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SPECTRAL ANALYSIS OF A GENERALIZED BUCKLING PROBLEM ON A BALL

   

Spectral analysis of a generalized buckling problem on a ball

INTRODUCTION

In this paper we look for any pairs of real numbers (ν, λ ) such that a nontrivial solution u of (1)

∆ 2 u + νu = -λ ∆u in D 1 , u = ∂ r u = 0 on ∂ D 1 ,
exists, where D 1 is the unit ball of R N , N 2. This problem can be viewed as an eigenvalue problem in λ , once ν is fixed, or as an eigenvalue problem in ν, once λ is fixed; both cases being points of view on finding pairs (ν, λ ) in the plane. There are few references concerning the general problem [START_REF] Baricz | Turán type inequalities for modified Bessel functions[END_REF] and they concern either the eigenvalue problem in λ ( 0) for ν 0 fixed or the eigenvalue problem in ν ( 0) for λ 0 fixed i.e., only the situation in the first or the third quadrant of the plane is considered (see in particular [START_REF] De Groen | Singular perturbations of spectra[END_REF][START_REF] Kawohl | Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions[END_REF][START_REF] Payne | New isoperimetric inequalities for eigenvalues and other physical quantities[END_REF] and the references therein). These papers are mainly concerned with the behaviour of functions λ : R + → R : ν → λ (ν) (resp. ν : R + → R : λ → -ν(-λ )). In particular, in [START_REF] Kawohl | Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions[END_REF], the authors prove that the first eigenvalue λ 1 : R + → R + : ν → λ 1 (ν), as a function of ν, is strictly concave, increasing, and satisfies

∀ν ∈ ]0, +∞[, max λ 1 (0), 2 √ ν < λ 1 (ν) < λ 1 (0) + ν ξ 1
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with ξ 1 being the first eigenvalue of the Laplacien in H 1 0 (D 1 ) with corresponding eigenfunction ψ 1 . Similar results are obtained for -ν 1 (-λ ). Moreover, they prove that -ν 1 (-λ )/λ → ξ 1 as λ tends to zero and that the corresponding eigenfunction converges to ψ 1 .

More recently, we find in the literature results on the structure of the eigenfunctions and in particular the positivity of the first eigenfunction. There is a vast literature on this last question about the case ν = 0 or λ = 0, see [3, 6-8, 11-14, 18, 25, 26] which corresponds to the situations on the axes.

In [START_REF] Laurenc | Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry[END_REF], the authors consider the problem

(2) ∆ 2 u -τ∆u = ωu in D 1 , u = ∂ r u = 0 on ∂ D 1 ,
where the term ∆ 2 u accounts for the bending, while the term -τ∆u, with τ > 0 for stretching; ω being the (positive) eigenvalues they are looking for. Observe that reversing the point of view, problem (2) is related to [START_REF] Baricz | Turán type inequalities for modified Bessel functions[END_REF] with ν = -ω and λ = -τ. In particular, for τ 0, the authors of [START_REF] Laurenc | Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry[END_REF] prove the existence of ω 1 such that the problem (2) has a positive radially symmetric eigenfunction and that ω 1 is the only such eigenvalue. However, the authors observe that there could exist non-radially symmetric positive eigenfunctions i.e., ω 1 may not be the only eigenvalue with positive eigenfunctions nor the smallest eigenvalue. Our result proves that, in fact, it is not the case. We can also refer to [START_REF] Chasman | An isoperimetric inequality for fundamental tones of free plates[END_REF][START_REF]Vibrational modes of circular free plates under tension[END_REF] where other boundary conditions are considered.

