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LAGRANGIAN SUBMANIFOLDS OF THE NEARLY KÄHLER S3 × S3 FROM

MINIMAL SURFACES IN S3

BURCU BEKTAŞ, MARILENA MORUZ, JOERI VAN DER VEKEN, AND LUC VRANCKEN

Abstract. We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler S3×S3
for which the projection on the first component is nowhere of maximal rank. We show that this

property can be expressed in terms of the so called angle functions and that such Lagrangian
submanifolds are closely related to minimal surfaces in S3. Indeed, starting from an arbitrary

minimal surface, we can construct locally a large family of such Lagrangian immersions, including
one exceptional example. We also show that locally all such Lagrangian submanifolds can be

obtained in this way.

1. Introduction

The nearly Kähler manifolds are almost Hermitian manifolds with almost complex structure J
for which the tensor field ∇̃J is skew-symmetric, where ∇̃ is the Levi Civita connection. They have
been studied intensively in the 1970’s by Gray ([12]). Nagy ([17], [18]) made further contribution
to the classification of nearly Kähler manifolds and more recently it has been shown by Butruille
([4]) that the only homogeneous 6-dimensional nearly Kähler manifolds are the nearly Kähler 6-
sphere S6, S3×S3, the projective space CP 3 and the flag manifold SU(3)/U(1)×U(1), where the
last three are not endowed with the standard metric. All these spaces are compact 3-symmetric
spaces. Note that in 2014 V. Cortés and J. J. Vásquez have discovered the first non homogeneous
(but locally homogeneous) nearly Kähler structures in [5], while more recently, the first complete
non homogeneous nearly Kähler structures were discovered on S6 and S3 × S3 in [11].
A natural question for the above mentioned four homogeneous nearly Kähler manifolds is to
study their submanifolds. There are two natural types of submanifolds of nearly Kähler (or more
generally, almost Hermitian) manifolds, namely almost complex and totally real submanifolds.
Almost complex submanifolds are submanifolds whose tangent spaces are invariant under J . For
a totally real submanifold, a tangent vector is mapped by the almost complex structure J into a
normal vector. In this case, if additionally the dimension of the submanifold is half the dimension
of the ambient manifold, then the submanifold is Lagrangian.
Note that the Lagrangian submanifolds of nearly Kähler manifolds are especially interesting as they
are always minimal and orientable (see [10] for S6 or [20], [13] for the general case). Lagrangian
submanifolds of S6 have been studied by many authors (see, amongst others, [6], [7], [9], [10],[22],
[23], [15] and [19]), whereas the study of Lagrangian submanifolds of S3×S3 only started recently.
The first examples of those were given in [20] and [16]. Moreover, in [24] and [8], the authors
obtained a classification of the Lagrangian submanifolds, which are either totally geodesic or have
constant sectional curvature. An important tool in the study in [8] and [24] is the use of an almost
product structure P on S3×S3, which was introduced in [1]. Its definition is recalled in Section 2.
The decomposition of P into a tangential part and a normal part along a Lagrangian submanifold
allows us to introduce three principal directions, E1, E2, E3, with corresponding angle functions
θ1, θ2, θ3.
In this paper we are interested in studying non-totally geodesic Lagrangian submanifolds f : M →
S3×S3 : x 7→ f(x) = (p(x), q(x)), for which the first component has nowhere maximal rank. Basic
properties of the structure and its Lagrangian submanifolds are given in Section 2. In Section 3,
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we show that in this case θ1 = π
3 (Theorem 1) and p(M) has to be a (branched) minimal surface

in S3 (Theorem 3). Conversely, for a non-totally geodesic minimal surface in S3 which locally
corresponds to a solution of the Sinh-Gordon equation, ∆ω = −8 sinhω, and for an additional
arbitrary solution of the Liouville equation, ∆µ = −eµ, we can construct locally a Lagrangian
immersion of S3 × S3. Thus, we obtain a large class of examples of Lagrangian immersions. We
also obtain that a similar class of Lagrangian immersions can be associated to a totally geodesic
surface in S3. This last case contains, in particular, the constant curvature sphere obtained in
[8]. Additionally, for each non-totally geodesic minimal surface, we obtain also one exceptional
example. In case of the Clifford torus in S3, this additional example is the flat Lagrangian torus
in S3 × S3 discovered in [8]. We also show that any non-totally geodesic Lagrangian immersion
for which the first component has nowhere maximal rank is obtained by applying one of the three
previously mentioned constructions. The main results are summarized in Section 4.

2. Preliminaries

In this section we recall the homogeneous nearly Kähler structure of S3 × S3 and we mention
some of the known results from [8] and [24].
By the natural identification T(p,q)(S3 × S3) ∼= TpS3 ⊕ TqS3, we write a tangent vector at (p, q)
as Z(p, q) = (U(p, q), V (p, q)) or simply Z = (U, V ). We regard the 3-sphere as the set of all
unit quaternions in H and we use the notations i, j, k to denote the imaginary units of H. In
computations it is often useful to write a tangent vector Z(p, q) at (p, q) on S3 × S3 as (pα, qβ),
with α and β imaginary quaternions. This is possible as for v ∈ TpS3 we know that 〈v, p〉 = 0
and, in addition, for p ∈ S3 we can always find ṽ ∈ H such that v = pṽ . Moreover, Re(ṽ) = 0 as
0 = 〈p, v〉 = Re(p̄v) = Re(p̄pṽ) = Re(ṽ). We define the vector fields

(1)

Ẽ1(p, q) = (pi, 0), F̃1(p, q) = (0, qi),

Ẽ2(p, q) = (pj, 0), F̃2(p, q) = (0, qj),

Ẽ3(p, q) = −(pk, 0), F̃3(p, q) = −(0, qk),

which are mutually orthogonal with respect to the usual Euclidean product metric on S3 × S3.
The Lie brackets are [Ẽi, Ẽj ] = −2εijkẼk, [F̃i, F̃j ] = −2εijkF̃k and [Ẽi, F̃j ] = 0, where

εijk =

 1, if (ijk) is an even permutation of (123),
−1, if (ijk) is an odd permutation of (123),
0, otherwise.

The almost complex structure J on the nearly Kähler S3 × S3 is defined by

(2) J(U, V )(p,q) =
1√
3

(2pq−1V − U,−2qp−1U + V ),

for (U, V ) ∈ T(p,q)(S3×S3). The nearly Kähler metric on S3×S3 is the Hermitian metric associated

to the usual Euclidean product metric on S3 × S3:

g(Z,Z ′) =
1

2
(〈Z,Z ′〉+ 〈JZ, JZ ′〉)(3)

=
4

3
(〈U,U ′〉+ 〈V, V ′〉)− 2

3
(〈p−1U, q−1V ′〉+ 〈p−1U ′, q−1V 〉),

where Z = (U, V ) and Z ′ = (U ′, V ′). In the first line 〈·, ·〉 stands for the usual Euclidean product
metric on S3 × S3 and in the second line 〈·, ·〉 stands for the usual Euclidean metric on S3. By
definition, the almost complex structure is compatible with the metric g.
From [1] we have the following lemma.

Lemma 1. The Levi-Civita connection ∇̃ on S3 × S3 with respect to the metric g is given by

∇̃ẼiẼj = −εijkẼk ∇̃Ẽi F̃j =
εijk

3 (Ẽk − F̃k)

∇̃F̃iẼj =
εijk

3 (F̃k − Ẽk) ∇̃F̃i F̃j = −εijkF̃k.
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Then we have that

(4)
(∇̃ẼiJ)Ẽj = − 2

3
√

3
εijk(Ẽk + 2F̃k), (∇̃ẼiJ)F̃j = − 2

3
√

3
εijk(Ẽk − F̃k),

(∇̃F̃iJ)Ẽj = − 2
3
√

3
εijk(Ẽk − F̃k), (∇̃F̃iJ)F̃j = − 2

3
√

3
εijk(2Ẽk + F̃k).

Let G := ∇̃J . Then G is skew-symmetric and satisfies that

(5) G(X, JY ) = −JG(X,Y ), g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0,

for any vectors fields X,Y, Z tangent to S3 × S3. Therefore, S3 × S3 equipped with g and J ,
becomes a nearly Kähler manifold.
The almost product structure P introduced in [1] is defined as

(6) PZ = (pq−1V, qp−1U), ∀Z = (U, V ) ∈ T(p,q)(S3 × S3)

plays an important role in the study of the Lagrangian submanifolds of the nearly Kähler S3×S3.
It has the following properties:

P 2 = Id (P is involutive),

PJ = −JP (P and J anti-commute),

g(PZ, PZ ′) = g(Z,Z ′) (P is compatible with g),

g(PZ,Z ′) = g(Z,PZ ′) (P is symmetric).

Moreover, the almost product structure P can be expressed in terms of the usual product structure
QZ = Q(U, V ) = (−U, V ) and vice versa:

QZ =
1√
3

(2PJZ − JZ),

PZ =
1

2
(Z −

√
3QJZ).

Next, we recall the relation between the Levi-Civita connections ∇̃ of g and ∇E of the Euclidean
product metric 〈·, ·〉.

Lemma 2. [8] The relation between the nearly Kähler connection ∇̃ and the Euclidean connection
∇Eis

∇EXY = ∇̃XY +
1

2
(JG(X,PY ) + JG(Y, PX)).

