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We consider second-order evolution equations in an abstract setting with damping and time delay and give sufficient conditions ensuring exponential stability. Our abstract framework is then applied to the wave equation, the elasticity system and the Petrovsky system.

Introduction

Let H be a real Hilbert space with norm and inner product denoted respectively by • H and •, • H and let A : D(A) → H be a positive self-adjoint operator with a compact inverse in H. Denote by V := D(A 1 2 ) the domain of A 1 2 . Moreover, for i = 1, 2, let U i be real Hilbert spaces with norm and inner product denoted respectively by • U i and •, • U i and let B i : U i → V ′ be linear operators. In this setting we consider the problem

u tt (t) + Au(t) + B 1 B * 1 u t (t) + B 2 B * 2 u t (t -τ ) = 0 t > 0, (1.1) 
u(0) = u 0 and u t (0) = u 1 , (1.2) 
B * 2 u t (t) = f 0 (t) t ∈ (-τ, 0), (1.3) where the constant τ > 0 is the time delay. We assume that the delay feedback operator B 2 is bounded, that is B 2 ∈ L(U 2 , H), while the standard one B 1 ∈ L(U 1 , V ′ ) may be unbounded. Time delays are often present in applications and practical problems and it is by now wellknown that even an arbitrarily small delay in the feedback may destabilize a system which is uniformly exponentially stable in absence of delay. For some examples in this sense we refer to [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF]. [START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay[END_REF] We are interested in giving stability results for the above problem under a suitable assumption on the "size " of the feedback operator B 2 , when the feedback B 1 is a stabilizing one. More precisely, we will show that for a system which is exponentially stable in absence of time delay, i.e. for B 2 = 0, the exponential stability is preserved if B * 2 is sufficiently small. In this sense this paper extends and generalizes the result of [START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF] for wave equation with local damping and time delay. On the other hand it completes the analysis of [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF]. Indeed here we do not assume [START_REF] Nicaise | Stabilization of second order evolution equations with unbounded feedback with delay[END_REF] (cfr. assumption (1.8) of [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] for the wave equation).

∃ α < 1 such that B * 2 u U 2 ≤ α B * 1 u U 1 , ∀ u ∈ V ; as in
Assuming that an observability inequality holds for the system (1.1), (1.2) when B 2 = 0, through the definition of a suitable energy (see (3.2)) and the use of a perturbation argument as in [START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF], we obtain sufficient conditions ensuring exponential stability. Our abstract framework is then applied to some concrete examples, namely the wave equation, the elasticity system and the Petrovsky system.

The paper is organized as follows. In section 2 a well-posedness result of the abstract system is proved. In section 3 we obtain exponential stability results for the abstract system under suitable conditions. Finally, in sections 4, 5 and 6 we apply our abstract results to the wave equation with local and boundary dampings, the elasticity system and the Petrovsky system respectively. Other examples (like wave or beam equations on networks) could be given, we skip them for shortness.

Well-posedness

In this section we will give well-posedness results for problem (1.1)-(1.3) using semigroup theory.

As in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] we introduce the function z(ρ, t) := B * 2 u t (tτ ρ), ρ ∈ (0, 1), t > 0.

(2.1)

Then, problem (1.1)-(1.3) can be rewritten as

u tt (t) + Au(t) + B 1 B * 1 u t (t) + B 2 z(1, t) = 0 t > 0, (2.2) 
τ z t (ρ, t) + z ρ (ρ, t) = 0, ρ ∈ (0, 1), t > 0, (2.3) 
u(0) = u 0 and u t (0) = u 1 , (2.4) 
z(ρ, 0) = f 0 (-τ ρ) ρ ∈ (0, 1), (2.5) z(0, t) = B * 2 u t (t), t > 0. (2.6)
If we denote U := (u, u t , z) T , then U ′ = (u t , u tt , z t ) T and U satisfies

U ′ = AU U (0) = (u 0 , u 1 , f 0 (-τ •)) T , (2.7) 
where the operator A is defined by

A   u v z   :=   v -Au -B 1 B * 1 v -B 2 z(1) -τ -1 z ρ   , (2.8) 
with domain

D(A) := (u, v, z) T ∈ V × V × H 1 ((0, 1); U 2 ) : Au + B 1 B * 1 v ∈ H and z(0) = B * 2 v . (2.9)
Denote by H the Hilbert space

H := V × H × L 2 ((0, 1); U 2 ), (2.10) 
equipped with the inner product

  u v z   ,   ũ ṽ z   H := A 1 2 u, A 1 2 ũ H + v, ṽ H + ξ 1 0 z(ρ), z(ρ) U 2 dρ, (2.11) 
where ξ is any fixed positive number.

The following well-posedness result holds.

Proposition 2.1 For any initial datum U 0 ∈ H there exists a unique solution

U ∈ C([0, +∞), H) of problem (2.7). Moreover, if U 0 ∈ D(A), then U ∈ C([0, +∞), D(A)) ∩ C 1 ([0, +∞), H).
Proof. We will show that the operator A defined by (2.8), (2.9) generates a strongly continuous semigroup in the Hilbert H defined in (2.10), (2.11).