In [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF], motivated by the study of clamped thin elastic membranes supported on a fluid substrate, we considered the case ν 0 and, in particular, we gave a complete description of the smallest eigenvalue λ 1 and its eigenfunction u. In this work, we want to extend the analysis started in [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF] to any ν ∈ R. More precisely, we determine pairs (ν, λ ) with ν < 0 such that (1) has a nontrivial solution u as well as the shape of the corresponding solution u. In particular, we obtain precise information about the smallest eigenvalue λ 1 (ν) and its associated eigenfunction as a function of ν. Putting together the results of this paper with those of [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF], we obtain the following theorem concerning the case where D 1 is the unit ball of R 2 . In this result and throughout the paper, ( j k, ) 1 denote the roots of J k , the Bessel function of the first kind of order k.

Theorem 1. If D is the unit ball of R 2 , the first eigenvalue λ 1 : R → R : ν → λ 1 (ν) of (1) is a continuous increasing function of ν such that lim ν→±∞ λ 1 (ν) = ±∞ and λ 1 (0) = j 2 1,1 .
Hence it is a bijection from R into itself. Moreover, If ν ∈ ]-∞, ( j 0,1 j 0,2 ) 2 [, the first eigenvalue is simple and the eigenfunctions ϕ 1 are radial, one-signed and |ϕ 1 | is decreasing with respect to the radius r.

If ν ∈ ]( j 1,n j 1,n+1 ) 2 , ( j 0,n+1 j 0,n+2 ) 2 [, for some n 1, the first eigenvalue is simple and the eigenfunctions are radial and have n + 1 nodal regions. If ν ∈ ]( j 0,n+1 j 0,n+2 ) 2 , ( j 1,n+1 j 1,n+2 ) 2 [, for some n 0, the eigenfunctions ϕ 1 have the form

R 1,1 (r)(c 1 cos θ + c 2 sin θ ), c 1 , c 2 ∈ R.
Moreover the function R 1,1 has n simple zeros in ]0, 1[, i.e., ϕ 1 has 2(n + 1) nodal regions.

Information on the eigenspaces at the countably many ν > 0 not considered in the previous theorem is also provided in [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF]. For these ν, the eigenspaces have even larger dimensions (see [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF]Theorem 4.18]).

For ν < 0, we can also give a characterization of higher eigenvalues. In particular, the nodal properties of their eigenfunctions are completely determined.

Theorem 2. If D is the unit ball of R 2 , there exist increasing differentiable functions λ k, : ]-∞, 0[ → R : ν → λ k, (ν) for k ∈ N and ∈ N * such that the spectrum of (1) for a given ν ∈ ]-∞, 0[ is exactly λ k, (ν) k ∈ N, ∈ N * . Moreover lim ν→-∞ λ k, (ν) = -∞ and lim ν→0 λ k, (ν) = j 2 k+1, .
Associated to λ k, is a space of eigenfunctions in spherical coordinates of the form R k, (r) c 1 cos(kθ ) + c 2 sin(kθ ) where c 1 , c 2 ∈ R and R k, (r)

:= cJ k (α k, r) + dI k κ α k, r ,
for some (c, d) = (0, 0) suitably chosen (depending on κ, k, and ). Here I k (resp. J k ) denotes the modified Bessel function (resp. the Bessel function) of the first kind of order k. In addition R k, possesses -1 roots in ]0, 1[, all of which are simple.

Figure 1 shows the graph of a few of the functions λ k, . It shows (and we prove) that

λ 1 (ν) = min λ 0,1 (ν), λ 1,1 (ν)
where the minimum coincides with λ 0,1 for ν ( j 0,1 j 0,2 ) 2 and alternates between λ 0,1 and λ 1,1 for larger ν, which explains the results of Theorem 1.

The nodal properties of the eigenfunctions are illustrated by the graphs of the first six eigenfunctions for ν = -1 which are drawn in Figure 2.