We recall here a useful formula, already known in [8].
Let D be the Euclidean connection on R8. For vector fields X = (X1, X2) and Y = (Y1, Y2) on
S3 × S3, we may decompose DXY along the tangent and the normal directions as follows:

(7) DXY = ∇EXY +
1

2
〈DXY, (p, q)〉(p, q) +

1

2
〈DXY, (−p, q)〉(−p, q).

Here, notice the factor 1
2 due to the fact that (p, q) and (−p, q) have length

√
2. Moreover, as

〈Y, (p, q)〉 = 0, (7) is equivalent with

DXY = ∇EXY −
1

2
〈Y,X〉(p, q)− 1

2
〈Y, (−X1, X2)〉(−p, q).

In the special case that Y2 = 0, the previous formula reduces to

(8) DX(Y1, 0) = ∇EX(Y1, 0)− 〈X1, Y1〉(p, 0).

We find it appropriate here to prove an additional important formula not explicitly mentioned in
[1], that allows us to evaluate G for any tangent vector fields.

Proposition 1. Let X = (pα, qβ), Y = (pγ, qδ) ∈ T(p,q)S3 × S3. Then

G(X,Y ) =
2

3
√

3
(p(β × γ + α× δ + α× γ − 2β × δ), q(−α× δ − β × γ + 2α× γ − β × δ)).(9)
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Proof. As α is an imaginary unit quaternion, we may write α = α1 · i+α2 · j+α3 ·k and similarly
for β, γ, δ. Then, using (1), we write for more convenience in computations X = Uα + Vβ , where

Uα = α1Ẽ1 + α2Ẽ2 − α3Ẽ3 and Vβ = β1F̃1 + β2F̃2 − β3F̃3. Similarly, Y = Uγ + Vδ. We now use
the relations in (4) and compute

G(Uα, Vβ) =
2

3
√

3
(Uα×β − Vα×β), G(Uα, Uβ) =

2

3
√

3
(Uα×β + 2Vα×β).

As PUα = Vα, we obtain that

G(Vα, Vβ) = − 2

3
√

3
(Vα×β + 2Uα×β).

Finally, by linearity we get the relation in (9). �

From now on we will restrict ourselves to 3-dimensional Lagrangian submanifolds M of S3 × S3.
It is known from [8] and [24] that, as the pull-back of T (S3 × S3) to M splits into TM ⊕ JTM ,
there are two endomorphisms A,B : TM → TM such that the restriction P |TM of P to the
submanifold equals A+ JB, that is PX = AX + JBX, for all X ∈ TM . Note that the previous
formula, together with the fact that P and J anti-commute, also determines P on the normal
space by PJX = −JPX = BX − JAX. In addition, from the properties of J and P it follows
that A and B are symmetric operators which commute and satisfy moreover that A2 + B2 = Id
(see [8]). Hence A and B can be diagonalised simultaneously at a point p in M and there is an
orthonormal basis e1, e2, e3 ∈ TpM such that

(10) Pei = cos(2θi)ei + sin(2θi)Jei.

The functions θi are called the angle functions of the immersion. Next, for a point p belonging to
an open dense subset of M on which the multiplicities of the eigenvalues of A and B are constant
(see [21]), we may extend the orthonormal basis e1, e2, e3 to a frame on a neighborhood in the
Lagrangian submanifold. Finally, taking into account the properties of G we know that there
exists a local orthonormal frame {E1, E2, E3} on an open subset of M such that

(11) AEi = cos(2θi)Ei, BEi = sin(2θi)Ei

and

(12) JG(Ei, Ej) =
1√
3
εijkEk.

The following result is known ([8]):

Proposition 2. The sum of the angles θ1 + θ2 + θ3 is zero modulo π.

For the Levi-Civita connection ∇ on M we introduce (see [8]) the functions ωkij satisfying

∇EiEj =

3∑
k=1

ωkijEk and ωkij = −ωjik.

As usual, we write:

∇̃XY = ∇XY + h(X,Y ),

∇̃XJY = −SJYX +∇⊥XJY,
where h is the second fundamental form on M and SJY is the shape operator in the direction of
JY . As for the Lagrangian manifolds of a strict 6-dimensional nearly Kähler manifold we have
that G(X,Y ) is normal (see [13], [20]), it follows that

∇⊥XJY = J∇XY +G(X,Y ),

Jh(X,Y ) = −SJYX.

The latter equation implies in particular that the cubic form g(h(X,Y ), JZ) is totally symmetric.
We denote by hkij the components of this cubic form on M :

(13) hkij = g(h(Ei, Ej), JEk).
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3. Results

3.1. Elementary properties of orientable minimal surfaces in S3.
We recall some elementary properties of minimal surfaces. Let p : S → S3 ⊂ R4 be an ori-

ented minimal surface. We are going to check that the immersion either admits local isother-
mal coordinates for which the conformal factor satisfies the Sinh-Gordon equation or is totally
geodesic. First, we take isothermal coordinates u, v such that ∂u, ∂v is positively oriented,
〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 2eω and 〈∂u, ∂v〉 = 0 in a neighborhood of a point of S. As it is often
more useful to use complex notation we write z = u + Iv and consider ∂z = 1

2 (∂u − I∂v) and

∂z̄ = 1
2 (∂u + I∂v). Note that we use I here in order to distinguish between the i, j, k intro-

duced in the quaternions. We also extend everything in a linear way in I. This means that
〈∂z, ∂z〉 = 〈∂z̄, ∂z̄〉 = 0 and 〈∂z, ∂z̄〉 = eω. If we write ∂u = pα and ∂v = pβ, the unit normal is

given by N = pα×β2eω . It is elementary to check that this is independent of the choice of complex

coordinate and that the matrix
(
p ∂u
|∂u|

∂v
|∂v| N

)
belongs to SO(4). We denote by σ the component

of the second fundamental form in the direction of N . Remark that with this choice, the minimal-
ity of the surface implies σ(∂z, ∂z̄) = 0 and we may determine the components of the connection
∇ on the surface:

(14) ∇∂z∂z = ωz∂z, ∇∂z∂z̄ = ∇∂z̄∂z = 0 and ∇∂z̄ = ωz̄∂z̄.

The Codazzi equation of a surface in S3 states that

∇σ(∂z, ∂z̄, ∂z) = ∇σ(∂z̄, ∂z, ∂z).

So it follows that ∂z̄(σ(∂z, ∂z)) = 0. Hence σ(∂z, ∂z) is a holomorphic function. Then we have
two cases:
Case 1. If σ(∂z, ∂z) = 0 on an open set, then by conjugation σ(∂z̄, ∂z̄) = 0 and therefore, using
the analyticity of a minimal surface, σ = 0 everywhere.
Case 2. If σ(∂z, ∂z) 6= 0, then there exists a function g(z) such that σ(∂z, ∂z) = g(z). Away from
isolated points we can always make a change of coordinates if necessary such that σ(∂z, ∂z) = −1.
Notice that by conjugation we get also σ(∂z̄, ∂z̄) = −1. Such a change of coordinates is unique
up to translations and replacing z by −z.
Next, given the immersions p : S → S3(1)

i
↪→ R4, from the Gauss formula we obtain:

pzz = ωzpz −N,
pzz̄ = −eωp,(15)

pz̄z̄ = ωz̄pz̄ −N,

where N is the normal on S3 and Nz = e−ωpz̄, Nz̄ = e−ωpz. Therefore

pzzz̄ = (ωzz̄ − e−ω)pz − ωzeωp, pzz̄z = −eωωzp− eωpz,
which shows that ω satisfies

ωzz̄ = −2 sinhω ⇐⇒
∆ω = −8 sinhω (Sinh-Gordon equation).(16)

Notice that by ∆ω we denote the Euclidean Laplacian of ω in R2 = C.
Let P be the lift of the minimal immersion to the immersion of the frame bundle in SO(4), i.e.

P : US → SO(4) : w 7→ (p w J̃w N),

where US denotes the unit tangent bundle of S and J̃ denotes the natural complex structure on
an orientable surface. In terms of our chosen isothermal coordinate this map can be parametrised
by

P(u, v, t) =

(
p(u, v), cos t

pu
| pu |

+ sin t
pv
| pv |

,− sin t
pu
| pu |

+ cos t
pv
| pv |

, N(u, v)

)
,

for some real parameter t. Note that we have the frame equations which state that

dP = PΩt = −PΩ,
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where in terms of the coordinates u, v and t the matrix Ω is given by

0
√

2e
ω
2 (cos(t)du+ sin(t)dv)

√
2e

ω
2 (cos(t)dv − sin(t)du) 0

−
√

2e
ω
2 (cos(t)du+

sin(t)dv)
0 1

2 (ωudv − ωvdu) + dt
−
√

2e−
ω
2 (cos(t)du−

sin(t)dv)

−
√

2e
ω
2 (cos(t)dv−

sin(t)du)
− 1

2 (ωudv − ωvdu)− dt 0

√
2e−

ω
2 (sin(t)du+

cos(t)dv)

0
√

2e−
ω
2 (cos(t)du− sin(t)dv) −

√
2e−

ω
2 (sin(t)du+ cos(t)dv) 0

 .