Denoting by I the identity operator, we first show that there exists a positive constant c such that A -cI is dissipative (cfr. [START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay[END_REF]). Let (u, v, z) T ∈ D(A), then

A   u v z   ,   u v z   H :=   v -Au -B 1 B * 1 v -B 2 z(1) -τ -1 z ρ   ,   u v z   H = A 1 2 v, A 1 2 u H -Au + B 1 B * 1 v + B 2 z(1), v H -ξ 1 0 z ρ (ρ), z(ρ) U 2 dρ . Since Au + B 1 B * 1 v + B 2 z(1) ∈ H ⊂ V ′ , by duality we have A   u v z   ,   u v z   H = A 1 2 v, A 1 2 u H -Au, v V ′ ,V -B 1 B * 1 v, v V ′ ,V -B 2 z(1), v V ′ ,V -ξ 1 0 z ρ (ρ), z(ρ) U 2 dρ = -B * 1 v U 1 -z(1), B * 2 v U 2 -ξ 1 0 z ρ (ρ), z(ρ) U 2 dρ .
Integrating by parts and using the relation

z(0) = B * 2 v, we get 1 0 z ρ (ρ), z(ρ) U 2 dρ = 1 2 ( z(1) 2 U 2 -B * 2 v 2 U 2 ),
thus, using also Young's inequality

A   u v z   ,   u v z   H ≤ ξ 2 + 1 2ξ B * 2 v 2 U 2 ≤ c v 2 H ,
for a suitable constant c > 0. Hence, the operator A -cI is dissipative. Now, we show that λI -A is surjective for some λ > 0. Given (f, g, h) T ∈ H we seek (u, v, z) T ∈ D(A) such that

(λI -A)   u v z   =   f g h   .
This is equivalent to

λu -v = f ;
(2.12)

λv + Au + B 1 B * 1 v + B 2 z(1) = g ; (2.13) λz + τ -1 z ρ = h . (2.14)
Analogously to [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF], suppose that we have found u with the appropriate regularity. Then, by (2.12) 

, v = λu -f ∈ V . ( 2 
λ 2 u + Au + λB 1 B * 1 u + B 2 z(1) = g + λf + B 1 B * 1 f ,
and then, by (2.17),

λ 2 u + Au + λB 1 B * 1 u + λe -λτ B 2 B * 2 u = g + λf + B 1 B * 1 f -B 2 z 0 . (2.18)
We denote the right-hand side of (2.18) by w, namely

w := g + λf + B 1 B * 1 f -B 2 z 0 ∈ H ⊂ V ′ .
Then, from (2.18), we have

λ 2 u + Au + λB 1 B * 1 u + λe -λτ B 2 B * 2 u, ϕ V ′ ,V = w, ϕ V ′ ,V .
Since u ∈ V ⊂ H, we can rewrite

λ 2 u + Au + λB 1 B * 1 u + λe -λτ B 2 B * 2 u, ϕ V ′ ,V = λ 2 u, ϕ V ′ ,V + Au, ϕ V ′ ,V + λ B * 1 u, B * 1 ϕ V ′ ,V + λe -λτ B * 2 u, B * 2 ϕ V ′ ,V = λ 2 u, ϕ H + A 1 2 u, A 1 2 ϕ H + λ B * 1 u, B * 1 ϕ U 1 + λe -λτ B * 2 u, B * 2 ϕ U 2 .
Therefore, we obtain

λ 2 u, ϕ H + A 1 2 u, A 1 2 ϕ H + λ B * 1 u, B * 1 ϕ U 1 + λe -λτ B * 2 u, B * 2 ϕ U 2 = w, ϕ V ′ ,V . (2.19) 
The left-hand side of (2. [START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF]) is a continuous and coercive bilinear form on V. Then, Lax-Milgram's lemma implies the existence of a unique solution u ∈ V of (2.19) that satisfies

λ 2 u + Au + λB 1 B * 1 u + λe -λτ B 2 B * 2 u = w in V ′ .
This implies that Au ∈ H and by defining v by (2.15) and z by (2.16), we have found (u, v, z) T ∈ D(A) satisfying (2.12)- (2.14). This implies that λI -A is surjective for all λ > 0 and the same holds for the operator λI -(A -cI).

Then, the Lumer-Phillips Theorem implies that A -cI generates a strongly continuous semigroup of contraction in H. Hence, the operator A generates a strongly continuous semigroup in H.

Stability result

For a fixed constant ξ satisfying ξ > 1, (

we define the energy functional for solutions to problem (1.1)-(1.3) as

E(t) := E(u, t) = 1 2 ( A 1 2 u(t) 2 H + u t (t) 2 H ) + ξ 2 t t-τ B * 2 u t (s) 2 U 2 ds . (3.2) 
We can obtain a first estimate. 3)

E ′ (t) ≤ -B * 1 u t (t) 2 U 1 + 1 + ξ 2 B * 2 u t (t) 2 U 2 - ξ -1 2 B * 2 u t (t -τ ) 2 U 2 . (3.3) Proof: Differentiating E(t) we get E ′ (t) = A 1 2 u(t), A 1 2 u t (t) H + u t (t), u tt (t) H + ξ 2 B * 2 u t (t) 2 U 2 - ξ 2 B * 2 u t (t -τ ) 2 U 2 .
Hence using the definition of A and (1.1) we get successively

E ′ (t) = Au(t), u t (t) V ′ ,V -u t (t), Au(t) V,V ′ -u t (t), B 1 B * 1 u t (t) V,V ′ -u t (t), B 2 B * 2 u t (t -τ ) V,V ′ + ξ 2 B * 2 u t (t) 2 U 2 - ξ 2 B * 2 u t (t -τ ) 2 U 2 .
Then,

E ′ (t) = -B * 1 u t (t) 2 U 1 -B * 2 u t (t), B * 2 u t (t -τ ) U 2 + ξ 2 B * 2 u t (t) 2 U 2 - ξ 2 B * 2 u t (t -τ ) 2 U 2 ,
and (3.3) follows from Cauchy-Schwarz's inequality.

