) + g (Y0) +

∫ T

0

l (t,Xt, Yt, Ut) dt

]
, (3.2)

where

l : [0, T ]× Rd × Rk ×K → R,

ψ : Rd → R,

g : Rk → R.

(H
1
) Assume that the functions b, σ, h, ϕ are continuous and bounded.

(H
2
) h is Lipschitz in the variable y uniformly in (t, x, u), i.e: there exists a constant C > 0 such that

for every t ∈ [0, T ], u ∈ K, y , y′ ∈ Rd,

|h (t, x, y, u)− h (t, x, y′, u)| ≤ C |y − y′| .

(H
3
) Assume that l, ψ and g are continuous and bounded functions.

The infinitesimal generator L, associated with the forward part of our equation, acting on functions f in
C2

b (R
d;R), is defined by
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Lf(t, x, u) =


1

2

∑

i,j

aij
∂2f

∂xixj
+
∑

i

bi
∂f

∂xi


 (t, x, u),

where aij(t, x, u) denotes the generic term of the symmetric matrix σσ∗(t, x, u).
As it is well known, weak solutions for Itô SDEs are equivalent to the existence of solutions for the

corresponding martingale problem. Then one can rewrite definition 2.1 and definition 2.2, by using the
formulation of martingale problems for the forward part. This simplifies taking limits and does not pose the
problem of the relaxation of the stochastic integral part see [5, 4, 10]. We can define a strict control using
martingale problems as follows.

Definition 3.1. A strict control is a term α = (Ω,F ,Ft, P, Ut, Xt, Yt,Mt) such that
(1) (Ω,F ,Ft, P ) is a probability space equipped with a filtration (Ft)t≥0 satisfying the usual conditions.
(2) Ut is an K-valued process, progressively measurable with respect to (Ft).
(3i) (Xt) is R

d−valued Ft− adapted, with continuous paths, such that

f(Xt)− f(x)−

∫ t

0

Lf(s,Xs, Us)ds is a P−martingale. (3.3)

(3ii) (Yt,Mt) is the solution of the following backward SDE

Yt = ϕ (XT ) +

∫ T

t

h (s,Xs, Ys, Us) ds− (MT −Mt) , (3.4)

where (Mt) is a square integrable (Ft)− martingale.

Definition 3.2. A relaxed control is a term α = (Ω,F ,Ft, P, qt, Xt, Yt,Mt) such that
(1) (Ω,F ,Ft, P ) is a probability space equipped with a filtration (Ft)t≥0 satisfying the
usual conditions.
(2) q is a measure-valued control on (Ω,F ,Ft, P ) .
(3i) (Xt) is R

d−valued Ft−adapted, with continuous paths, such that

f(Xt)− f(x)−

∫ t

0

∫

K

Lf(s,Xs, u).q(s, du)ds is a P−martingale. (3.5)

(3ii) (Yt,Mt) is the solution of the following backward SDE

Yt = ϕ (XT ) +
∫ T

t

∫
K
h (s,Xs, Ys, u) .q(s, du).ds− (MT −Mt) , (3.6)

where (Mt) is a square integrable (Ft)−martingale.

By a slight abuse of notation, we will often denote a relaxed control by q instead of specifying all the
components.

The cost functional associated to a relaxed control is now defined by

J (q) = E

[
ψ(XT ) + g (Y0) +

∫ T

0

∫

K

l (s,Xs, Ys, u) q(s, du)ds

]
. (3.7)

The main result of this section is given by the following Theorem.

Theorem 3.3. Under assumptions (H1), (H2) and (H3), the relaxed control problem has an optimal solu-
tion.

The proof is based on some auxiliary results on the tightness of the processes under consideration and
the identification of the limits.

Let (qn)n≥0 be a minimizing sequence, that is lim
n→∞

J (qn) = inf
q∈R

J (q) and let (Xn, Y n,Mn) be a solution

of our FBSDE, where:
(i) (Xn

t ) is R
d−valued Ft−adapted, with continuous paths, such that

5



f(Xn
t )− f(x)−

∫ t

0

∫
K
Lf(s,Xn

s , u).q
n(s, du).ds is a P -martingale

(ii) (Y n
t ,M

n
t ) is the solution of the following backward SDE

Y n
t = ϕ (Xn

T ) +
∫ T

t

∫
K
h (s,Xn

s , Y
n
s , u) .q

n(s, du).ds− (Mn
T −Mn

t ) ,

and (Mn
t ) is a square integrable continuous (Ft)−martingale.

The proof of the main result consists in proving that the sequence of distributions of the processes
(qn, Xn, Y n,Mn) is tight for a certain topology, on the state space and then show that, we can extract a

subsequence, which converges in law to a process (q̂, X̂, Ŷ , M̂), satisfying the same FBSDE. To complete the
proof, we show that under some regularity conditions the sequence of cost functionals (J(qn))n converge to

J(q̂) which is equal to inf
q∈R

J (q) and then (q̂, X̂, Ŷ , M̂) is optimal.