3.2. From the Lagrangian immersion to the minimal surface.

Now we will consider Lagrangian submanifolds in the nearly Kähler S3 × S3. We write the
Lagrangian submanifold M as

f : M → S3 × S3

x 7→ f(x) = (p(x), q(x)),

and we assume that the first component has nowhere maximal rank. We have the following:

Theorem 1. Let

f : M → S3 × S3

x 7→ f(x) = (p(x), q(x)),

be a Lagrangian immersion such that p : M → S3 has nowhere maximal rank. Then π
3 is an angle

function up to a multiple of π. The converse is also true.

Proof. It is clear that p has nowhere maximal rank if and only if there exists a non zero vector
field X such that dp(X) = 0. As usual we identify df(X) with X, so we have that X = df(X) =
(dp(X), dq(X)) and QX = (−dp(X), dq(X)). Therefore p has nowhere maximal rank if and only
if

X = QX

= 1√
3
(2PJX − JX)

= 1√
3
(2BX − 2JAX − JX).

Comparing tangent and normal components we see that this is the case if and only if

AX = − 1
2X BX =

√
3

2
X.

So we see that X is an eigenvector of both A and B and that the corresponding angle function is
π
3 (up to a multiple of π). �

For the remainder of the paper we will consider Lagrangian immersions for which the map p has
nowhere maximal rank. In view of the previous lemma this means that one of the angle functions
is constant, namely θ1 = π

3 . Then using that the angles are only determined up to a multiple of
π and given that 2θ1 + 2θ2 + 2θ3 is a multiple of 2π, we may write

2θ1 = 2π
3 ,

2θ2 = 2Λ + 2π
3 ,

2θ3 = −2Λ + 2π
3 ,

(17)

for Λ an arbitrary function which takes values in [−π2 ,
π
2 ]. If necessary by interchanging E2, E3

with −E3, E2 we may assume that Λ ≥ 0 and therefore Λ takes values only in [0, π2 ]. Similarly,

if necessary interchanging E1, E3 by −E1,−E3, we may also assume that h3
13 ≤ 0 (see equation

(13)).
Note however that at the points where Λ is 0 or π

2 modulo π, we have that two of the angle functions
coincide. If this is true on an open set, it follows from [24] that the Lagrangian submanifold is
totally geodesic and is congruent either with f : S3 → S3 × S3 : u 7→ (1, u) or f : S3 → S3 × S3 :
u 7→ (uiu−1, u−1). So by restricting to an open dense subset of M which we denote by M∗, we
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may actually assume that Λ ∈ (0, π2 ), in which case the function Λ, as well as the vector fields
E1, E2, E3 are differentiable.
Notice that the case when Λ is constant is treated in [3], where such Lagrangian submanifolds are
determined to be either totally geodesic or of constant sectional curvature. As we consider here
Λ ∈ (0, π2 ), the only possibility is Λ = π

3 , in which case the Lagrangian submanifold is not totally
geodesic, but of constant sectional curvature.

Theorem 2. Let M be a Lagrangian submanifold of constant sectional curvature in the nearly
Kähler S3×S3. If M is not totally geodesic, then up to an isometry of the nearly Kähler S3×S3, M
is locally congruent with one of the following immersions:

(1) f : S3 → S3 × S3 : u 7→ (uiu−1, uju−1),
(2) f : R3 → S3×S3 : (u, v, w) 7→ (p(u,w), q(u, v)), where p and q are constant mean curvature

tori in S3 given by

p(u,w) = (cosu cosw, cosu sinw, sinu cosw, sinu sinw) ,

q(u, v) =
1√
2

(cos v (sinu+ cosu) , sin v (sinu+ cosu) ,

cos v (sinu− cosu) , sin v (sinu− cosu)) .

Note that these are precisely the two Lagrangian immersions with constant sectional curvature
obtained in [8]. These two examples will appear as special solutions in respectively Case 2 and
Case 3. However we will mainly focus on the case that Λ is not constant.
In the following, we will identify a tangent vector X in TxM with its image through df in T(p,q)S3×
S3, that is X ≡ df(X) = (dp(X), dq(X)), and we can write QX ≡ Q(df(X)) = (−dp(X), dq(X)).
Therefore, if we see dp(X) projected on the first factor of S3×S3 , that is dp(X) ≡ (dp(X), 0), we
can write

(18) dp(X) =
1

2
(X −QX).

We use relations (10) and (17) to compute PE1 = − 1
2E1 +

√
3

2 JE1. As mentioned before this is
equivalent with stating that dp(E1) = 0 and that p has nowhere maximal rank. By straightforward
computations we obtain

(19)
(dp(E2), 0) =

(
1
2 −

1√
3

sin(2Λ + 2π
3 )
)
E2 + 1√

3

(
1
2 + cos(2Λ + 2π

3 )
)
JE2,

(dp(E3), 0) =
(

1
2 −

1√
3

sin(−2Λ + 2π
3 )
)
E3 + 1√

3

(
1
2 + cos(−2Λ + 2π

3 )
)
JE3

and

〈dp(E2), dp(E2)〉 = sin2 Λ,

〈dp(E3), dp(E3)〉 = sin2 Λ,(20)

〈dp(E2), dp(E3)〉 = 0.

We denote

v2 := dp(E2) ≡ (dp(E2), 0),

v3 := dp(E3) ≡ (dp(E3), 0),(21)

ξ =
1√
3
E1 − JE1

and we may easily see that Qξ = −ξ, i.e. ξ lies entirely on the first factor of S3 × S3. Moreover,
〈vi, vj〉 = δij sin Λ, 〈ξ, v2〉 = 〈ξ, v3〉 = 0 and 〈ξ, ξ〉 = 1. Therefore, p(M) is a surface in S3 and ξ
can be seen as a unit normal to the surface.
As far as the Lagrangian immersion itself is concerned we also have due to the minimality that

h1
11 + h2

12 + h3
13 = 0,

h2
11 + h2

22 + h3
23 = 0,

h3
11 + h3

22 + h3
33 = 0.

(22)
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From [8] we know that the covariant derivatives of the endomorphisms A and B are

(∇XA)Y = BSJXY − Jh(X,BY ) +
1

2
(JG(X,AY )−AJG(X,Y )),(23)

(∇XB)Y = −ASJXY + Jh(X,AY ) +
1

2
(JG(X,AY )−AJG(X,Y )).(24)

We are going to use the definition of ∇A and ∇B in the previous expressions and then evaluate
them for different vectors in the basis in order to get information about the functions ωkij and hkij .
For X = Y = E1 in (23) we obtain that

h2
12 = −h3

13,
ω2

11 = h2
11 cot Λ,

ω3
11 = −h3

11 cot Λ.
(25)

If we take X = E1 and Y = E2 in (23) and (24), we see that

E1(Λ) = h3
13,(26)

ω3
12 =

√
3

6
− h3

12 cot 2Λ(27)

and, for X = E2 and Y = E1 in (23), we obtain

h2
11 = 0,(28)

ω2
21 = − cot Λh3

13,(29)

ω3
21 = −

√
3

6
− h3

12 cot Λ.(30)

Then we choose successively X = E3, Y = E1, X = E2, Y = E3 and X = E3, Y = E2 in relations
(23) and (24) and obtain

h3
11 = 0,(31)

ω2
31 =

√
3

6
+ cot Λh3

12,(32)

ω3
31 = − cot Λh3

13,(33)

ω3
22 = − cot 2Λh3

22,(34)

ω3
32 = − cot 2Λh3

23,(35)

E2(Λ) = h3
23,(36)

E3(Λ) = −h3
22.(37)

We can easily see from (25), (28) and (31) that

ω2
11 = 0 and ω3

11 = 0

and, if we consider as well the relations in (22), we have that

h3
33 = −h3

22, h1
11 = 0 and h2

22 = −h3
23.

Later on we will also need to study the Codazzi equations for M . From [8] we know their general
form:

∇h(X,Y, Z)−∇h(Y,X,Z) =
1

3
(g(AY,Z)JBX − g(AX,Z)JBY

− g(BY,Z)JAX + g(BX,Z)JAY ).(38)

We are going to use the definition for ∇h in the previous relation and take different values for
the vectors X,Y and Z. Thus, we evaluate it successively for E1, E2, E1; E1, E2, E2; E1, E3, E3;
E1, E3, E2 and E2, E3, E3 and we obtain the following relations, respectively:

E1(h3
13) = 1

3 (−
√

3h3
12 + 6(h3

13)2 cot Λ− 6(h3
12)2 csc(2Λ) + sin(2Λ)),

E1(h3
12) = 1

3h
3
13(
√

3 + 9h3
12 cot Λ + 3h3

12 tan Λ),
(39)
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E2(h3
13)− E1(h3

23) =
1√
3
h3

22 + h3
12h

3
22 cot Λ− h3

13h
3
23 cot Λ− h3

12h
3
22 cot(2Λ),

E1(h3
22)− E2(h3

12) =h3
13h

3
22(2 cot Λ− tan Λ) +

1

6
h3

23(2
√

3− 3h3
12 cot Λ + 9h3

12 tan Λ),

E3(h3
12)− E1(h3

23) =
1√
3
h3

22 + (h3
12h

3
22 − h3

13h
3
23) cot Λ− (3h3

12h
3
22 + 2h3

13h
3
23) cot(2Λ),

E3(h3
13) + E1(h3

22) =
1√
3
h3

23 + h3
13h

3
22 cot Λ + h3

12h
3
23 cot Λ− h3

12h
3
23 cot(2Λ),(40)

E2(h3
13)− E3(h3

12) =2(h3
12h

3
22 + h3

13h
3
23) cot(2Λ),

E3(h3
22)− E2(h3

23) =− 1

2
(8(h3

12)2 + 4(h3
13)2 + 3((h3

22)2 + (h3
23)2)) cot Λ−

1

3
(
√

3h3
12 + sin 4Λ) +

3

2
((h3

22)2 + (h3
23)2) tan Λ,

E2(h3
22) + E3(h3

23) =− 1

3
h3

13(
√

3 + 6h3
12 cot Λ).