The paper is organized as follows and concerns the case ν < 0. In Section 2, we explain how to find solutions to (1) despite the fact that the method of separation of variables is not directly applicable. In Section 3, we show (see Theorem 7) that, for all k ∈ N, there exists an increasing sequence

α k, = α k, (κ) ∈ ] j k, , j k+1, [, 1, with κ = √ -ν, such that ν λ j 2 0 , 1 j 2 0 , 2 j 2 1 , 1 j 2 1 , 2 j 2 0 , 2 j 2 0 , 3 j 2 1 , 2 j 2 1 , 3 λ = 2 √ ν λ 3,1 λ 0,1 λ 0,2 λ 0,3 λ 1,1 λ 1,2 λ 1,3 λ 2,1 λ 2,2 λ 5,1 FIGURE 1.
Curves of (ν, λ ) along which (1) possesses a nontrivial solution. The dot indicates where the graphs of λ 0,3 (red) and λ 5,1 (green) cross.

ϕ 1 , (k, ) = (0, 1) ϕ 2 , (k, ) = (1, 1) ϕ 3 , (k, ) = (2, 1) ϕ 4 , (k, ) = (0, 2) ϕ 5 , (k, ) = (3, 1) ϕ 6 , (k, ) = (1, 2) FIGURE 2.
Graphs of the first eigenfunctions for ν = -1, mentioning the value (k, ) of Theorem 2 to which they correspond.

λ k, (ν) = α 2 k, -κ 2 /α 2 k
, is an eigenvalue of (1) with corresponding eigenfunctions of the form R k, (r) e ±ikθ . The minimal value of the spectrum λ 1 = λ 1 (κ) := min k, λ k, corresponds to the minimum of {α k, | k ∈ N, 1} which is given by α 0,1 .

In Section 4, we show that λ 1 (ν) is simple and its eigenfunction ϕ 1 is radial, one-signed and |ϕ 1 | is decreasing with respect to r (see Theorem 12). We further give precise statements about the nodal properties of the other eigenfunctions in Theorem 17.

Theorem 1 can then be deduced from Theorem 11 together with [9, Theorem 4.3, Lemmas 4. 4, 4.5 and 4.6] for what concerns the behaviour of the first eigenvalue while the information concerning the first eigenfunction are deduced from Theorem 12 together with [9, Theorems 4.17 The case D 1 ⊆ R N with N > 2 is also considered in section 5.

PRELIMINARIES

Let us first consider the case N = 2 (see Section 5 for the case N > 2).

As the case ν 0 in (1) was fully treated in [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF], we can restrict ourselves to the case ν < 0, that we rewrite as

(3) ∆ 2 u -κ 2 u = -λ ∆u in D 1 , u = ∂ r u = 0 on ∂ D 1 ,
with κ > 0. Similarly to [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF], we factorize (4)

∆ 2 u + λ ∆u -κ 2 u = (∆ + α 2 )(∆ + β 2 )u = 0 with α, β ∈ C such that α 2 β 2 = -κ 2 and α 2 + β 2 = λ .
As κ > 0, α and β are both non zero and we can choose α as a positive real number and β = iκ/α that is clearly different from α.

As we work in two dimensions, we use the ansatz u(r, θ ) = R(r) e ikθ with k ∈ Z, where (r, θ ) are the polar coordinates, and notice that ( 4) is equivalent to a fourth order ordinary differential equation (in ∂ r ) ( 5)

L(∂ r , r, α, β , |k|)R = 0.
Hence by the theory of ordinary differential equations, L has four linearly independent solutions. To find them it suffices to notice that

(∆ + α 2 )u = 0 ⇒ (∆ + α 2 )(∆ + β 2 )u = 0. Thus, if (6) 
(∆ + α 2 ) R(r) e ikθ = 0,
then R is a solution to [START_REF]Vibrational modes of circular free plates under tension[END_REF]. But a solution to ( 6) is simpler to find. Indeed such R satisfy the Bessel equation

(r∂ r ) 2 R + α 2 r 2 R = k 2 R.
As α = 0, R is then a linear combination of J |k| (αr) and of Y |k| (αr).