Lemma 3.4. The family of relaxed controls (qn)n is tight in V.

Proof. [0, T ] × K being compact, then by Prokhorov’s theorem, the space V of probability measures on
[0, T ]×K is also compact for the topology of weak convergence. The fact that qn, n ≥ 0 are random variables
with values in the compact set V yields that the family of distributions associated to (qn)n≥0 is tight.

Lemma 3.5. i) The family (qn, Xn)n of solutions of the martingale problem is tight on the space V ×
C(
(
[0, T ] ;Rd

)
.

ii) There exists a subsequence which converges in law to (q̂, X̂), whose law is a solution of the martingale

problem, that is for each f ∈ C2
b , f(X̂t)− f(x)−

∫ t

0

∫
K
Lf(s, X̂s, u).q̂(s, du).ds is a P -martingale

Proof. Let us give the outlines of the proof which is inspired from [10], Theorem 3.4.
i) Following [23], Theorem 1.4.6, it is sufficient to show that for each positive f in C2

b , there exists a constant
Af such that: f(Xt) + Af .t is a supermartingale under the distribution Pn = P (qn,Xn) on the canonical
space V×C

(
[0, T ] ;Rd

)
of the couple (qn, Xn). Let

Af = sup
{
|Lf(t, x, u)|; (t, x, u) ∈ [0, T ]× Rd ×K

}
.

Af is finite since the coefficients b and σ defining the operator L are bounded.

Since for each n, f(Xt)− f(x)−
∫ t

0

∫
K
Lf(s,Xs, u).q(s, du).ds := Ctf(x, q) is a Pn-martingale, then f(Xt)+

Af .t is a positive supermartingale. Then (Xn) is tight in C endowed with the topology of uniform convergence.
ii) The sequence (qn, Xn) being tight, then we can extract a subsequence still denoted by (qn, Xn) which

converges weakly to (q̂, X̂). In particular, for every bounded (x, q)-continuous, Cs⊗Vs-measurable functions
(Cs and Vs are the σ−fields generated by the coordinates until for t ≤ s), we have

Pn [φ(q, x) (Ctf(x, q)− Csf(x, q))] converges to P̂ [φ(q, x) (Ctf(x, q)− Csf(x, q))]

where P̂ denotes the law of the couple (q̂, X̂) in the space V×C
(
[0, T ] ;Rd

)
.

Ctf(x, q) being a Pn-martingale, then Pn [φ(x, q) (Ctf(x, q)− Csf(x, q))] = 0.

Hence the limit P̂ [φ(q, x) (Ctf(x, q)− Csf(x, q))] = 0 and thus the law P̂ of the couple (q̂, X̂) is a solution
of the martingale problem.

Lemma 3.6. i) The sequence (Y n,Mn) is tight on the space D2 equipped with the Meyer-Zheng topology.

ii) There exists a subsequence still denoted by (qn, Xn, Y n,Mn) which converges weakly to (q̂, X̂, Ŷ , M̂),

in the space V×C×D2. Moreover (q̂, X̂, Ŷ , M̂) satisfies:
For every f ∈ C2

b ,

f(X̂t)− f(x)−

∫ t

0

∫

K

Lf(s, X̂s, u).q̂(s, du).ds is a F q̂,X̂,Ŷ
t −martingale

Ŷt = ϕ
(
X̂T

)
+

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂(s, du).ds−

(
M̂T − M̂t

)
(3.8)

where
(
M̂t

)
is a square integrable F q̂,X̂,Ŷ

t −martingale.
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Proof. i) Using standard techniques from BSDEs theory it is not difficult to prove that

E
(
sup0≤t≤T |Y n

t |
2
)
≤ CE

(
|ϕ (Xn

T )|
2
+
∫ T

0 supu∈K

∣∣∣h
(
s, X̂s, 0, u

)∣∣∣
2

ds

)
. Then using assumption (H1) it

follows that:

sup
n

E
(
sup0≤t≤T |Y n

t |
2
+ 〈Mn〉T

)
< +∞.

Let us denote the conditional variation

Vt(Y
n) = supE

(∑∣∣∣E
[(
Y n
ti+1

− Y n
ti

)
/FXn

ti

]∣∣∣
)
,

where the supremum is taken over all the partitions of the interval [0, t] . One can easily prove that

Vt(Y
n) ≤ E

(∫ T

0

sup
u∈K

|h (s,Xn
s , Y

n
s , u)| ds

)
.

The assumptions made on the coefficients ensure that

sup
n

[
Vt(Y

n) + sup0≤t≤T E |Y n
t |+ sup0≤t≤T E |Mn

t |
]
< +∞.