Theorem 3. Let

f : M → S3 × S3

x 7→ f(x) = (p(x), q(x)),

be a Lagrangian immersion such that p : M → S3 has nowhere maximal rank. Assume that M is
not totally geodesic. Then p(M) is a (branched) minimal surface in S3. Moreover

P̃ : M∗ → SO(4) : x 7→
(
p(x)

v2

sin Λ

v3

sin Λ
ξ
)
,

where v2, v3 and ξ are defined by (21), is a map which is contained into the frame bundle over the
minimal surface p.

Proof. Recall that dp(E1) = 0, hence p(M) is a surface. Denoting the second fundamental form
of the surface in the direction of ξ by σ, a straightforward computation yields that

(41)

σ(E2, E2) = h3
13,

σ(E2, E3) = σ(E3, E2) = 1√
3

cos Λ sin Λ− h3
12,

σ(E3, E3) = −h3
13.

As dp(E2) and dp(E3) are orthogonal and have the same length, the above formulas indeed imply
that the surface is minimal.
Moreover we also see that the surface is totally geodesic if and only if h3

13 = 0 and h3
12 =

1√
3

cos Λ sin Λ. Note also that if we write (dp(E2), 0) = (pα, 0) and (dp(E3), 0) = (pγ, 0), we

have that

G((dp(E2), 0), (dp(E3), 0)) = G((pα, 0), (pγ, 0))

= 2
3
√

3
(p(α× γ), 2q(α× γ)).

Therefore,

(p(α× γ), 0) = 3
√

3
4 (G((dp(E2), 0), (dp(E3), 0))−Q(G((dp(E2), 0), (dp(E3), 0)))) .

A straightforward computation, using (19) and (12), shows that this gives

(p(α× γ), 0) = (sin Λ)2ξ.

Therefore ξ corresponds with the normal N on the surface. �

3.3. The reverse construction.
In the following, we will separate the study of the submanifold into three cases, according to
whether the surface is totally geodesic or not and whether the map to the frame bundle is an
immersion or not.
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3.3.1. Case 1. p(M) is not a totally geodesic surface and the map P̃ is an immersion.
In that case we can identify M with the frame bundle on the minimal surface induced earlier.
Recall that

P̃ : x ∈M∗ 7→
(
p

v2

sin Λ

v3

sin Λ
ξ
)
.

Writing again dP̃ = −P̃Ω̃, we can express the matrix Ω̃ in terms of {E1, E2, E3} by

0 sin(Λ)ω2 sin(Λ)ω3 0

− sin(Λ)ω2 0

(
1√
3

+ h3
12 csc(2Λ)

)
ω1+

h3
22 csc(2Λ)ω2+
h3

23 csc(2Λ)ω3

h3
13 csc(Λ)ω2+(

cos Λ√
3
− h3

12 csc Λ
)
ω3

− sin(Λ)ω3
−( 1√

3
+ h3

12 csc(2Λ))ω1−
h3

22 csc(2Λ)ω2 − h3
23 csc(2Λ)ω3

0

(
cos Λ√

3
− h3

12 csc(Λ)
)
ω2−

h3
13 csc(Λ)ω3

0

(
− cos Λ√

3
+ h3

12 csc Λ
)
ω3−

h3
13 csc(Λ)ω2

(
− cos Λ√

3
− h3

12 csc(Λ)
)
ω2−

h3
13 csc(Λ)ω3

0


,

where ωi(Ej) = δij . The above matrix implies that the map P̃ into SO(4) ⊂ R16 is an immersion
if and only if

1√
3

+ h3
12 csc(2Λ) 6= 0.

As it is an immersion, in view of the dimensions, its image is an open part of the frame bundle
and we can identify M with an open part of the frame bundle on the minimal surface. Moreover
we can write

v2

sin Λ
= cos(t+ γ(t, u, v))

pu
| pu |

+ sin(t+ γ(t, u, v))
pv
| pv |

,

where γ is some function. As P̃ is an immersion, we have that t+ γ(t, u, v) depends on t and can

be taken as the new variable t on the frame bundle. Doing so, we have that P̃ = P and Ω̃ = Ω
(for P,Ω as in subsection 3.1). Comparing both expressions for the matrix Ω we deduce

ω1 =
1

1√
3

+ h3
12 csc 2Λ

(
−
(√

2
csc 2Λ

sin Λ
eω/2(h3

22 cos t− h3
23 sin t) +

1

2
ωv

)
du−(√

2
csc 2Λ

sin Λ
eω/2(h3

22 sin t+ h3
23 cos t)− 1

2
ωu

)
dv + dt

)
,

ω2 =
1

sin Λ

√
2eω/2(cos(t)du+ sin(t)dv),

ω3 =
1

sin Λ

√
2eω/2(cos(t)dv − sin(t)du),

as well as {
e−ω cos(2t) + h3

13
1

sin2 Λ
= 0,

e−ω sin(2t) +
(
h3

12 csc Λ− cos Λ√
3

)
1

sin Λ = 0,
(42)

which implies that {
h3

13 = −e−ω cos(2t) sin2 Λ,

h3
12 =

(
−e−ω sin(2t) sin Λ + cos Λ√

3

)
sin Λ.

(43)

We may express E1, E2, E3 with respect to the basis {∂t, ∂u, ∂v} as follows. For Ei = ai∂t+bi∂u+
ci∂v, we use the previously obtained expressions of ωj in ωj(Ei) = δij and by straightforward
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computations we get

E1 =

(
1√
3

+ h3
12 csc(2Λ)

)
∂t,

E2 =(csc(2Λ)h3
22 +

1

2
√

2
sin Λe−ω/2(cos(t)ωv − sin(t)ωu))∂t+

e−ω/2 cos t sin Λ√
2

∂u+
e−ω/2 sin t sin Λ√

2
∂v,(44)

E3 =

(
csc(2Λ)h3

23 −
1

2
√

2
sin Λ e−ω/2(cos(t)ωu + sin(t)ωv)

)
∂t−

e−ω/2 sin t sin Λ√
2

∂u+
e−ω/2 cos t sin Λ√

2
∂v.

In order to be able to proceed with the reverse construction, i.e. in order to be able to construct
a Lagrangian immersion starting from the minimal surface we need to express Λ, h3

22 and h3
23 in

terms of the variables t, u, v. Remark that, as E1(Λ) = h3
13, we may use (43) and the expression

of E1 in (44) to determine how Λ depends on the variable t. We get

(45) Λt = − 2 cos(2t) sin2 Λ√
3eω − 2 cos t sin t tan Λ

.

In order to solve the above differential equation, we use (45) to compute the derivative of the

expression
√

3eω

tan Λ − sin(2t):

∂t

(√
3eω

tan Λ
− sin(2t)

)2

= 2 sin(4t),

which, by integration, gives
(√

3eω

tan Λ − sin(2t)
)2

= − 1
2 cos(4t) + c1

4 , where c1 does not depend on t.

Notice that this implies

(46) tan Λ =
2
√

3eω

ε1

√
c1 − 2 cos(4t) + 2 sin(2t)

,

where ε1 = ±1 and, at the same time, the surface is defined on an open set where c1−2 cos(4t) ≥ 0.
Note that as the above expression contains a square root which would complicate simplifications
later on, we will avoid its use as much as possible. For later use, remark that we can write

(47)

(
2
√

3eω

tan Λ
− 2 sin(2t)

)2

= c1 − 2 cos(4t).

As we can rewrite the above equation as(
2
√

3eω

tan Λ
− 2 sin(2t)

)2

+ 2 cos(4t) + 2 = c1 + 2,

we see that c1 ≥ −2 and equality can hold if t ∈ {±π4 ,±
5π
4 } and 2

√
3eω

tan Λ ± 2 = 0. So on an open
dense subset we can write

c1 = eω+µ − 2.

Combining this with the previous expression of c1 and taking the derivative with respect to u and
v, we can compute

Λu = −
sin2 Λ

(
µu + eω cot Λ

(
3eω cot Λ(µu − ωu)− 2

√
3µu sin(2t)

)
+ ωu

)
6e2ω cot Λ− 2

√
3eω sin(2t)

Λv = −
sin2 Λ

(
µv + eω cot Λ

(
3eω cot Λ(µv − ωv)− 2

√
3µv sin(2t)

)
+ ωv

)
6e2ω cot Λ− 2

√
3eω sin(2t)

.
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Using this, together with (44), we can solve in (36) and (37), for h3
22 and h3

23. This gives us

h3
22 =

e−3ω/2 sin2 Λ

6
√

2

(
3eω cos Λ((ωu − µu) sin t+ (µv − ωv) cos t)−
√

3 sin Λ((µu + ωu) cos(3t) + (µv + ωv) sin(3t))
)
,

h3
23 =

e−3ω/2 sin2 α

6
√

2

(√
3 sin Λ((µu + ωu) sin(3t) + (−µv − ωv) cos(3t))−

3eω cos Λ(µu − ωu) cos t− 3eω cos Λ(µv − ωv) sin t) .