Note that, from (3.3), the energy of solutions to problem (1.1)-(1.3) is not decreasing in general. Indeed the second term in the right-hand side of (3.3), coming from the delay term in (1.1), is non negative. We now consider, as in [START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF], the next auxiliary problem which is close to the first one but whose energy is decreasing.

ϕ tt (t) + Aϕ(t) + B 1 B * 1 ϕ t (t) + B 2 B * 2 ϕ t (t -τ ) + ξB 2 B * 2 ϕ t (t) = 0, t > 0, (3.4 
)

ϕ(0) = ϕ 0 , ϕ t (0) = ϕ 1 , (3.5) 
B * 2 ϕ t (t) = g 0 (t), t ∈ (-τ, 0), (3.6) 
where ξ is the same constant as in (3.2).

The well-posedness of system (3.4)-(3.6) can be proved using standard semigroup theory as in Proposition 2.1. Analogously to above we introduce the function

η(ρ, t) = B * 2 ϕ t (t -τ ρ), ρ ∈ (0, 1), t > 0;
and we rewrite the problem in the abstract form

Φ ′ = A 0 Φ , Φ(0) = (ϕ 0 , ϕ 1 , g 0 (-τ •)) T , (3.7) 
where the operator A 0 is defined by (2.9)) in the Hilbert space H defined by (2.10) and (2.11).

A 0   ϕ ψ η   :=   ψ -Aϕ -B 1 B * 1 ψ -B 2 η(1) -ξB 2 B * 2 ψ -τ -1 η ρ   , with domain D(A 0 ) = D(A) (see

Proposition 3.2 For any initial datum

Φ 0 ∈ H there exists a unique solution Φ ∈ C([0, +∞), H) of problem (3.7). Moreover, if Φ 0 ∈ D(A 0 ), then Φ ∈ C([0, +∞), D(A 0 )) ∩ C 1 ([0, +∞), H).
For solutions of problem (3.4)-(3.6) the energy F (•),

F (t) := F (ϕ, t) = 1 2 ( A 1 2 ϕ(t) 2 H + ϕ t (t) 2 H ) + ξ 2 t t-τ B * 2 ϕ t (s) 2 U 2 ds , (3.8) 
with ξ satisfying (3.1), is decreasing in time.

More precisely, we have the following result. 

F ′ (t) ≤ -B * 1 ϕ t (t) 2 U 1 - ξ -1 2 B * 2 ϕ t (t) 2 U 2 - ξ -1 2 B * 2 ϕ t (t -τ ) 2 U 2 . (3.9)
Then, if ξ satisfies (3.1), the energy F (•) is decreasing.

Proof. In order to have (3.9) we differentiate (3.8). Hence, using the definition of A and (3.4), we obtain

F ′ (t) = A 1 2 ϕ, A 1 2 ϕ t H + ϕ t , ϕ tt H + ξ 2 B * 2 ϕ t (t) 2 U 2 - ξ 2 B * 2 ϕ t (t -τ ) 2 U 2 = Aϕ(t), ϕ t (t) V ′ ,V -ϕ t (t), Aϕ(t) V,V ′ -ϕ t (t), B 1 B * 1 ϕ t (t) V,V ′ -ξ ϕ t (t), B 2 B * 2 ϕ t (t) V,V ′ -ϕ t (t), B 2 B * 2 ϕ t (t -τ ) V,V ′ + ξ 2 B * 2 ϕ t (t) 2 U 2 - ξ 2 B * 2 ϕ t (t -τ ) 2 U 2 .
Then,

F ′ (t) = -B * 1 ϕ t (t) 2 U 1 -ξ B * 2 ϕ t (t) 2 U 2 -B * 2 ϕ t (t), B * 2 ϕ t (t -τ ) U 2 + ξ 2 B * 2 ϕ t (t) 2 U 2 - ξ 2 B * 2 ϕ t (t -τ ) 2 U 2 ,
and therefore (3.8) follows from Cauchy-Schwarz's inequality.

Consider now the following damped system associated with (1.1) and (1.2),

w tt (t) + Aw(t) + B 1 B * 1 w t = 0 t > 0 (3.10) w(0) = w 0 and w t (0) = w 1 (3.11)
with (w 0 , w 1 ) ∈ V × H. For our stability result we need that this system is exponentially stable or equivalently that the next observability inequality holds (see Lemma 3.2 of [START_REF] Nicaise | Stability and controllability of an abstract evolution equation of hyperbolic type and concrete applications[END_REF]). Namely we assume that there exists a time T > 0 such that for every time T > T there is a constant c, depending on T but independent of the initial data, such that

E S (0) ≤ c T 0 B * 1 w t (t) 2 U 1 dt, (3.12) 
for every weak solution of problem (3.10), (3.11) with initial data (w 0 , w 1 ) ∈ V × H.

Here E S (•) denotes the standard energy for wave type equations, that is

E S (t) = E S (w, t) := 1 2 ( A 1 2 w(t) 2 H + w t (t) 2 H ).
For shortness let us denote by C 2 the norm of B 2

B 2 = B * 2 = C 2 . (3.13)
We can prove an exponential stability result for the perturbed problem (3.4)-(3.6).

Theorem 3.4 Assume that (3.1) holds and that the observability estimate (3.12) holds for problem (3.10) -(3.11). Then, there are two positive constants K, μ such that

F (t) ≤ Ke -μt F (0), t > 0, (3.14) 
for any solution of problem (3.4) -(3.6). In particular,

K = C 0 + 1 C 0 , (3.15) μ = 1 2T ln C 0 + 1 C 0 , (3.16) 
with T any fixed time satisfying T > max {T , τ }, T being an observability time for (3.12), and

C 0 = max 2c, 32cT C 2 2 + ξ ξ -1 , 32cC 2 2 T ξ 2 ξ -1 , (3.17)
where C 2 is as in (3.13) and c := c(T ) is the observability constant in (3.12).