Then following [19, 17], the sequence (Y n,Mn) satisfies the Meyer-Zheng criterion for tightness of families
of quasi-martingales.

ii) Since the sequence (qn, Xn, Y n,Mn)n is tight, then there exist a subsequence still denoted by (qn, Xn, Y n,Mn)n

which converges weakly to (q̂, X̂, Ŷ , M̂) on the space V × C × D2, where C is equipped with the topology
of uniform convergence and D is equipped with the Meyer-Zheng topology. By using the fact that for each

t ≤ T, the mapping (q, x, y) −→
∫ T

t

∫
K
h(t, xs, ys, u).q(s, du)ds is continuous from V×C ×D into R, one can

pass to the limit in the BSDE and get

Ŷt = ϕ
(
X̂T

)
+
∫ T

t

∫
K
h
(
s, X̂s, Ŷs, u

)
.q̂(s, du).ds−

(
M̂T − M̂t

)
.

Let us show that M̂t and φ(X̂t)−φ(X̂s)−
∫ t

0

∫
K
Lφ(s, X̂s, u).q̂(s, du).ds are both martingales with respect

to the natural filtration Ft = F q̂,X̂,Ŷ
t . For any s, t such that 0 ≤ s ≤ t ≤ T and Φs a bounded continuous

mapping from Vs×C ([0, s] ,R)×D ([0, s] ,R) and for each φ ∈ C2
b :

E
[
Φs(q

n, Xn, Y n)
(
φ(Xn

t )− φ(Xn
s )−

∫ t

0

∫
K
Lφ(s,Xn

s , u).q
n(s, du).ds

)]
−→ 0 as n −→ ∞

and for each n

E
[
Φs(q

n, Xn, Y n)
(∫ ε

0

(
Mn

t+r −Mn
s+r

)
.dr
)]

= 0,

where Vs denotes the restriction of measures to the interval [0, s] . The fact that (qn, Xn, Y n) is weakly

convergent and E( sup
0≤t≤T

|Mn
t |

2
) is finite yield

E
[
Φs(q̂, X̂, Ŷ )

(
φ(X̂t)− φ(X̂s)−

∫ t

0

∫
K
Lφ(s, X̂s, u).q̂(s, du).ds

)]
= 0

E
[
Φs(q̂, X̂, Ŷ )

(∫ ε

0

(
M̂t+r − M̂s+r

)
.dr
)]

= 0.

In the last equality, dividing by ε and then sending it to 0 and by the right continuity of the martingale(
M̂t

)
, we get

E
[
Φs(q̂, X̂, Ŷ )

(
M̂t − M̂s

)]
= 0.

These identities are valid for all functions Φs described above and for all s ≤ t. Then M̂t and φ(X̂t) −

φ(X̂s)−
∫ t

0

∫
K
Lφ(s, X̂s, u).q̂(s, du).ds are both F q̂,X̂,Ŷ

t −martingales.
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Proof of Theorem 3.5. According to Lemma 3.6 and the assumptions (H1)-(H3) we have

inf
q∈R

J (q) = lim
n→∞

J (qn)

= lim
n→∞

E

[
ψ(Xn

T ) + g (Y n
0 ) +

∫ T

0

∫

K

l (t,Xn
t , Y

n
t , u) q

n
t (du) dt

]

= E

[
ψ(X̂T ) + g

(
Ŷ0

)
+

∫ T

0

∫

K

l
(
t, X̂t, Ŷt, u

)
q̂t (du) dt

]
,

which means that q̂ is an optimal control.

Corollary 3.7. Assume that (H1), (H2) and (H3) hold. Moreover assume that for every (t, x, y) ∈ [0, T ]×
Rd × Rk, the set

(b, σ, h, l) (t, x, y,K) :=
{
bi (t, x, u) , (σσ

∗)ij (t, x, u) , hj (t, x, y, u) , l (t, x, y, u) /u ∈ K, i = 1, ..., d, j = 1, ..., k
}

(3.9)
is convex in Rd+d×d+k+1. Then, the relaxed optimal control q̂t has the form of a Dirac measure charging a
strict control Ût, that is q̂t (du) = δ

Ût
(du).

Proof. We put

∫
K
h
(
t, X̂t, Ŷt, u

)
q̂t (du) := ĥ (t, w) ∈ h (t, x, y,U) ,

∫
K
l
(
t, X̂t, Ŷt, u

)
q̂t (du) := l̂ (t, w) ∈ l (t, x, y,U) ,

∫
K
b
(
t, X̂n

t , u
)
q̂t (du) := b̂ (t, w) ∈ b (t, x,U) ,

∫
K
a
(
t, X̂n

t , u
)
q̂t (du) := â (t, w) ∈ a (t, x,U) , where a = σσ∗.

From (H1)− (H3) and the measurable selection theorem (see [25] p. 74 or [10]), there is a K-valued,

F X̂,Ŷ ,q̂−adapted process Û , such that for every s ∈ [0, T ],

(
ĥ, l̂
)
(s, w) = (h, l)

(
s, X̂ (s, w) , Ŷ (s, w) , Û (s, w)

)
,

(
b̂, â
)
(s, w) = (b, a)

(
s, X̂ (s, w) , Û (s, w)

)
.