In order to determine a differential equation for the function µ we now apply the previously
obtained Codazzi equations for M . By (44), it turns out that (39) and the first 5 equations of
(40) are trivially satisfied. Recall from (16) that ∆ω = −8 sinhω. The seventh equation of (40)
reduces to

(48) ∆µ = −4eω(cos(2Λ) + 2) csc2 Λ + 8
√

3 cot Λ sin(2t) + 8 sinhω.

A straightforward computation, using the definition of µ and (47), shows that this reduces to

(49) ∆µ = −eµ.

Further on, with these new notations, we may see by straightforward computations that the sixth
equation of (40) is now trivially satisfied.

Reverse construction
We denote by p : S → S3 ⊂ R4 a given minimal surface S which is not totally geodesic, on
which we take suitable isothermal coordinates as introduced before. Hence we have a solution ω
of ∆ω = −8 sinhω. Additionally, we take a solution of

(50) ∆µ = −eµ

and we take the open part of the frame bundle such that

(51)

(
2
√

3eω

tan Λ
− 2 sin(2t)

)2

= eω+µ − 2− 2 cos(4t)

has a solution for the function Λ on an open domain. We define

h3
13 = −eω cos(2t) sin2 Λ,

h3
12 = (−e−ω sin(2t) sin Λ +

cos Λ√
3

) sin Λ,

h3
22 =

e−3ω/2 sin2 Λ

6
√

2

(
3eω cos Λ((ωu − µu) sin t+ (µv − ωv) cos t)−
√

3 sin Λ((µu + ωu) cos(3t) + (µv + ωv) sin(3t))
)
,

h3
23 =

e−3ω/2 sin2 Λ

6
√

2

(√
3 sin Λ((µu + ωu) sin(3t) + (−µv − ωv) cos(3t))−

3eω cos Λ(µu − ωu) cos t− 3eω cos Λ(µv − ωv) sin t)
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and we define as well a metric on the open part of the frame bundle, by assuming that the vectors

E1 =
1

2

(√
3− 2e−ω tan Λ sin t cos t

)
∂t,

E2 =− e−3ω/2 sin Λ

12
√

2

(√
3 tan Λ((µu + ωu) cos(3t) + (µv + ωv) sin(3t)) + 3eω((µu + ωu) sin t+

(−µv − ωv) cos t)
)
∂t+

e−
ω
2 cos t sin Λ√

2
∂u+

e−
ω
2 sin t sin Λ√

2
∂v,(52)

E3 =
e−3ω/2 sin Λ

12
√

2

(√
3 tan Λ((µu + ωu) sin(3t) + (−µv − ωv) cos(3t))− 3eω((µu + ωu) cos t+

(µv + ωv) sin t)
)
∂t− e−

ω
2 sin t sin Λ√

2
∂u+

e−
ω
2 cos t sin Λ√

2
∂v

form an orthonormal basis.
We now want to determine the Lagrangian immersion

f : S × I → S3 × S3

(u, v, t) 7→ f(u, v, t) = (p(u, v, t), q(u, v, t)).

We already know that the first component is the given minimal surface p. We write for both bases

∂
∂t (q) = qβ1,

∂
∂t (p) = pα1,

∂
∂u (q) = qβ2,

∂
∂u (p) = pα2,

∂
∂v (q) = qβ3,

∂
∂v (p) = pα3,

and

E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E2(p) = pα̃2,

E3(q) = qβ̃3, E3(p) = pα̃3.

Note that α1 = 0 and α2 and α3 are determined by the minimal surface. In particular α2 and α3

are mutually orthogonal imaginary quaternions with length squared 2eω. From (52) we then get
that

α̃1 = 0,

α̃2 =
e−

ω
2 cos t sin Λ√

2
α2 +

e−
ω
2 sin t sin Λ√

2
α3,

α̃3 = −e
−ω2 sin t sin Λ√

2
α2 +

e−
ω
2 cos t sin Λ√

2
α3

and from the properties of the minimal surface we obtain
∂α2

∂u = −∂α3

∂v = 1
2ωuα2 − 1

2ωvα3 − eωα2 × α3,

∂α2

∂v = 1
2ωvα2 + 1

2ωuα3 + α2 × α3,

∂α3

∂u = 1
2ωvα2 + 1

2ωuα3 − α2 × α3.

Using the properties of the vector cross product, this also implies that
∂α2×α3

∂u = 2α2 + 2eωα3 + ωuα2 × α3,

∂α2×α3

∂v = −2eωα2 − 2α3 + ωvα2 × α3.

Now, in order to find β̃i, we remark that the vectors E1, E2 and E3 need to correspond with
eigenvectors of the operators A and B with suitable eigenfunctions. We have

E1 = (0, qβ̃1),

E2 = (pα̃2, qβ̃2),(53)

E3 = (pα̃3, qβ̃3).

The angle functions are θ1 = 2π
3 , θ2 = 2Λ + 2π

3 , θ3 = −2Λ + 2π
3 and

PEi = cos(2θi)Ei + sin(2θi)JEi,(54)

for i = 1, 2, 3. At the same time, by the definition of P in (6) and by (53) we have

(55) PE1 = (pβ̃1, 0), PE2 = (pβ̃2, qα̃2), PE3 = (pβ̃3, qα̃3).
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Now we use the definition of J to write out JEi:

JE1 =
1√
3

(2pβ̃1, qβ̃1),

JE2 =
1√
3

(p(2β̃2 − α̃2), q(−2α̃2 + β̃2)),(56)

JE3 =
1√
3

(p(2β̃3 − α̃3), q(−2α̃3 + β̃3)).

Then, by using (56), (53) and the values of θi in (17), we rewrite equation (54) and, by comparing
it to (55), we obtain

β̃2 =
cos(2Λ + 2π

3 )− 1√
3

sin(2Λ + 2π
3 )

1− 2√
3

sin(2Λ + 2π
3 )

α̃2 = 1
2 (1−

√
3 cot Λ)α̃2,

β̃3 =
cos(−2Λ + 2π

3 )− 1√
3

sin(−2Λ + 2π
3 )

1− 2√
3

sin(−2Λ + 2π
3 )

α̃3 = 1
2 (1 +

√
3 cot Λ)α̃3.

Next we continue the computations in order to determine β̃1. For this, we compute G(E2, E3) in
two different ways, once using (12) and once using (9). We obtain, respectively

G(E2, E3) = − 1√
3
JE1 = −1

3
(p2β̃1, qβ̃1),

and

G(E2, E3) = G((pα̃2, qβ̃2), (pα̃3, qβ̃3))

= 2
3
√

3
(p(β̃2 × α3 + α̃2 × β̃3 + α̃2 × α̃3 − 2β̃2 × β̃3,

q(−β̃2 × α3 − α̃2 × β̃3 + 2α̃2 × α̃3 − β̃2 × β̃3)

= 2
3
√

3
(p(2− 1

2 (1− 3 cot2 Λ))α̃2 × α̃3, q(1− 1
3 (1− 3 cot2 Λ))α̃2 × α̃3)

= 1
2
√

3
(1 + cot2 Λ)(2pα̃2 × α̃3, qα̃2 × α̃3).

Hence, comparing both expressions we get that

β̃1 = −
√

3
2 csc2 Λ α̃2 × α̃3 = −

√
3

4 e
−ωα2 × α3.

Moreover, we also obtain that

β̃2 = 1
2
√

2
(1−

√
3 cot Λ)e−

ω
2 sin Λ(cos tα2 + sin tα3),

β̃3 = 1
2
√

2
(1 +

√
3 cot Λ)e−

ω
2 sin Λ(− sin tα2 + cos tα3).

We then take the inverse of (52) and deduce that

β1 = −
√

3α2 × α3

2
√

3eω − 2 sin(2t) tan(Λ)
,

β2 =
1

8

(
e−ω

(
µv + ωv −

(µu + ωu) cos(2t) tan(Λ)√
3eω − sin(2t) tan(Λ)

)
α2 × α3 − 4(

√
3 cot(Λ) cos(2t) + 1)α2 − 4

√
3 sin(2t) cot Λα3

)
,

β3 =
1

8

(
−e−ω

(
µu + ωu +

(µv + ωv) cos(2t) tan(Λ)√
3eω − sin(2t) tan(Λ)

)
α2 × α3 − 4

√
3 cot(Λ) sin(2t)α2 + 4(1 +

√
3 cos(2t) cot Λ)α3

)
.

By straightforward computations, it now follows that

∂β1

∂u
− ∂β2

∂t
− 2β1 × β2 = 0,

∂β1

∂v
− ∂β3

∂t
− 2β1 × β3 = 0,

∂β3

∂u
− ∂β2

∂v
− 2β3 × β2 = 0,
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from which we deduce that the integrability conditions for the immersion q are satisfied.

3.3.2. Case 2. The minimal surface p(M) is totally geodesic, i.e. σ = 0. As mentioned
before this means that h3

13 = 0, h3
12 = cos Λ sin Λ√

3
. The equations following from (23) and (24), just

like in the first case, give

(57)

h2
12 = 0, ω2

11 = 0, ω3
21 = − 2+cos(2Λ)

2
√

3
,

h2
11 = 0, ω3

11 = 0, ω3
22 = −h3

22 cot(2Λ),

h3
11 = 0, ω3

12 = sin2 Λ√
3
, ω2

31 = 2+cos(2Λ)

2
√

3
,

ω2
21 = 0, ω3

31 = 0, ω3
32 = −h3

23 cot(2Λ)

and

(58)
E1(Λ) = 0,
E2(Λ) = h3

23,
E3(Λ) = −h3

22.