Proof. Following a classical argument (see [START_REF] Zuazua | Exponential decay for the semi-linear wave equation with locally distributed damping[END_REF]) we can decompose the solution ϕ of (3.4)-(3.6) as ϕ = w + w where w is the solution of system (3.10), (3.11) with w 0 = ϕ 0 , w 1 = ϕ 1 ; while w solves

wtt (t) + A w(t) + B 1 B * 1 wt (t) = -ξB 2 B * 2 ϕ t (t) -B 2 B * 2 ϕ t (t -τ ) t > 0 (3.18)
w(0) = 0 and wt (0

) = 0 (3.19)
By (3.8),

F (0) = E S (w, 0) + ξ 2 0 -τ B * 2 ϕ t (s) 2 U 2 ds = E S (w, 0) + ξ 2 τ 0 B * 2 ϕ t (t -τ ) 2 U 2 dt .
Therefore, from (3.12), if T > max{T , τ } we obtain

F (0) ≤ c T 0 B * 1 w t (t) 2 U 1 dt + ξ 2 T 0 B * 2 ϕ t (t -τ ) 2 U 2 dt ≤ 2c T 0 ( B * 1 ϕ t (t) 2 U 1 + B * 1 wt (t) 2 U 1 )dt + ξ 2 T 0 B * 2 ϕ t (t -τ ) 2 U 2 dt, (3.20) 
where c is the observability constant for the damped system (3.10), (3.11). Now, observe that from (3.18),

d dt 1 2 ( wt (t) 2 H + A 1 2 w(t) 2 H ) + B * 1 wt 2 U 1 = wt , wtt + A w + B 1 B * 1 wt = wt , -ξB 2 B * 2 ϕ t (t) -B 2 B * 2 ϕ t (t -τ ) H .
Integrating in time from 0 to t, for t ∈ (0, 2T ], and using (3.19) we have

1 2 ( wt (t) 2 H + A 1 2 w(t) 2 H ) + t 0 B * 1 wt (s) 2 U 1 ds = t 0 wt , -ξB 2 B * 2 ϕ t (s) -B 2 B * 2 ϕ t (s -τ ) H ds ,
and then

wt (t) 2 H + 2 t 0 B * 1 wt (s) 2 U 1 ds ≤ 1 8T C 2 2 t 0 B * 2 wt (s) 2 U 2 ds + 8T C 2 2 ξ 2 t 0 B * 2 ϕ t (s) 2 U 2 ds + 1 8T C 2 2 t 0 B * 2 wt (s) 2 U 2 ds + 8T C 2 2 t 0 B * 2 ϕ t (s -τ ) 2 U 2 ds , (3.21) 
where C 2 was defined in (3.13). This estimate directly implies that for all t ∈ [0, 2T ], one has

wt (t) 2 H + 2 t 0 B * 1 wt (s) 2 U 1 ds ≤ 1 4T C 2 2 2T 0 B * 2 wt (s) 2 U 2 ds + 8T C 2 2 ξ 2 2T 0 B * 2 ϕ t (s) 2 U 2 ds +8T C 2 2 2T 0 B * 2 ϕ t (s -τ ) 2 U 2 ds , (3.22 
) and so, integrating in [0, 2T ],

2T 0 wt (t) 2 H dt + 2 2T 0 t 0 B * 1 wt (s) 2 U 1 ds dt ≤ 1 2C 2 2 2T 0 B * 2 wt (s) 2 U 2 ds +16T 2 C 2 2 ξ 2 2T 0 B * 2 ϕ t (s) 2 U 2 ds + 16T 2 C 2 2 2T 0 B * 2 ϕ t (s -τ ) 2 U 2 ds . (3.23)
Therefore,

1 2 2T 0 wt (t) 2 H dt + 2 2T 0 t 0 B * 1 wt (s) 2 U 1 ds dt ≤ 16T 2 C 2 2 ξ 2 2T 0 B * 2 ϕ t (s) 2 U 2 ds +16T 2 C 2 2 2T 0 B * 2 ϕ t (s -τ ) 2 U 2 ds , from which follows 2T 0 t 0 B * 1 wt (s) 2 U 1 ds dt ≤ 8T 2 C 2 2 ξ 2 2T 0 B * 2 ϕ t (s) 2 U 2 ds +8T 2 C 2 2 2T 0 B * 2 ϕ t (s -τ ) 2 U 2 ds .
Using the fact that

2T 0 t 0 B * 1 wt (s) 2 U 1 ds dt = 2T 0 B * 1 wt (s) 2 U 1 (2T -s) ds ≥ T 0 B * 1 wt (s) 2 U 1 (2T -s) ds ≥ T T 0 B * 1 wt (s) 2 U 1 ds,
we deduce that

T 0 B * 1 wt (s) 2 U 1 ds ≤ 8T C 2 2 ξ 2 2T 0 B * 2 ϕ t (s) 2 U 2 ds +8T C 2 2 2T 0 B * 2 ϕ t (s -τ ) 2 U 2 ds . (3.24) 
Using (3.24) in (3.20) we obtain

F (0) ≤ 2c T 0 B * 1 ϕ t (t) 2 U 1 dt + (16cT C 2 2 + ξ 2 ) 2T 0 B * 2 ϕ(t -τ ) 2 U 2 dt +16cC 2 2 T ξ 2 2T 0 B * 2 ϕ t (t) 2 U 2 dt, (3.25) 
that we rewrite as