Similarly, if

(7) ∆ - κ 2 α 2 R(r) e ikθ = 0,
then R is a solution to [START_REF]Vibrational modes of circular free plates under tension[END_REF]. But R is solution to [START_REF] Coffman | On the structure of solutions ∆ 2 u = λ u which satisfy the clamped plate conditions on a right angle[END_REF] if and only if R satisfies the modified Bessel equation 

(r∂ r ) 2 R - κ 2 α 2 r 2 R = k 2 R. Therefore, R

EIGENVALUE PROBLEM

Here we want to characterize the full spectrum of the buckling problem on the unit disk. In other words, we look for a u = 0 and λ ∈ R such that

(8) ∆ 2 u -κ 2 u = -λ ∆u in D 1 , u = ∂ r u = 0 on ∂ D 1 ,
where D 1 is the unit ball of R 2 .

Proposition 4. The eigenfunctions of the boundary value problem (8) are of the form u = R(r) e ikθ with k ∈ Z and R given by

(9) R(r) = cJ |k| (αr) + dI |k| κ α r ,
for some c, d ∈ R, where α is a positive solution to

(10) F k (α) := κ α J |k| (α)I |k| κ α -αI |k| κ α J |k| (α) = 0. The corresponding eigenvalue is λ = α 2 -κ 2 /α 2 .
Proof. According to the previous section, we look for solutions u to (3) in the form u = R(r) e ikθ , with k ∈ Z. From Lemma 3, we see that 

G k (z) = zI k (z) I k (z) = zI k+1 (z) I k (z) + k.
Hence by [START_REF] Laforgia | Some inequalities for modified Bessel functions[END_REF]Theorem 1.1] we have that

G k (z) > -1 + (k + 1) 2 + z 2 .
This implies in particular that

lim z→+∞ G k (z) = +∞.
Proof. Direct calculations using the differential equation satisfied by modified Bessel functions (47) yield

G k (z) = (z 2 + k 2 )I 2 k (z) -z 2 (I k (z)) 2 zI 2 k (z)
.

Then using the recurrence relation (45), we deduce that

G k (z) = z 2 (I 2 k (z) -I 2 k+1 (z)) -2kzI k (z)I k+1 (z) zI 2 k (z)
.

Hence with the notation u = I k+1 (z)

I k (z)
from Lemma 20 (in the appendix), we have

(14) G k (z) = -z u 2 + 2k z u -1 ,
and then Lemma 20 implies that G k (z) > 0.

Theorem 7. For all k ∈ N and κ > 0, the roots of F k (defined by [START_REF] De Groen | Singular perturbations of spectra[END_REF]) are simple and can be ordered as an increasing sequence

α k, = α k, (κ) > 0, with ∈ N * , such that ∀ > 0, j k, < α k, < j k+1, .
Each > 0 gives rise to the eigenvalue

(15) λ k, = α 2 k, - κ 2 α 2 k, , of (8 
) and to corresponding eigenfunctions of the form R k, (r) e ±i kθ with

R k, (r) = cJ k (α k, r) + dI k κ α k, r , 
where (c, d) is a solution to [START_REF] Gazzola | Polyharmonic boundary value problems. positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF] with α = α k, .

Proof. Since I k is positive on ]0, +∞[ and the positive roots of J k are simple, the positive roots of F k never coincide with those of J k . Hence, we can write

F k (α) = J k (α) I k κ α Fk (α) with Fk (α) := G k κ α -H k (α)
where G k was defined in Lemma 5 and

H k (z) := zJ k (z) J k (z) (see [9, Lemma 4.1]) and we have F k (α) = 0 ⇔ Fk (α) = 0.
Using formulas (40) and ( 45), Fk may also be written as ( 16)

Fk (α) = κ α I k+1 κ α I k κ α + α J k+1 (α) J k (α) .
Observe first that if α ∈ ]0, j k,1 [, then J k (α) > 0 and J k+1 (α) > 0 and so Fk (α) > 0. Thus the roots of Fk lie in ] j k,1 , +∞[. Easy computations show that, for all 1,

lim α > -→ j k, Fk (α) = -∞ and Fk ( j k+1, ) = κ j k+1, I k+1 κ j k+1, I k κ j k+1, > 0 
This implies that Fk possesses a root between j k, and j k, +1 .