In this case, the equations of Codazzi become

(59) E1(h3
23) = −

√
3

2
h3

22, E1(h3
22) =

√
3

2
h3

23, E2(h3
22) = −E3(h3

23)

and

(60) −1−(1+12(h3
22)2+12(h3

23)2) cos(2Λ)+cos(4Λ)+cos(6Λ)+4(E2(h3
23)−E3(h3

22)) sin(2Λ) = 0.

In what follows we are going to introduce new vector fields on M by:

X1 =
4√
3
E1,

X2 = −2h3
22 csc2 Λ sec Λ√

3
E1 + 2 csc Λ E2,(61)

X3 = −2h3
23 csc2 Λ sec Λ√

3
E1 + 2 csc Λ E3.

We can easily check that

[X1, X2] = 2X3,

[X2, X3] = 2X1,(62)

[X3, X1] = 2X2.

Taking a canonical metric on M such that X1, X2 and X3 have unit length and are mutually
orthogonal, it follows from the Koszul formula that all connection components are determined.
From (4.1), Proposition 5.2 and its preceeding paragraph in [8] it follows that we can locally
identify M with S3 and we can consider X1, X2 and X3 as the standard vector fields on S3 with

X1(x) = xi,

X2(x) = xj,(63)

X3(x) = xk.

Using the above formulas, the component p of the map can now be determined explicitly. First,
we write

(64) DXip = pαi,

for i = 1, 2, 3, where D denotes the Euclidean covariant derivative. Of course, by Theorem 1,
DX1

p = 0. Then, we may compute by (18)

(dp(X2), 0) = (
2 cos Λ√

3
+ 2 sin Λ)E2 + (−2 cos Λ +

sin Λ√
3

)JE2,

(dp(X3), 0) = (−2 cos Λ√
3

+ 2 sin Λ)E3 + (2 cos Λ +
sin Λ√

3
)JE3
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and we see that

(65)
∇EX1

(dp(X2), 0) = (2dp(X3), 0), ∇EX2
(dp(X3), 0) = (0, 0),

∇EX1
(dp(X3), 0) = (−2dp(X2), 0), ∇EX3

(dp(X2), 0) = (0, 0),
∇EX2

(dp(X2), 0) = (0, 0), ∇EX3
(dp(X3), 0) = (0, 0).

Moreover, it is straightforward to get

(66) 〈dp(X2), dp(X2)〉 = 〈dp(X3), dp(X3)〉 = 4, 〈dp(X2), dp(X3)〉 = 0.

Next, we want to determine a system of differential equations satisfied by α2 and α3. For this,
we consider S3 × S3 ∈ R4 × R4. On the one hand, we use (64) together with DX(dp(Y ), 0) =
(DXdp(Y ), 0). On the other hand, we use (8) and, therefore, we obtain

(67)
X1(α2) = 2α3, X1(α3) = −2α2,
X2(α2) = 0, X2(α3) = −α2 × α3,
X3(α2) = −α3 × α2, X3(α3) = 0.

We choose a unit quaternion h such that at the point p(x) = 1 we have

α2(1) = −2hjh−1,

α3(1) = −2hkh−1,

α2 × α3(1) = 4hih−1.

Using (63), we can check that α2 = −2hxjx−1h−1, α3 = −2hxkx−1h−1 and α2×α3 = 4hxix−1h−1

are the unique solutions for the system of differential equations in (67):

X1(α2) = X1(−2hxjx−1h−1) = −2(hX1(x)jx−1h−1 + hxjX1(x−1)h−1)

= −4hxkx−1h−1

= 2α3,

X1(α3) = X1(−2hxkx−1h−1) = −2(hX1(x)kx−1h−1 + hxkX1(g−1)h−1)

= 4hxjx−1h−1

= −2α2,

X2(α3) = X2(−2hxkx−1h−1) = −2(hxjkx−1h−1 + hxk(−j)x−1h−1)

= −4hxix−1h−1

= −α2 × α3,

X2(α2) = X2(−2hxjx−1h−1) = −2(hxjjx−1h−1 + hxj(−j)x−1h−1)

= 0,

X3(α3) = X3(−2hxkx−1h−1) = −2(hxkkx−1h−1 + hxk(−k)x−1h−1)

= 0,

X3(α2) = X3(−2hxjx−1h−1) = −2(hxkjx−1h−1 + hxj(−k)x−1h−1)

= 4hxix−1h−1

= α2 × α3.

This in its turn implies that

(68) p(x) = −hixix−1h−1

is the unique solution of Xi(p) = pαi with initial conditions p(1) = 1. Indeed we have

X1(p) = X1(−hixix−1h−1) = 0 = pα1,

X2(p) = X2(−hixix−1h−1) = 2hixkx−1h−1 = (−hixix−1h−1)(−2hxjx−1h−1) = pα2,

X3(p) = X3(−hixix−1h−1) = −2hixjx−1h−1 = (−hixix−1h−1)(−2hxkx−1h−1) = pα3.
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Before we can determine the second component q of the Lagrangian immersion, we need to explore
the Codazzi equations further. First we look at the system of differential equations for the function
Λ in (59) and (60). Notice that by using the relations in (61) we have that

(69)
X1(Λ) = 0,
X2(Λ) = 2h3

23 csc Λ,
X3(Λ) = −2h3

22 csc Λ,

where the last two equations can be seen as the definition for the functions h3
23 and h3

22. The
first one is, of course, a condition for the unknown function of Λ. Three out of the four Codazzi
equations then can be seen as integrability conditions for the existence of a solution of this system,
whereas the last one reduces to

X2(X2(Λ)) +X3(X3(Λ)) = (cot(Λ)− tan(Λ))((X2(Λ))2 + (X3(Λ))2) + 4(1 + 2 cos(2Λ)) cot(Λ).

Under the change of variable Λ = arctan(e2β), this equation simplifies to

(70) X2(X2(β)) +X3(X3(β)) =
2(3− e4β)

e4β
.

Note also that for Λ = π
3 , we get the solution corresponding to example (1) in Theorem 2, as it

follows. From (61) and (69) we see that

X1 =
4√
3
E1,

X2 =
4√
3
E2,

X3 =
4√
3
E3.

This implies that M has constant sectional curvature
√

3
4 . Hence this corresponds to example (1)

in Theorem 2.

Remark 1. Note that there exist at least locally many solutions of the system

X1(β) = 0,

X2(X2(β)) +X3(X3(β)) =
2(3− e4β)

e4β
.

This can be seen by choosing special coordinates on the usual S3. We take

x1 = cos v cos(t+ u),

x2 = cos v sin(t+ u),

x3 = sin v cos(u− t),
x4 = sin v sin(u− t).

As, given (63), at the point x = (x1, x2, x3, x4) the vectors in the basis are

X1(x) = (−x2, x1, x4,−x3),

X2(x) = (−x3,−x4, x1, x2),

X3(x) = (−x4, x3,−x2, x1),

it is straightforward to see that

∂t = X1,

∂u = cos(2v)X1 + sin(2t) sin(2v)X2 + cos(2t) sin(2v)X3,

∂v = cos(2t)X2 − sin(2t)X3,
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and conversely,

X1 = ∂t,

X2 =
sin(2t)

sin(2v)
∂u− sin(2t)

cos(2v)

sin(2v)
∂t+ cos(2t)∂v,

X3 =
cos(2t)

sin(2v)
∂u− cos(2t)

cos(2v)

sin(2v)
∂t− sin(2t)∂v.

At last, the equations in (70) become ∂
∂tβ = 0 and

(71) csc2(2v)
∂2β

∂u2
+
∂2β

∂v2
+ 2 cot(2v)

∂β

∂v
= 2(3e−4β − 1).

The above differential equation is an elliptic quasilinear second order PDE. Hence, we can apply
the Cauchy-Kowalevskaya theorem (see [14]). Therefore, if we start with an analytic regular curve
without self intersections and analytic Cauchy data along the curve, we locally have a unique
(analytic) solution. Given that we can choose arbitrarily both the curve and the Cauchy data
along the curve, locally there exist many solutions for the system in (71).

In the following part we are going to determine the second part of the immersion. We start
with an arbitrary solution of

X1(β) = 0,

X2(X2(β)) +X3(X3(β)) =
2(3− e4β)

e4β

and we are going to find a system of differential equations determining the immersion q. We define
h3

22 and h3
23 as in (69) and such that Λ = arctan(e2β). First, we can write for each of the bases

that we took, {Ei} and {Xi}, the following:

X1(q) = qβ1, X1(p) = pα1,
X2(q) = qβ2, X2(p) = pα2,
X3(q) = qβ3, X3(p) = pα3,

and

E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E2(p) = pα̃2,

E3(q) = qβ̃3, E3(p) = pα̃3,

where α1 = 0 and α2 and α3 are as determined previously. Then, we prove as before that

β̃1 = −
√

3

2 sin2 Λ
α̃2 × α̃3,

β̃2 =
cos(2Λ + 2π

3 )− 1√
3

sin(2Λ + 2π
3 )

1− 2√
3

sin(2Λ + 2π
3 )

α̃2 = 1
2 (1−

√
3 cot Λ)α̃2,(72)

β̃3 =
cos(−2Λ + 2π

3 )− 1√
3

sin(−2Λ + 2π
3 )

1− 2√
3

sin(−2Λ + 2π
3 )

α̃3 = 1
2 (1 +

√
3 cot Λ)α̃3

and we continue the computations in order to find the system of differential equations for the
immersion q in terms of the basis {Xi}. As we identify df(X1) ≡ X1, we have

DX1f = (X1(p), X1(q)) = (0, qβ1) ≡ X1
(61)
=

4√
3
E1 =

4√
3

(pα̃1, qβ̃1).