F (0) ≤ 2c 2T 0 B * 1 ϕ t (t) 2 U 1 dt + 32cT C 2 2 + ξ ξ -1 ξ -1 2 2T 0 B * 2 ϕ(t -τ ) 2 U 2 dt + 32cC 2 2 T ξ 2 ξ -1 ξ -1 2 2T 0 B * 2 ϕ(t) 2 U 2 dt ≤ -C 0 2T 0 F ′ (t)dt, (3.26) 
with C 0 as in (3.17). Therefore, from (3.26), using also that F (•) is decreasing we obtain

F (2T ) ≤ F (0) ≤ C 0 (F (0) -F (2T )).
Then, For all ξ > 1 in the definition (3.2), there is β > 0 depending on T , τ , ξ and on the operator B 1 , such that if the delay feedback satisfies B * 2 < β, then there exist positive constants K, µ for which we have

F (2T ) ≤ C 0 C 0 + 1 F ( 
E(t) ≤ Ke -µt E(0), t > 0, (3.27) 
for any solution of (1.1) -(1.3).

Proof. We can see problem (1.1)-(1.3) as a perturbation of the auxiliary one. Therefore,

A   u v z   = (A 0 + B)   u v z   with B   u v z   =   0 -ξB 2 B * 2 v 0   .
From Theorem 3.4 and Theorem 3.5, we know that if

-μ + K B < 0, (3.28) 
where μ and K are defined by (3.15), (3.16) and (3.17), then 

E(t) ≤ Ke -µt E(0), with µ = μ -K B ,
< μ K , that is ξC 2 2 < 1 2T C 0 C 0 + 1 ln C 0 + 1 C 0 . (3.29)
The difficulty is that the constant C 0 (defined by (3.17)) appearing in the right-hand side of this estimate depends on ξ and C 2 as well. So let us consider the continuous function h : (0, +∞) → (0, +∞),

h(s) := s s + 1 ln s + 1 s .
Then, h tends to zero for s → 0 + and for s → +∞. Moreover, h assumes the maximal value 1/e at 1 e-1 , is increasing before 1 e-1 and decreasing after. Now it is easy to check that ξ ξ-1 > 1 e-1 . Considering that ξ is fixed > 1 and T is fixed as well, we consider C 0 as a function of C 2 ≥ 0, that we write C 0 (C 2 ). But we remark that from its definition, C 0 is non decreasing (in C 2 ) and

C 0 (0) = max 2c, ξ ξ -1 > 1 e -1 .
Hence h(C 0 (C 2 )) is non increasing as a function of C 2 with h(C 0 (0)) > 0 and since the left-hand side of (3.29) is increasing in C 2 and is zero at C 2 = 0, there exists a point β > 0 such that

2ξβ 2 T = h(C 0 (β)),
and for which (3.29) holds for all C 2 ∈ [0, β).

Obviously β depends on T (and then on T and τ ), on ξ and, through the observability constant c and the time T, on the feedback operator B 1 . 

Remark 3.7 If B 1 is bounded, namely if B 1 ∈ L(U 1 , H),
E S (0) = 1 2 ( A 1 2 w 0 2 H + w 1 2 
H ) ≤ c T 0 B * 1 ϕ t (t) 2 U 1 dt, (3.30) 
holds for some T > 0 and c > 0, for every weak solution ϕ of the conservative system

ϕ tt (t) + Aϕ(t) = 0 t > 0 (3.31) ϕ(0) = w 0 and ϕ t (0) = w 1 (3.32)
with initial data (w 0 , w 1 ) ∈ V × H. Let us consider the initial boundary value problem

u tt (x, t) -∆u(x, t) + b 1 (x)u t (x, t) + b 2 (x)u t (x, t -τ ) = 0 in Ω × (0, +∞), (4.1) u(x, t) = 0 on ∂Ω × (0, +∞), (4.2) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω, (4.3) b 2 u t (x, t) = f 0 (x, t) in ω 2 × (-τ, 0), (4.4) (4.5) with initial data (u 0 , u 1 , f 0 ) ∈ H 1 0 (Ω) × L 2 (Ω) × L 2 ((-τ, 0); L 2 (ω 2 )), where ω i = {x ∈ Ω : b i (x) > 0} is the support of b i , i = 1 or 2.
This problem enters into our previous framework, if we take H = L 2 (Ω) and the operator A defined by

A : D(A) → H : u → -∆u,
where D(A) = {u ∈ H 1 0 (Ω) : ∆u ∈ L 2 (Ω)}. This operator A is a self-adjoint and positive operator with a compact inverse in H and is such that V = D(A 1/2 ) = H 1 0 (Ω). We then define U 1 = L 2 (ω 1 ), U 2 = L 2 (ω 2 ) and the operators B i , i = 1, 2, as

B i : U i → H : v → b i (x)ṽ, (4.6) 
where ṽ ∈ L 2 (Ω) is the extension of v by zero outside ω i . It is easy to verify that In this setting, the energy functional is

B * i ϕ = b i ϕ |ω i for ϕ ∈ H. As B i B * i ϕ = b i ϕ,
E(t) = 1 2 Ω {u 2 t (x, t) + |∇u(x, t)| 2 }dx + ξ 2 t t-τ Ω b 2 (x)u 2 t (x, s)dxds, (4.7)
which is the standard energy for wave equation

E S (t) = E S (w, t) := 1 2 Ω (w 2 t + |∇w| 2 )dx,
plus an integral term due to the presence of a time delay.