Hence, for every t ∈ [0, T ] and w ∈ Ω̂, we have

∫

K

h
(
t, X̂t, Ŷt, u

)
q̂t (du) = h

(
t, X̂t, Ŷt, Ût

)
,

∫

K

l
(
t, X̂t, Ŷt, u

)
q̂t (du) = l

(
t, X̂t, Ŷt, Ût

)
,

and ∫

K

b
(
t, X̂t, u

)
q̂t (du) = b

(
t, X̂t, Ût

)
,

∫

K

a
(
t, X̂t, u

)
q̂t (du) = a

(
t, X̂t, Ût

)
.

Then the process (X̂t, Ŷt, M̂t) satisfies, for each t ∈ [0, T ]:

1) (X̂t) is a Rd−valued Ft−adapted, with continuous paths, such that

f(X̂t)− f(x)−
∫ t

0
Lf(s, X̂s, Ûs)ds is a P -martingale

2) (Ŷt, M̂t) solves the following BSDE

Ŷt = ϕ
(
X̂T

)
+
∫ T

t
h
(
s, X̂s, Ŷs, Ûs

)
ds−

(
M̂T − M̂t

)

It follows that J(q̂) = J(Û), which achieves the proof.
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4 Control of coupled FBSDEs

In this section, we consider coupled FBSDEs, where all the coefficients depend only on (X,Y ) but not on
the second backward component Z. Moreover the diffusion coefficient σ does not depend on the control
variable. More precisely, the controlled FBSDE takes the form





dXt = b (t,Xt, Yt, Ut) dt+ σ (t,Xt, Yt) dWt,
−dYt = h (t,Xt, Yt, Ut) dt− ZtdWt − dMt,
X0 = x, YT = ϕ (XT ) ,

(4.1)

and the cost functional is given by

J (U.) = E

[
ψ(XT ) + g (Y0) +

∫ T

0

l (t,Xt, Yt, Ut) dt

]
, (4.2)

where ψ, g, l satisfy (H3).
Assume that the coefficients

b : [0, T ]× Rd × Rk ×K → Rd,

σ : [0, T ]× Rd × Rk → Rd×m,

h : [0, T ]× Rd × Rk ×K → Rk,

ϕ : Rd → Rk,

of the FBSDE 4.1 satisfy the following conditions:
(H4) b, σ, h are bounded measurable, Lipshitz in (x, y) uniformly in (t, u) and continuous in u.
(H5) Assume that for each admissible control U, the coefficients b, σ, h, ϕ of the FBSDE 4.1 satisfy the

monotonicity conditions as in [22] Theorem 2.2, page 828.

Remark 4.1. Under assumption (H5) and for each admissible control U, the FBSDE 4.1 admits a unique
strong solution.

The main result of this section is given by the following theorem.

Theorem 4.2. The relaxed control problem defined by 4.1 and 4.2 has an optimal solution.

The proof is based on tightness properties of the underlying processes.
As in the last section, let (qn)n≥0 be a minimizing sequence for the relaxed control problem, that is

lim
n→∞

J (qn) = inf
q∈R

J (q) ,

Let (Xn, Y n, Zn) be the unique strong solution of our FBSDE

{
Xn

t = x+
∫ t

0

∫
K
b (s,Xn

s , Y
n
s , u) q

n(s, du).ds+
∫ t

0
σ (s,Xn

s , Y
n
s ) dWs

Y n
t = ϕ (Xn

T ) +
∫ T

t

∫
K
h (s,Xn

s , Y
n
s , u) q

n(s, du).ds−
∫ T

t
Zn
s dWs,

(4.3)

defined on the natural filtration of the Brownian motion (Wt) . In this case the orthogonal martingales
(Mn

t ) disappears, due to the uniqueness of solutions.
The proof of Theorem 4.2 consists in showing that the sequence (qn, Xn, Y n,

∫ .

0 Z
n
s dWs) is tight and there

exists a subsequence converging weakly to (q̂, X̂, Ŷ , N̂). Furthermore these processes satisfy the FBSDE





X̂t = x+
∫ t

0

∫
K
b
(
s, X̂s, Ŷs, u

)
q̂(s, du).ds+

∫ t

0
σ
(
s, X̂s, Ŷs

)
dŴs,

Ŷt = ϕ
(
X̂T

)
+
∫ T

t

∫
K
h
(
s, X̂s, Ŷs, u

)
q̂(s, du).ds−

∫ T

t
ẐsdŴs − (M̂T − M̂t),

(4.4)

where M̂t is a square integrable martingale which is orthogonal to the Brownian motion Ŵt.