Therefore, β1 = 4√
3
β̃1. We may compute similarly for DX2f and DX3f and find{

β2 = 2 csc Λ β̃2 − 2√
3
h3

22 csc2 Λ sec Λβ̃1,

β3 = 2 csc Λ β̃3 − 2√
3
h3

23 csc2 Λ sec Λβ̃1,

{
α̃2 = − 1

csc Λhxjx
−1h−1,

α̃3 = − 1
csc Λhxkx

−1h−1

and

β̃1 = −
√

3

2
hxix−1h−1.
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Using now relations (72) we may express

β2 = −(1−
√

3 cot Λ) hxjx−1h−1 + h3
22 csc2 Λ sec Λ hxix−1h−1,

β3 = −(1 +
√

3 cot Λ) hxkx−1h−1 + h3
23 csc2 Λ sec Λ hxix−1h−1.

Finally, as Xi(q) = qβi, we find
X1(q) = −2qhxix−1h−1,

X2(q) = q(h3
22 csc2 Λ sec Λ hxix−1h−1 − (1−

√
3 cot Λ) hxjx−1h−1),

X3(q) = q(h3
23 csc2 Λ sec Λ hxix−1h−1 − (1 +

√
3 cot Λ) hxkx−1h−1),

which, given (69) and Λ = arctan(e2β), is equivalent to
X1(q) = −2qhxix−1h−1,

X2(q) = q
(
−X3(β)hxix−1h−1 − (1−

√
3e−2β) hxjx−1h−1

)
,

X3(q) = q
(
X2(β) hxix−1h−1 − (1 +

√
3e−2β) hxkx−1h−1

)
.

(73)

By straightforward computations, one may see that Xi(Xj(q))−Xj(Xi(q)) = [Xi, Xj ](q) hold for
i, j = 1, 2, 3. Therefore, the immersion f is completely determined by (68) and (73).

3.3.3. Case 3. The minimal surface p(M) is not totally geodesic, but the map P̃ is not
an immersion. As mentioned before this means that

(74) h3
12 = − sin(2Λ)√

3
.

Therefore, the equations in subsection 3.2 which follow from (23) and (24) become

h2
12 = −h3

13, ω3
12 = 1+2 cos(2Λ)

2
√

3
, ω2

21 = ω3
31 = −h3

13 cot Λ,

h2
11 = h3

11 = 0, ω3
21 = 1+2 cos(2Λ)

2
√

3
, ω2

31 = − 1+2 cos(2Λ)

2
√

3
,

ω2
11 = ω3

11 = 0, ω3
22 = −h3

22 cot(2Λ), ω3
32 = −h3

23 cot(2Λ)

and

(75) E1(Λ) = h3
13, E2(Λ) = h3

23, E3(Λ) = −h3
22.

Moreover, the equations of Codazzi in (39) yield h3
13 = 0 and, therefore, ω2

21 = ω3
31 = 0. The first

two equations in (40) imply that

E1(h3
23) = 0 and E1(h3

22) = 0,

while the next three ones vanish identically. The last two equations in (40) become

(76) E2(h3
22) = −E3(h3

23)

and

(77) −1− [1 + 6(h3
22)2 + 6(h3

23)2] cos 2Λ + cos 4Λ + cos 6Λ + 2[−E3(h3
22) + E2(h3

23)] sin 2Λ = 0,

respectively. The Lie brackets of the vector fields E1, E2, E3 give

[E1, E2] = 0,

[E1, E3] = 0,

[E2, E3] = −1 + 2 cos(2Λ)√
3

E1 + h3
22 cot(2Λ)E2 + h3

23 cot(2Λ)E3.

Next, we take new vector fields X1, X2, X3 of the form

X1 = E1,

X2 =

√
2(h3

22 − h3
23)

3
3
4 (sin(2Λ))

3
2

E1 +

√
2

3
1
4

√
sin(2Λ)

E2 −
√

2

3
1
4

√
sin(2Λ)

E3,(78)

X3 =

√
2(h3

22 + h3
23)

3
3
4 (sin(2Λ))

3
2

E1 +

√
2

3
1
4

√
sin(2Λ)

E2 +

√
2

3
1
4

√
sin(2Λ)

E3.



20 B. BEKTAŞ, M. MORUZ, J. VAN DER VEKEN, AND L. VRANCKEN

We can easily check that [X1, X2] = 0, [X1, X3] = 0 and [X2, X3] = 0, therefore, by the lemma on
page 155 in [2], we know that there exist coordinates {t, u, v} on M such that

X1 = ∂t,

X2 = ∂u,

X3 = ∂v.

Using (75) we obtain:

Λt = 0,

Λu =
h3

22 + h3
23

31/4
√

cos Λ sin Λ
,

Λv =
−h3

22 + h3
23

31/4
√

cos Λ sin Λ
.

Furthermore, we express h3
22 and h3

23 from the previous relations as

h3
22 =

1

2
31/4(Λu − Λv)

√
cos Λ sin Λ,

h3
23 =

1

2
31/4(Λu + Λv)

√
cos Λ sin Λ

and therefore, the expression of (78) becomes

X1 = E1,

X2 = −Λv csc(2Λ)√
3

E1 +
1

3
1
4

√
cos Λ sin Λ

E2 −
1

3
1
4

√
cos Λ sin Λ

E3,(79)

X3 =
Λu csc(2Λ)√

3
E1 +

1

3
1
4

√
cos Λ sin Λ

E2 +
1

3
1
4

√
cos Λ sin Λ

E3.

Finally, by straightforward computations, one may see that equation (77) becomes

(80) −
√

3(Λ2
u + Λ2

v) cos(2Λ) + 3
1
4 (E2(Λu)− E3(Λu) + E2(Λv) + E3(Λv))

√
cos Λ sin Λ−

− 2(sin(2Λ) + sin(4Λ)) = 0.

We compute dp(∂u) and dp(∂v):

dp (∂u) =

√
3− 2 cos

(
2Λ + π

6

)
33/4
√

2
√

sin(2Λ)
E2 +

2 sin
(
2Λ + π

3

)
−
√

3

33/4
√

2
√

sin(2Λ)
E3 +

2 cos
(
2Λ + 2π

3

)
+ 1

33/4
√

2
√

sin(2Λ)
JE2+

2 cos
(
2Λ + π

3

)
− 1

33/4
√

2
√

sin(2Λ)
JE3,

dp(∂v) =

√
3− 2 cos

(
2Λ + π

6

)
33/4
√

2
√

sin(2Λ)
E2 −

2 sin
(
2Λ + π

3

)
−
√

3

33/4
√

2
√

sin(2Λ)
E3 +

2 cos
(
2Λ + 2π

3

)
+ 1

33/4
√

2
√

sin(2Λ)
JE2−

2 cos
(
2Λ + π

3

)
− 1

33/4
√

2
√

sin(2Λ)
JE3,

and we remark that they are mutually orthogonal and that their length is 2 tan Λ√
3
. So, as u, v are

isothermal coordinates on the surface, for which 〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 2eω, we obtain that

(81) eω =
tan Λ√

3
.
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On the one hand, for z = x+ Iy as in subsection 3.1, we may compute dp(∂z):

dp(∂z) =
1

2
[dp (∂u)− I · dp (∂v)]

=
1

2
√

2 33/4
√

sin(2Λ)

[
(1− I)

(√
3− 2 cos

(
2Λ +

π

6

))
E2−

(1 + I)
(√

3− 2 sin
(

2Λ +
π

3

))
E3 + (1− I)

(
2 cos

(
2Λ +

2π

3

)
+ 1

)
JE2+

(1 + I)
(

2 cos
(

2Λ +
π

3

)
− 1
)
JE3

]
.

As
√

3− 2 cos
(

2Λ +
π

6

)
= 2 sin Λ(

√
3 sin Λ + cos Λ), 2 sin

(
2Λ +

π

3

)
−
√

3 = 2 sin Λ(cos Λ−
√

3 sin Λ),

2 cos

(
2Λ +

2π

3

)
+ 1 = 2 sin Λ(sin Λ−

√
3 cos Λ), 2 cos

(
2Λ +

π

3

)
− 1 = −2 sin Λ(sin Λ +

√
3 cos Λ),

we finally have

dp(∂z) =
sin Λ√

2 33/4
√

sin(2Λ)

[
(1− I)

(√
3 sin Λ + cos Λ

)
E2 + (1 + I)

(
cos Λ−

√
3 sin Λ

)
E3+

+(1− I)
(

sin Λ−
√

3 cos Λ
)
JE2 − (1 + I)

(
sin Λ +

√
3 cos Λ

)
JE3

]
.