Since B 1 is bounded, according to Remark 3.7, our main assumption concerns the existence of an observability estimate for the standard wave equation:

ϕ tt (x, t) -∆ϕ(x, t) = 0 in Ω × (0, +∞) (4.8) ϕ(x, t) = 0 on ∂Ω × (0, +∞) (4.9) 
ϕ(x, 0) = w 0 (x) and ϕ t (x, 0) = w 1 (x) in Ω (4.10)

with (w 0 , w 1 ) ∈ H 1 0 (Ω) × L 2 (Ω). We then assume that there exists a time T > 0 such that for every time T > T there is a constant c, depending on T but independent of the initial data, such that

E S (0) ≤ c T 0 Ω b 1 (x)ϕ 2 t (x, s)dxds, (4.11) 
for every weak solution of problem (4.8) -(4.10).

According to (3.13) we have

B 2 = b 2 1/2 ∞ , (4.12) 
where, for

v ∈ L ∞ (Ω), we denote v ∞ = sup x∈Ω |v(x)|, the L ∞ norm of v.
Therefore, according to Theorem 3.6, we have the next result: 

. For all ξ > 1 in the definition (4.7), there is β > 0 depending on T , τ , ξ and b 1 such that if b 2 ∞ < β, then there exist positive constants K, µ for which we have

E(t) ≤ Ke -µt E(0), t > 0,
for any solution of (4.1) -(4.4).

Remark 4.2 1. From Lemma VII.2.4 of [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués[END_REF] (see also [START_REF] Komornik | Exact controllability and stabilization, the multiplier method[END_REF][START_REF] Lagnese | Control of wave processes with distributed control supported on a subregion[END_REF][START_REF] Lasiecka | Uniform exponential decay in a bounded region with L 2 (0, T ; L 2 (Σ))-feedback control in the Dirichlet boundary conditions[END_REF][START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF][START_REF] Zuazua | Exponential decay for the semi-linear wave equation with locally distributed damping[END_REF]), the observability estimate (4.11) holds for the wave equation (4.8)

-(4.10) if the boundary of Ω is of class C 2 , if T is bigger than the diameter of Ω and if b 1 (x) ≥ b 0 > 0, a.e. x ∈ ω, (4.13) 
when the open subset ω of Ω is a neighborhood of Γ0 , where

Γ 0 = { x ∈ ∂Ω : (x -x 0 ) • ν(x) > 0 }, (4.14) 
for some x 0 ∈ R n and ν(x) is the outer unit normal vector at x ∈ ∂Ω. 

Internal and boundary dampings

We assume here that the boundary ∂Ω of Ω is splitted up as ∂Ω = Γ 0 ∪ Γ 1 , where Γ 0 , Γ 1 are closed subsets of ∂Ω with Γ 0 ∩ Γ 1 = ∅. Moreover we assume that Γ 0 and Γ 1 have an non empty interior (on ∂Ω). We suppose given k ∈ L ∞ (Γ 0 ) and b ∈ L ∞ (Ω) such that b(x) ≥ 0 a.e. x ∈ Ω and k(x) ≥ k 0 > 0 a.e. x ∈ Γ 0 .

We here consider the problem

u tt (x, t) -∆u(x, t) + b(x)u t (x, t -τ ) = 0, x ∈ Ω, t > 0, (4.15) 
u(x, t) = 0, x ∈ Γ 1 , t > 0 (4.16) ∂u ∂ν (x, t) = -k(x)u t (x, t), x ∈ Γ 0 , t > 0 (4.17) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ Ω, (4.18) √ bu t (x, t) = f 0 (x, t), x ∈ Ω, t ∈ (-τ, 0), (4.19) 
with initial data in a suitable space. This problem enters into our previous framework, if we take H = L 2 (Ω) and the operator A defined by

A : D(A) → H : u → -∆u, where D(A) := { u ∈ H 1 Γ 1 (Ω) : ∆u ∈ L 2 (Ω)
and

∂u ∂ν = 0 on Γ 0 }, with H 1 Γ 1 := { u ∈ H 1 (Ω) : u = 0 on Γ 1 }.
We then define U 1 := L 2 (Γ 0 ), U 2 := L 2 (ω 2 ) (ω 2 being the support of b) and the operators B 1 , B 2 as

B 2 ∈ L(U 2 ; H), B 2 u = b(x) ũ, ∀ u ∈ L 2 (ω 2 ),
and

B 1 ∈ L(U 1 ; V ′ ), B 1 u = √ k A -1 N u, ∀ u ∈ L 2 (Γ 0 ), B * 1 w = √ kw |Γ 0 , ∀ w ∈ V := D(A 1/2 ),
where A -1 is the extension of A to H, namely for all h ∈ H and ϕ ∈ D(A), A -1 h is the unique element in (D(A)) ′ (the duality is in the sense of H), such that (see for instance [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF])

A -1 h; ϕ (D(A)) ′ ,D(A) = Ω hAϕ dx.
Here and below N ∈ L(L 2 (Γ 0 ); L 2 (Ω)) is defined as follows: for all v ∈ L 2 (Γ 0 ), N v is the unique solution (transposition solution) of

∆N v = 0, N v |Γ 1 = 0, ∂N v ∂ν |Γ 0 = v.
With these definitions, we can show that problem (4. w(x, 0) = w 0 (x) and w t (x, 0) = w 1 (x) in Ω (4. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] with (w 0 , w 1 ) ∈ H 1 Γ 1 (Ω) × L 2 (Ω). Hence our main assumption will be: There exists a time T > 0 such that for every time T > T there is a constant c, depending on T but independent of the initial data, such that

E S (0) ≤ c T 0 Γ 0 k(x)w 2 t (x, s)dxds, (4.25) 
for every weak solution of problem (4.21) -(4.24). Then, our previous results apply also to this model and we can restate Theorem 3.6. Remark 4.5 1. From Theorem 1 and Remark 1 of [START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF] (see also [START_REF] Chen | Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain[END_REF][START_REF] Chen | Control and stabilization for the wave equation in a bounded domain I-II[END_REF][START_REF] Chen | A note on the boundary stabilization of the wave equation[END_REF][START_REF] Lagnese | Decay of solutions of wave equations in a bounded region with boundary dissipation[END_REF]), the observability estimate (4. for "small" internal delay feedback, has been first proved in [START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay[END_REF], for b and k constant and Γ 0 given by (4.14), by constructing a suitable Lyapunov functional and using the multiplier method. We give here a simpler proof by using a more general method, allowing to weaken the assumptions on b, k and Γ 0 .

with initial data (w 0 , w 1 ) ∈ H 1 0 (Ω) n × L 2 (Ω) n . If such an estimate holds, the stability result from section 3 can be applied to the above system.