Lemma 4.3. Let (Xn, Y n, Zn) be the unique solution of equation (4.3). There exists a positive constant C
such that

sup
n

E

(
sup

0≤t≤T

|Xn
t |

2 + sup
0≤t≤T

|Y n
t |2 +

∫ T

0

|Zn
s |

2ds

)
≤ C. (4.5)
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Proof. Using assumption (H
5
), it is easy to check that

sup
n

{E( sup
0≤t≤T

|Xn
t |

2)} <∞ (4.6)

Using the Burkholder-Davis-Gundy and Schwarz inequalities, it follows that the local martingale
∫ T

t
Y n
s Z

n
s dWs

is uniformly integrable. Then by Itô’s formula and assumption (H2), it holds that

E(|Y n
t |2 +

∫ T

t

|Zn
s |

2ds) = E

(
|ϕ(Xn

T )|
2 + 2

∫ T

t

∫

K

〈Y n
s , h(s,X

n
s , Y

n
s , u)〉q

n
s (du)ds

)
.

Hence,

E(|Y n
t |2 +

∫ T

t

|Zn
s |

2ds) ≤ E(|ϕ(Xn
T )|

2 +

∫ T

t

|Y n
s |2ds)

+ E(

∫ T

t

∫

K

|h(s,Xn
s , Y

n
s , u)|

2qns (du)ds).

The result follows from Gronwall’s Lemma and BDG inequality

sup
n

E

(
sup

0≤t≤T

|Y n
t |2 +

∫ T

0 |Zn
s |

2ds

)
<∞.

Lemma 4.4. Let (Xn, Y n, Zn) be the unique solution of equation (4.3). Then the sequence (Y n,
∫ ·

0
Zn
s dWs)

is tight on the space D
(
[0, T ] ;Rk

)
× D

(
[0, T ] ;Rk

)
endowed with the Jakubowski S-topology.

Proof. Let 0 = t0 < t1 < ... < tn = T , and define the conditional variation by

CV (Y n) := supE

[∑

i

∣∣∣E
(
Y n
ti+1

− Y n
ti

)
�FW

ti

∣∣∣
]
,

where the supremum is taken over all partitions of the interval [0, T ]. It is proved in [19] that

CV (Y n) ≤ E

[∫ T

0

∫

K

|h (s,Xn
s , Y

n
s , u) |q

n
s (du) ds

]
.

It follows from (4.5) that

sup
n

[
CV (Y n) + sup

0≤t≤T

E |Y n
t |+ sup

0≤t≤T

E

∣∣∣∣
∫ t

0

Zn
s dWs

∣∣∣∣
]
<∞

Therefore, the sequence
(
Y n,

∫ ·

0
Zn
s dWs

)
satisfies the Meyer-Zheng criterion [17]. Therefore (Y n,

∫ ·

0
Zn
s dWs)

is tight in the Jakubowski S-topology (see the appendix).

The next lemma may be proved by standard arguments.

Lemma 4.5. Let Xn
t be the forward component of equation (4.3).Then the sequence of processes (Xn,W )

is tight on the space C
(
[0, T ] ,Rd

)
× C ([0, T ] ,Rm) , endowed with the topology of uniform convergence.

Proof. of Theorem 4.2 From Lemmas 4.3, 4.4 and 4.5, the sequence γn = (qn, Xn,W, Y n, Nn) where

Nn =
∫ ·

0 Z
n
s dWs, is tight on the space Γ = V×C

(
[0, T ] ,Rd

)
× C ([0, T ] ,Rm)×

[
D
(
[0, T ] ;Rk

)]2
.

Using the Skorokhod representation theorem on the spaceD endowed with S-topology [13] (see the appendix),

there exists a probability space
(
Ω̂, F̂ , P̂

)
, a sequence γ̂n =

(
q̂n, X̂n, Ŵn, Ŷ n, N̂n

)
and γ̂ =

(
q̂, X̂, Ŵ , Ŷ , N̂

)

defined on this space such that:
(i) for each n ∈ N, law(γn) = law(γ̂n),

(ii) there exists a subsequence (γ̂nk) of (γ̂n), still denoted (γ̂n), which converges to γ̂, P̂-a.s. on the space
Γ,
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(iii) the subsequence (Ŷ n, N̂n) converges to (Ŷ , N̂), dt × P̂ − a.s., and (Ŷ n
T , N̂

n
T ) converges to (ŶT , N̂T )

as n→ ∞, P̂− a.s.

(iv) sup
0≤t≤T

∣∣∣X̂n
t − X̂t

∣∣∣→ 0, P̂− a.s.

According to property (i), it follows that





X̂n
t = x+

∫ t

0

∫
K
b
(
s, X̂n

s , Ŷ
n
s , u

)
q̂ns (du) ds+

∫ t

0 σ
(
s, X̂n

s , Ŷ
n
s

)
dŴn

s

Ŷ n
t = ϕ

(
X̂n

T

)
+
∫ T

t

∫
K
h
(
s, X̂n

s , Ŷ
n
s , u

)
q̂ns (du) ds−

(
N̂n

T − N̂n
t

)
,

(4.7)

where N̂n
t :=

∫ T

t
Ẑn
s dŴ

n
s .