Moreover, from (81), it follows that ωz = 1
sin(2Λ) (Λu − iΛv).

On the other hand, we may compute ∇E∂zdp(∂z) using the Euclidean connection ∇E :

∇E∂zdp(∂z) = − 1√
3
E1 +

e−
iπ
4 sin2 Λ

(√
3 cot Λ + 3

)
(Λu − iΛv)

3 4
√

3 sin
3
2 (2Λ)

E2+

e−
iπ
4 sin Λ(Λv + iΛu)

(√
3 cos Λ− 3 sin Λ

)
3 4
√

3 sin
3
2 (2Λ)

E3 + JE1+

e−
iπ
4 sin Λ(Λu − iΛv)

(√
3 sin Λ− 3 cos Λ

)
3 4
√

3 sin
3
2 (2Λ)

JE2−(
1
3 + i

3

)
sin Λ(Λu − iΛv)

(√
3 sin Λ + 3 cos Λ

)
√

2 4
√

3 sin
3
2 (2Λ)

JE3.

From the previous computations we see, indeed, that

∇E∂zdp(∂z) = −N + ωzdp(∂z),

which corresponds to (15). From here, we remark the component in the direction of the normal
N = ξ (see subsection 3.2) and we see that the choice of coordinates {t, u, v} following from (78)
is the right one, as we have indeed σ(∂z, ∂z) = −1, as in subsection 3.1. Using (81) together with
the fact that, by taking the inverse in (79), we have

E1 = ∂t,

E2 =
3

1
4

√
sin(2Λ)

2
√

2

(
Λv − Λu√
3 sin(2Λ)

∂t+ ∂u+ ∂v

)
,

E3 = −
3

1
4

√
sin(2Λ)

2
√

2

(
Λv + Λu√
3 sin(2Λ)

∂t+ ∂u− ∂v
)
,

we may prove that equation (80) is equivalent to the Sinh-Gordon equation in (16), which charac-
terizes the minimal surface.
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Reverse construction

Let S be a minimal surface given by p : S → S3 ⊂ R4, on which we take isothermal coordinates
u and v as in subsection 3.1. Hence, we have a solution ω of the Sinh-Gordon equation ∆ω =
−8 sinhω. Next, we define a function Λ ∈ (0, π2 ) such that

eω =
tan Λ√

3
.

Remark 2. If ω = 0, then Λ = π
3 , which corresponds to example (2) in Theorem 2.

We then define a metric on an open part of the unit frame bundle of the surface by assuming
that the vectors

E1 = ∂t,

E2 =

√
3eω/2

2
√

1 + 3e2ω

(
ωv − ωu

2
√

3
∂t+ ∂u+ ∂v

)
,(82)

E3 = −
√

3eω/2

2
√

1 + 3e2ω

(
ωv + ωu

2
√

3
∂t+ ∂u− ∂v

)
form an orthonormal basis. Next, we want to determine the Lagrangian immersion

f : S × I → S3 × S3

(u, v, t) 7→ f(u, v, t) = (p(u, v, t), q(u, v, t)),

for which we already know that the first component is the given minimal surface p. We write for
both bases

∂
∂t (q) = qβ1,

∂
∂t (p) = pα1,

∂
∂u (q) = qβ2,

∂
∂u (p) = pα2,

∂
∂v (q) = qβ3,

∂
∂v (p) = pα3

and

E1(q) = qβ̃1, E1(p) = pα̃1,

E2(q) = qβ̃2, E2(p) = pα̃2,

E3(q) = qβ̃3, E3(p) = pα̃3.

Note that α1 = 0 and α2 and α3 are determined by the minimal surface. In particular α2 and α3

are mutually orthogonal imaginary quaternions with length squared 2eω. From the derivates of p
in the latter relations together with (82), we obtain

α̃1 = 0,

α̃2 =

√
3eω/2

2
√

1 + 3e2ω
(α2 + α3),(83)

α̃2 = −
√

3eω/2

2
√

1 + 3e2ω
(α2 − α3).

We then follow the same steps as in Case 1 and obtain

β̃1 = −
√

3e−ω

4
α2 × α3,

β̃2 =

√
3(eω/2 − e−ω/2)

4
√

1 + 3e2ω
(α2 + α3),(84)

β̃3 = −
√

3(eω/2 − e−ω/2)

4
√

1 + 3e2ω
(α2 − α3).
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Finally, we take the inverse of the matrix which give {Ei} in the basis {∂t, ∂u, ∂v} in (82) and
obtain

β1 = −
√

3e−ω

4
α2 × α3,

β2 =
e−ω

8
(4eωα2 − 4α3 + ωvα2 × α3),

β3 = −e
−ω

8
(4α2 − 4eωα3 + ωuα2 × α3).

By straightforward computations, it now follows that

∂β1

∂u
− ∂β2

∂t
− 2β1 × β2 = 0,

∂β1

∂v
− ∂β3

∂t
− 2β1 × β3 = 0,

∂β3

∂u
− ∂β2

∂v
− 2β3 × β2 = 0,

from which we deduce that the integrability conditions for the immersion q are satisfied.

4. Conclusion

The results in Section 3.3 can now be summarized in the following theorems.

Theorem 4. Let ω and µ be solutions of, respectively, the Sinh-Gordon equation ∆ω = −8 sinhω
and the Liouville equation ∆µ = −eµ on an open simply connected domain U ⊆ C and let p : U →
S3 be the associated minimal surface with complex coordinate z such that σ(∂z, ∂z) = −1.
Let V = {(z, t) | z ∈ U, t ∈ R, eω+µ − 2− 2 cos(4t) > 0} and let Λ be a solution of(

2
√

3eω

tan Λ
− 2 sin(2t)

)
= eω+µ − 2− 2 cos(4t)

on V . Then, there exists a Lagrangian immersion f : V → S3 × S3 : x 7→ (p(x), q(x)), where q is
determined by

∂q

∂t
=−

√
3

2
√

3eω − 2 sin(2t) tan Λ
q α2 × α3,

∂q

∂u
=

1

8

(
e−ω

(
µv + ωv −

(µu + ωu) cos(2t) tan Λ√
3eω − sin(2t) tan Λ

)
q α2 × α3 − 4(

√
3 cot Λ cos(2t) + 1) q α2−

4
√

3 sin(2t) cot Λ q α3

)
,

∂q

∂v
=

1

8

(
−e−ω

(
µu + ωu +

(µv + ωv) cos(2t) tan Λ√
3eω − sin(2t) tan Λ

)
q α2 × α3 − 4

√
3 cot Λ sin(2t) q α2+

4(1 +
√

3 cos(2t) cot Λ) q α3

)
,

where α2 = p̄pu and α3 = p̄pv.

Theorem 5. Let X1, X2, X3 be the standard vector fields on S3. Let β be a solution of the
differential equations

X1(β) = 0,

X2(X2(β)) +X3(X3(β)) =
2(3− e4β)

e4β
,

on a connected, simply connected open subset U of S3.
Then there exist a Lagrangian immersion f : U → S3 × S3 : x 7→ (p(x), q(x)), where p(x) = xix−1
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and q is determined by

X1(q) = −2qhxix−1h−1,

X2(q) = q
(
−X3(β)hxix−1h−1 − (1−

√
3e−2β) hxjx−1h−1

)
,

X3(q) = q
(
X2(β) hxix−1h−1 − (1 +

√
3e−2β) hxkx−1h−1

)
.

Note that in the previous theorem the image of p is a totally geodesic surface in S3.

Theorem 6. Let ω be a solution of the Sinh-Gordon equation ∆ω = −8 sinhω on an open con-
nected domain of U in C and let p : U → S3 be the associated minimal surface with complex
coordinate z such that σ(∂z, ∂z) = −1. Then, there exist a Lagrangian immersion f : U × I →
S3 × S3 : x 7→ (p(x), q(x)), where q is determined by

∂q

∂t
= −
√

3e−ω

4
q α2 × α3,

∂q

∂u
=
e−ω

8
(4eωqα2 − 4qα3 + ωvq α2 × α3),

∂q

∂v
= −e

−ω

8
(4qα2 − 4eωqα3 + ωuq α2 × α3).

where α2 = p̄pu and α3 = p̄pv.

Theorem 7. Let f : M → S3 × S3 : x 7→ (p(x), q(x)) be a Lagrangian immersion such that p has
nowhere maximal rank. Then every point x of an open dense subset of M has a neighborhood U
such that f |U is obtained as described in Theorem 4, 5 or 6.
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[20] L. Schäfer, K. Smoczyk, Decomposition and minimality of Lagrangian submanifolds in nearly Kähler manifolds,
Ann. Global Anal. Geom. 37 (2010), no. 3, 221–240.

[21] Z. I. Szabo, Structure theorems on riemannian spaces satisfying R(X,Y ) · R = 0. I. the local version, J.

Differential Geom. 17 (1982), no. 4, 531–582.



LAGRANGIAN SUBMANIFOLDS OF THE NEARLY KÄHLER S3 × S3 25
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LAMAV, ISTV2 Université de Valenciennes, Campus du Mont Houy, 59313 Valenciennes Cedex 9,

France

E-mail address: marilena.moruz@gmail.com

KU Leuven, Department of Mathematics, Celestijnenlaan 200B – Box 2400, BE-3001 Leuven, Belgium

E-mail address: joeri.vanderveken@wis.kuleuven.be
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