Remark 5.1 Under the assumptions of point 1 of Remark 4.2, the observability estimate (5.5) is obtained in the proof of Theorem 3.1 of [START_REF] Cavalcanti | Exact internal controllability of the elasticity system[END_REF] (estimate (3.2) of [START_REF] Cavalcanti | Exact internal controllability of the elasticity system[END_REF]).

Internal and boundary dampings

Under the assumptions of subsection 4.2 we consider the following elastodynamic system

u tt (x, t) -µ∆u(x, t) -(λ + µ)∇ div u + b(x)u t (x, t -τ ) = 0 in Ω × (0, +∞), u(x, t) = 0, x ∈ Γ 1 , t > 0 (5.6) σ(u(x, t)) • ν(x) = -k(x)u t (x, t), x ∈ Γ 0 , t > 0 (5.7) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω, (5.8) √ bu t (x, t) = f 0 (t) in ω 2 × (-τ, 0), (5.9) 
with initial data (u

0 , u 1 , f 0 ) ∈ H 1 0 (Ω) n × L 2 (Ω) n × L 2 ((-τ, 0); L 2 (ω 2 ) n ) and σ(u) = µ( n i=1 ∂ i (u j )ν i ) n j=1 + (λ + µ)( div u) ν on Γ 0 .
This problem enters into our abstract setting, once we take H = L 2 (Ω) n , A defined in the previous subsection, and B 1 and B 2 defined as in subsection 4.2.

As B 1 is not bounded, we need to assume that there exists a time T > 0 such that for every time T > T there is a constant c, depending on T but independent of the initial data, such that 1 2 ((w 0 , w 0 )

V + Ω |w 1 | 2 dx) ≤ c T 0 Γ 0 k(x)|w t | 2 (x, s)dxds, (5.10) 
for every weak solution w of the non delayed system

w tt (x, t) -µ∆w(x, t) -(λ + µ)∇ div w = 0 in Ω × (0, +∞), w(x, t) = 0, x ∈ Γ 1 , t > 0 (5.11) σ(w(x, t)) • ν(x) = -k(x)w t (x, t), x ∈ Γ 0 , t > 0 (5.12) w(x, 0) = w 0 (x) and w t (x, 0) = w 1 (x) in Ω, , (5.13) 
for initial data (w 0 , w 1 ) ∈ H 1 0 (Ω) n × L 2 (Ω) n . Again if such an estimate holds, the stability result from section 3 can be applied to the system (5.6)-(5.9). Remark 5.2 1. Under the assumptions of point 1 of Remark 4.5, the observability estimate (5.10) is proved in [START_REF] Bey | Boundary stabilization of the linear elastodynamic system by a Lyapunov-type method[END_REF]. 2. If we assume that the boundary of Ω is smooth and that (xx 0 ) • ν(x) ≤ 0 on Γ 1 , then the observability estimate (5.10) is proved in Lemma 3.2 of [START_REF] Horn | Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity[END_REF]. [START_REF] Chen | Control and stabilization for the wave equation in a bounded domain I-II[END_REF] The Petrovsky system

Hinged boundary conditions

Let Ω ⊂ IR n be an open bounded set with a boundary ∂Ω of class C 4 (as before this regularity could be weakened).

Let us consider the initial boundary value problem u tt (x, t) + ∆ 2 u(x, t) + b 1 (x)u t (x, t) + b 2 (x)u t (x, tτ ) = 0 in Ω × (0, +∞), (6.1) u(x, t) = ∆u(x, t) = 0 on ∂Ω × (0, +∞), (6.2) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω, (6.3) u t (x, t) = f 0 (x, t) in ω 2 × (-τ, 0), (6.4) with initial data (u 0 , u 1 , f 0 ) ∈ (H 2 (Ω)∩H 1 0 (Ω))×L 2 (Ω)×L 2 ((-τ, 0); L 2 (ω 2 )) and b 1 , b 2 satisfying the same assumptions as in subsection 4.1. Now, we take H = L 2 (Ω) and let A be the operator

A : D(A) → H : u → ∆ 2 u, (6.5) 
where D(A) = {v ∈ H 1 0 (Ω) ∩ H 4 (Ω) : ∆u = 0 on ∂Ω}. The operator A is self-adjoint and positive, has a compact inverse in H and satisfies D(A 1/2 ) = H 2 (Ω) ∩ H 1 0 (Ω). We then define U i = L 2 (ω i ) and the operators B i , i = 1, 2, by (4.6). So, problem (6.1)-(6.4) enters in the abstract framework (1.1)- (1.3).

If an observability estimate of the associated conservative system holds, then the results of section 3 apply also to the plate model. Remark 6.1 Under the assumptions of point 1 of Remark 4.2 and the additional regularity of the boundary, it is well-known that an observability estimate of the associated conservative system holds, see Proposition 7.5.7 (see also Example 11.2.4) of [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF].