Combining properties (ii)-(iv), assumptions (H2)−(H5) and passing to the limit in the FBSDE (4.7),
there exists a countable set D ⊂ [0, T ) such that





X̂t = x+
∫ t

0

∫
K
b
(
s, X̂s, Ŷs, u

)
q̂s (du) ds+

∫ t

0
σ
(
s, X̂s, Ŷs

)
dŴs, t > 0,

Ŷt = ϕ
(
X̂T

)
+
∫ T

t

∫
K
h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds−

(
N̂T − N̂t

)
, t ∈ [ 0, T ] \D.

(4.8)

Since Ŷ and N̂ are càdlàg, it follows that for every t ∈ [0, T ],

Ŷt = ϕ
(
X̂T

)
+

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds+ N̂t − N̂T .

Since all the previous identifications of the limits can be proved similarly, let us prove that:

lim
n→∞

∫ T

t

∫

K

h
(
s, X̂n

s , Ŷ
n
s , u

)
q̂ns (du) ds =

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds. (4.9)

We use properties (i), (ii), (iv), Fatou’s lemma and Lemma 4.3, to show that there exists a constant C such
that:

Ê(

∫ T

0

(|X̂s|
2 + |Ŷs|

2)ds) ≤ C. (4.10)

On the other hand, we have

∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂n

s , Ŷ
n
s , u

)
q̂ns (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds

∣∣∣∣∣ ≤ I(n) + J(n),

where

I(n) :=

∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂n

s , Ŷ
n
s , u

)
q̂ns (du)ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂ns (du) ds

∣∣∣∣∣ ,

J(n) :=

∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂ns (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds

∣∣∣∣∣ .

Let us show that I(n) converges to 0 in probability. Let ε > 0 and use the fact that h is Lipschitz in (x, y)
to obtain,

P̂

{∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂n

s , Ŷ
n
s , u

)
q̂ns (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂ns (du) ds

∣∣∣∣∣ > ε

}

≤
1

ε
Ê

∫ T

t

∫

K

∣∣∣h
(
s, X̂n

s , Ŷ
n
s , u

)
− h

(
s, X̂s, Ŷs, u

)∣∣∣ q̂ns (du) ds

≤
C

ε

[
Ê

∫ T

t

∣∣∣X̂n
s − X̂s

∣∣∣ ds+ Ê

∫ T

t

∣∣∣Ŷ n
s − Ŷs

∣∣∣ ds
]
.

Now, properties (i)-(iv) and Lemma 4.3 allow us to show that Ê
∫ T

t
|X̂n

s − X̂s|ds+ Ê
∫ T

t
|Ŷ n

s − Ŷs|ds tends
to 0 as n tends to infinity, which yields that I(n) converges to 0 in probability.
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Now let us show that J(n) converges to 0 in probability. Let R > 0 and, put B := {|X̂s|+ |Ŷs| ≤ R} and
B̄ := Ω−B. We have,

∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂ns (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds

∣∣∣∣∣ ≤ I1(n) + J1(n),

where

I1(n) =:

∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
1B q̂

n
s (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
1B q̂s (du)ds

∣∣∣∣∣ ,

J1(n) :=

∣∣∣∣∣

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
1B̄ q̂

n
s (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
1B̄ q̂s (du) ds

∣∣∣∣∣ .

Since the function (s, u) 7−→ h
(
s, X̂s, Ŷs, u

)
1B is bounded, measurable in (s, u) and continuous in u, we

deduce by using property (ii) that I1(n) tends to 0 in probability as n tends to ∞. It remains to prove that
J1(n) tends to 0 in probability as n tends to ∞. We have,

Ê[J1(n)] = Ê(|

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
11B̄ q̂

n
s (du) ds−

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
11B̄ q̂s (du) ds|)

≤ Ê

∫ T

t

∫

K

∣∣∣h
(
s, X̂s, Ŷs, u

)∣∣∣ 11B̄ q̂ns (du) ds+ Ê

∫ T

t

∫

K

∣∣∣h
(
s, X̂s, Ŷs, u

)∣∣∣ 11B̄ q̂s (du) ds

≤
C′

R2
Ê

∫ T

t

(
∣∣∣X̂s

∣∣∣
2

+
∣∣∣Ŷs
∣∣∣
2

)ds.

We successively pass to the limit in n and R, to show that limn→∞ J(n) = 0 in probability.

Now, let F̂s := F X̂,Ŷ ,q̂
s , be the filtration generated by (X̂r, Ŷr, q̂r, r ≤ s) completed by P̂−nul sets.

Combining the estimates (4.5) and Lemma 6.3 in Appendix, one can show that
(
N̂t

)
is a F̂t-martingale.

Since
(
Ŵ
)
is a

(
F̂t, P̂

)
−Brownian motion, then the martingale decomposition theorem yields the existence

of a process Ẑ ∈ M2([t, T ];Rn×d) such that

N̂t =

∫ t

0

ẐsdŴs + M̂t, with
〈
M̂t, Ŵ

〉
t
= 0,

which implies that

Ŷt = ϕ
(
X̂T

)
+

∫ T

t

∫

K

h
(
s, X̂s, Ŷs, u

)
q̂s (du) ds−

∫ T

t

ẐsdŴs −
(
N̂T − N̂t

)
.