To establish that it has a unique root in this interval, it is enough to prove that, for every root α * , we have F k (α * ) > 0. Direct calculations yield

(17) F k (α) = - κ α 2 G k κ α -H k (α).
First, let us use [9, Lemma 4.1] which states that

H k (z) = k 2 -z 2 z -z (J k (z)) 2 J k (z) 2 ,
and, using (40), we obtain

H k (z) = -z + 2k J k+1 (z) J k (z) -z J 2 k+1 (z) J 2 k (z)
. Now using that α * is a root of Fk and remembering (16), we have

J k+1 (α * ) J k (α * ) = - κ (α * ) 2 u,
where we have set u := I k+1 (z) I k (z) with z = κ α * . These two identities show that

H k (α * ) = -α * -2k κ (α * ) 2 u - κ 2 (α * ) 3 u 2 .
Using this identity together with ( 14) in [START_REF] Kawohl | Buckling eigenvalues for a clamped plate embedded in an elastic medium and related questions[END_REF], we get

F k (α * ) = κ 2 (α * ) 3 u 2 + 2kα * κ u -1 + α * + 2k κ (α * ) 2 u + κ 2 (α * ) 3 u 2 = 2κ 2 (α * ) 3 u 2 + 2kα * κ u + (α * ) 4 -κ 2 2κ 2 = 2κ 2 (α * ) 3 u 2 + 2ku z + (α * ) 2 2z 2 - 1 2 with z = κ/α * .
Hence to show that F k (α * ) is positive, it remains to prove that (18)

u 2 + 2ku z + (α * ) 2 2z 2 - 1 2 > 0.
But the estimate (2.4) of [START_REF] Laforgia | Some inequalities for modified Bessel functions[END_REF] says that

u 2 + 2(k + 1) z u -1 > 0, therefore u 2 + 2ku z + (α * ) 2 2z 2 - 1 2 > 1 2 - 2u z + (α * ) 2 2z 2 = 1 2z 2 z 2 -4uz + (α * ) 2 . Since α * > j k,1 > j 0,1 3π 
4 > 2 (see [START_REF] Hethcote | Bounds for zeros of some special functions[END_REF]Theorem 3] for the estimate on j 0,1 ) and, by Lemma 20, u < 1 for k 0 and z > 0, we deduce that 2 0. This implies that, for every root α * , we have F k (α * ) > 0 and prove the uniqueness of the root of Fk in ] j k, , j k, +1 [. This concludes the proof.

u 2 + 2ku z + (α * ) 2 2z 2 - 1 2 > 1 2z 2 (z -2)
We now give some further informations on the functions α k, . Lemma 8. For all k ∈ N and ∈ N * , the function

α k, : ]0, +∞[ → R : κ → α k, (κ) is of class C 1 and ∂ κ α k, < 0.
Proof. Let us note F k (α, κ) the function F k (α) defined by [START_REF] De Groen | Singular perturbations of spectra[END_REF] where we have explicited the dependence on κ. The assertion will result from the Implicit Function Theorem. Let us fix k ∈ N, κ * > 0 and α * = α k, (κ * ) > 0.

Again as in the proof of Theorem 7, instead of working on F k (α, κ), we consider the function Fk (α, κ). In the proof of Theorem 7, we already observed that ∂ α Fk (α * , κ * ) > 0. Hence we can apply the Implicit Function Theorem to Fk and there exists a C 1 curve β defined around κ * such that, in a neighbourhood V of (α * , κ * ),

F k (α, κ) = 0 if and only if α = β (κ).
Moreover, using Lemma 5, it is easily seen that ∂ κ Fk (α * , κ * ) > 0 and so

∂ κ β (κ * ) = - ∂ κ Fk (α * , κ * ) ∂ α Fk (α * , κ * ) < 0.
As, for all κ, α k, (κ) is the only root of Fk in ] j k, , j k, +1 [, we have, for all κ ∈ V , β (κ) = α k, (κ), whence the desired result. Proof. As α k, is decreasing and bounded (for all κ > 0, j k, < α k, (κ) < j k+1, ), these two limits exist. Let us denote