Clamped boundary conditions

Let Ω ⊂ IR 2 be an open bounded set with a boundary ∂Ω of class C 4 .

Here we consider the initial boundary value problem u tt (x, t) + ∆ 2 u(x, t) + b 1 (x)u t (x, t) + b 2 (x)u t (x, tτ ) = 0 in Ω × (0, +∞), (6.6) u(x, t) = ∂u ∂ν (x, t) = 0 on ∂Ω × (0, +∞), (6.7) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω, (6.8) u t (x, t) = f 0 (x, t) in ω 2 × (-τ, 0), (6.9)

with initial data (u 0 , u 1 , f 0 ) ∈ H 2 0 (Ω) × L 2 (Ω) × L 2 ((-τ, 0); L 2 (ω 2 )) where As usual, if an observability estimate holds for the associated conservative system, the results of section 3 can be applied to this model. Remark 6.2 Under the assumptions of point 1 of Remark 4.2 and the additional assumptions of this subsection, the observability estimate for the associated conservative system has been recently proved by the authors (see [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], Theorem 6.1).

Proposition 3 . 1

 31 For any regular solution of problem (1.1) -(1.

Proposition 3 . 3

 33 For any regular solution of problem (3.4) -(3.6), we have

  then by Proposition 1 of [11], the system (3.10) -(3.11) is exponentially stable (or equivalently the observability estimate (3.12) holds for problem (3.10) -(3.11)) if and only if the observability estimate

4 The wave equation 4 . 1

 41 Internal dampings Our first application concerns the wave equation with locally distributed internal dampings. More precisely, let Ω ⊂ IR n be an open bounded domain with a Lipschitz boundary ∂Ω. We suppose given b 1 , b 2 in L ∞ (Ω) such that b 1 (x), b 2 (x) ≥ 0 a.e. x ∈ Ω.

  for any ϕ ∈ H and i = 1, 2, we deduce that problem (4.1)-(4.4) enters in the abstract framework (1.1)-(1.3).

Theorem 4 . 1

 41 Assume that the observability estimate (4.11) holds for the wave equation (4.8) -

2 .

 2 From[START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF], the observability estimate (4.11) also holds for the wave equation (4.8) -(4.10) if the boundary of Ω is of class C ∞ and if(4.13) holds when the open subset ω of Ω satisfies the geometric control property.

Remark 4 . 3

 43 According to point 1 of the previous remark, Theorem 4.1 allows to recover the results from Theorem 1.2 of[START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF] in a larger setting.

Theorem 4 . 4

 44 Assume that the observability estimate (4.25) holds for every weak solution of problem (4.21) -(4.24). For all ξ > 1 in the definition (4.20), there is β > 0 depending on T , τ , ξ and k, such that if b(x) ∞ < β, then there exist positive constants K, µ for which we haveE(t) ≤ Ke -µt E(0), t > 0,for any solution of (4.15) -(4.19).

H 2 0

 2 (Ω) := { ϕ ∈ H 2 (Ω) : u = ∂u ∂ν = 0 on ∂Ω },and b 1 , b 2 satisfy the same assumptions than in the previous subsection.

  [START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF] holds for the damped wave equation (4.21) -(4.24) if the boundary of Ω is of class C 2 , if T is large enough and if Γ 0 is given by (4.14) for some x 0 ∈ R n . 2. From[START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF], the observability estimate (4.25) also holds for the damped wave equation (4.21) -(4.24) if the boundary of Ω is of class C ∞ and if the part Γ 0 satisfies the geometric control property.3. If we suppress the assumption Γ 0 ∩Γ 1 = ∅, then Theorem 1 of[START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF] shows that the observability estimate (4.25) holds for the damped wave equation (4.21) -(4.24) under the same assumptions than in point 1 but with the choice k(x) = (xx 0 ) • ν(x) and if n ≤ 3 (see also Proposition 6.4 of[START_REF] Grisvard | Contrôlabilté exacte des solutions de l'équation des ondes en présence de singularités[END_REF] in dimension 2). For this example, k is no more uniformly positive on Γ 0 , nevertheless it enters into our abstract framework.

	Remark 4.6 This result, namely exponential decay of the energy for solutions to problem
	(4.15)-(4.19)

The elasticity system 5.1 Internal dampings

Here we consider the following elastodynamic system u tt (x, t) -µ∆u(x, t) -(λ + µ)∇ div u

u(x, t) = 0 on ∂Ω × (0, +∞), (5.2)

)

) and b 1 , b 2 satisfying the same assumptions as in subsection 4.1. Note that in this case the state variable u is vector-valued and λ, µ are the Lamé coefficients that are positive real numbers.

As before this problem enters into our abstract setting, once we take H = L 2 (Ω) n , and A defined by

where

The operator A is a self-adjoint and positive operator with a compact inverse in H and is such that

We then define U i = L 2 (ω i ) n and the operators B i , i = 1, 2, as

where ṽ is the extension of v by zero outside ω i . As before

and thus B i B * i (ϕ) = b i ϕ, for any ϕ ∈ H and i = 1, 2. So, problem (5.1)-(5.4) enters in the abstract framework (1.1)- (1.3).

Therefore in order to apply the abstract results of section 3, we only need to check the observability estimate for the associated conservative system: There exists a time T > 0 and a constant c > 0 such that

for every weak solution ϕ of ϕ tt (x, t) -µ∆ϕ(x, t) -(λ + µ)∇ div ϕ(x, t) = 0 in Ω × (0, +∞), ϕ(x, t) = 0 on ∂Ω × (0, +∞), ϕ(x, 0) = w 0 (x) and ϕ t (x, 0) = w 1 (x) in Ω,