To finish the proof of Theorem 4.2, it remains to check that q̂ is an optimal control.
According to above properties (i)-(iv) and assumption (H3), we have

inf
q∈R

J (q) = lim
n→∞

J (qn) ,

= lim
n→∞

E

[
ψ(Xn

T ) + g (Y n
0 ) +

∫ T

0

∫

K

l (t,Xn
t , Y

n
t , u) q

n
t (du) dt

]

= lim
n→∞

Ê

[
ψ(X̂n

T ) + g
(
Ŷ n
0

)
+

∫ T

0

∫

K

l
(
t, X̂n

t , Ŷ
n
t , u

)
q̂nt (du) dt

]

= Ê

[
ψ(X̂T ) + g

(
Ŷ0

)
+

∫ T

0

∫

K

l
(
t, X̂t, Ŷt, u

)
q̂t (du) dt

]
.

12



By using the same arguments as in Corollary 3.7, one can prove the following result on the existence of
strict controls under convexity assumptions.

Corollary 4.6. Assume (H2)- (H5) and that for every (t, x, y) ∈ [0, T ]× Rd × Rk, the set

(b, h, l) (t, x, y,K) := {bi (t, x, y, u) , hj (t, x, y, u) , l (t, x, y, u) /u ∈ K, i = 1, ..., d, j = 1, ..., k} , (4.11)

is convex and closed in Rd+k+1. Then, the relaxed optimal control q̂t has the form of a Dirac measure charging
a strict control Ût, that is q̂t (du) = δ

Ût
(du).

5 Conclusion

We have proved two results on the existence of an optimal control for systems governed by decoupled as
well as coupled FBSDEs, by using probabilistic tools. The ingredients used in the proofs of the main results
are based essentially on tightness techniques on the space C of continuous functions as well as on the space
D of càdlàg functions equipped with Meyer-Zheng topology or Jakubowsky S-topology. The assumptions
made on the coefficients are made to ensure weak convergence of the processes under consideration and
the corresponding cost functionals. However, a serious difficulty remains in the case where the generator
depends on the second backward variable Z. This difficulty consists in finding a natural assumption ensuring
the tightness of the second backward variable Z. This is exactly the kind of problems encountered when one
deals with weak solutions of BSDEs and coupled FBSDEs with generators depending on Z.

6 Appendix

The S-topology defined by Jakubowski on the space D
(
[0, T ] ;Rk

)
of càdlàg functions is weaker than the

Skorokhod topology and the tightness criteria is the same as for the Meyer-Zheng topology [17]. The topology
S arises naturally in limit theorems for stochastic integrals. Let us give some of its properties:

1) If xn →S x0, then xn (t) →S x0 (t) for each t except for a countable set.
2) If xn (t) →S x0 (t) for each t in a dense set containing 0 and T and {xn} is S-relatively compact, then

xn →S x0 (not true for the convergence in measure).
3) We recall (see Meyer and Zheng [17] and Jakubowski [13, 14]) that for a familly (Xn)n of quasi-

martingales on the probability space (Ω,F ,Ft, P ) , the following condition ensures the tightness of the familly
(Xn)n on the space D

(
[0, T ] ;Rk

)
endowed with the S-topology

sup
n

(
sup

0≤t≤T

E |Xn
t |+ CV (Xn)

)
<∞,

where, for a quasi-martingale X on
(
Ω, {Ft}0≤t≤T , P

)
, CV (X) stands for the conditional variation of X

on [0, T ], and is defined by

CV (X) = supE

(∑

i

∣∣E (Xti+1 −Xti)�Fn
ti

∣∣
)
,

where the supremum is taken over all partitions of [0, T ].
Let Na,b (Y ) denotes the number of up-crossing of the function Y ∈ D

(
[0, T ] ;Rk

)
in given levels a < b

(recall that Na,b (Y ) ≥ k if one can find numbers 0 ≤ t1 < t2 < · · · < t2k−1 < t2k ≤ T such that Y (t2i−1) < a
and Y (t2i) > b, i = 1, 2, ..., k).

Lemma 6.1. (A criteria for S-tightness). A sequence (Y n)n∈N
is S-tight if and only if it is relatively

compact on the S-topology. Let (Y n)n∈N
be a family of stochastic processes in D

(
[0, T ] ;Rk

)
. Then this

family is tight for the S -topology if and only if (‖Y n‖∞)
n
and Na,b (Y n) are tight for each a < b.

Lemma 6.2. (The a.s. Skorokhod representation ). Let (D, S) be a topological space on which there exists a
countable family of S-continuous functions separating points in X. Let {Xn}n∈N

be a uniformly tight sequence

of laws on D. In every subsequence {Xnk
} one can find a further subsequence

{
Xnk

l

}
and stochastic processes

{Yl} defined on
(
[0, T ] ,B[0,T ], l

)
such that
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Yl ∼ Xnk
l
, l = 1, 2, ... (1)

for each w ∈ [0, T ]
Yl (w) →

S
Y0 (w) , as l → ∞, (2)

and for each ε > 0, there exists an S-compact subset Kε ⊂ D such that

P ({w ∈ [0, T ] : Yl (w) ∈ Kε, l = 1, 2, ...}) > 1− ε. (3)

One can say that (2) and (3) describe ”the almost sure convergence in compacts” and that (1), (2) and
(3) define the strong a.s. Skorokhod representation for subsequences (”strong” because of condition (3)).

Remark 6.3. The projection πT : y ∈ (D([0, T ]; R), S) 7−→ y(T ) is continuous (see Remark 2.4, p.8 in
Jakubowski [13]), but y 7−→ y(t) is not continuous for each 0 ≤ t ≤ T .

Lemma 6.4. Let (Xn, Mn) be a multidimensional process in D([0, T ]; Rp) (p ∈ R∗) converging to (X, M)
in the S-topology. Let (FXn

t )t≥0 (resp. (FX
t )t≥0) be the minimal complete admissible filtration for Xn

(resp.X). We assume that supnE
[
sup0≤t≤T |Mn

t |
2
]
< CT ∀T > 0, Mn is a FXn

-martingale and M is a

FX-adapted. Then M is a FX-martingale.

Lemma 6.5. Let (Y n)n>0 be a sequence of processes converging weakly in D([0, T ]; Rp) to Y . We assume
that supnE

[
sup0≤t≤T |Y n

t |2
]
< +∞. Then, for any t ≥ 0, E

[
sup0≤t≤T |Yt|

2
]
< +∞.
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Laboratoire LAMAV, Université de Valenciennes (France) in June 2014. He is grateful for warm hospitality
and support.

2) The authors would like to thank the anonymous referee for very useful suggestions, which lead to an
improvement of the paper.

References

[1] K. Bahlali, B. Gherbal, B. Mezerdi, Existence and optimality conditions in stochastic control of linear
BSDEs, Random Oper. Stoch. Equ., Vol. 18 (2010), No 3, 185-197.

[2] K. Bahlali, B. Gherbal, B. Mezerdi, Existence of optimal controls for systems driven by FBSDEs,
Systems and Control Letters, Vol. 60 (2011), 344-349.

[3] K. Bahlali, N. Khelfallah, B. Mezerdi, Necessary and sufficient conditions for near-optimality in stochas-
tic control of FBSDEs, Systems and Control Letters, Vol. 58 (2009), No 12, 857-864.

[4] S. Bahlali, B. Mezerdi, Necessary conditions for optimality in relaxed stochastic control problems.
Stochastics and Stoch. Reports, Vol. 73 (3-4), 201-218 (2002).

[5] S. Bahlali, B. Djehiche, B. Mezerdi, Approximation and optimality necessary conditions in relaxed
stochastic control problems. J. Appl. Math. Stoch. Anal.Vol. 2006, Article ID 72762, Pages 1–23.

[6] P. Barrieu and N. El Karoui, Optimal derivatives design under dynamic risk measures, Mathematics of
Finance, Contemporary Mathematics (A.M.S. Proceedings), (2004), pp.13–26.
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Statist., Vol. 20 (1984), N◦ 4, 217-248.

[18] B. Oksendal, A. Sulem, Maximum principles for optimal control of forward-backward stochatic differen-
tial equtions with jumps, SIAM J. Cont. Optim.Vol. 48 (2009), No. 5, 2945–2976.

[19] E. Pardoux, BSDEs, Weak convergence and homogenization of semilinear PDEs, in F. H Clarke and
R. J. Stern (eds.), Nonlinear Analysis, Differential Equations and Control , 503-549, Kluwer Academic
Publishers (1999).

[20] E. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation. Systems and Con-
trol Letters 14, (1990), 55-61.

[21] S. Peng, Backward stochastic differential equations and application to optimal control problems, Appl.
Math. Optim., Vol. 27 (1993), 125-144.

[22] S. Peng and Z. Wu, Fully coupled forward backward stochastic differential equations and application to
optimal control, SIAM J. Control Optim., Vol. 37, N◦ 3, (1999), 825 - 843.

[23] D.W. Stroock and S.R.S. Varadan, Multidimensional Diffusion Processes, Springer, Berlin, (1979).

[24] J. Yong, Optimality Variational Principle for Controlled Forward-Backward Stochastic Differential
Equations with Mixed Initial-Terminal Conditions, SIAM J. Control Optim. Vol. 48, Issue 6, (2010),
4119-4156.

[25] J. Yong and X.Y Zhou, Stochastic controls, Hamiltonian Systems and HJB Equations, Springer, New
York, (1999).

15


	1 Introduction
	2 Formulation of the problem
	3  Control of decoupled FBSDEs
	4  Control of coupled FBSDEs
	5 Conclusion
	6 Appendix