α 0 := lim κ→0 α k, (κ) and α ∞ := lim κ→∞ α k, (κ).
It remains to find their value. Recall that, for all z > 0, we have 0 < I k+1 (z)

I k (z) < 1 and hence, formula (16) implies 0 = lim κ→0 Fk α k, (κ) = lim κ→0 κ α k, (κ) I k+1 κ α k, (κ) I k κ α k, (κ) + α k, (κ) J k+1 (α k, (κ)) J k (α k, (κ)) = α 0 J k+1 (α 0 ) J k (α 0 ) .
This implies that α 0 = j k+1, .

On the other hand, Remark 6 and α k, > j k, imply

lim κ→∞ G k κ α k, (κ) = +∞. Given that 0 = Fk (α k, ) = G k (κ/α k, ) -H k (α k, ), one has lim κ→∞ H k (α k, ) = +∞
and hence J k (α ∞ ) = 0. This shows that α ∞ = j k, and concludes the proof.

Remark 10. Computer generated graphs of the first α k, are drawn on Fig. 3. From this, one would for instance naturally conjecture 1 that

∀κ > 0, α 0,1 (κ) < α 1,1 (κ) < α 2,1 (κ) < α 0,2 (κ) < α 1,2 (κ) < α 2,2 (κ).
However, the picture does not stay that simple once α k, with higher indices are drawn: many crossings appear. As an example, we have drawn graph of α 5,1 which crosses the one of α 0,3 for κ ≈ 44.616, thereby generating an 1 Some of these inequalities are obvious from the bounds on α k, that were obtained in Theorem 7.

eigenspace of higher dimension. Nevertheless we can prove the following result concerning the first eigenvalue.

κ α α 0,3 = α 5,1 α 2,1 α 2,2 α 0,1 α 0,2 α 0,3 α 1,1 α 1,2 α 1,3 α 5,1 j 0,1 j 1,1 j 0,2 j 1,2 j 0,3 j 1,3 j 2,1 j 2,2 j 2,3 FIGURE 3. Graph of some α k, .
Theorem 11. The first eigenvalue of ( 8) is simple and given by

(19) λ 1 = α 2 0,1 - κ 2 α 2 0,1
with corresponding eigenfunctions given by (20) R 0,1 (r) = c J 0 (α 0,1 r)

+ d I 0 κ α 0,1 r ,
where (c, d) is a nontrivial solution to [START_REF] Gazzola | Polyharmonic boundary value problems. positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF] with α = α 0, . Moreover λ 1 is a decreasing function of κ,

lim κ→0 λ 1 (κ) = j 2 1,1 and lim κ→∞ λ 1 (κ) = -∞. Proof. First note that the function ]0, +∞[ → R : α → α 2 -κ 2 /α 2 is in- creasing.
The localization of α k, given in Theorem 7 readily shows that α 0,1 is the smaller of all α k, . Formula ( 19) and ( 20) immediately follow. The monotonicity comes from Lemma 8 and the asymptotic values from Lemma 9.

NODAL PROPERTIES OF EIGENFUNCTIONS

In this section, we prove that the eigenfunction R 0,1 is positive and decreasing, and give precise statements about the change of sign of the other eigenfunctions.

Theorem 12. Let κ > 0 and R 0,1 be the function associated with α 0,1 defined by [START_REF] Laurenc | Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry[END_REF] in Theorem 11. Then r → |R 0,1 (r)| is positive in [0, 1[ and decreasing.

Proof. As R 0,1 is given by [START_REF] Laurenc | Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry[END_REF] where (c, d) is a nontrivial solution of ( 12) with α = α 0,1 , we may choose c = I 0 κ α 0,1 and d = -J 0 (α 0,1 ). Since α 0,1 ∈ ] j 0,1 , j 1,1 [, we deduce that c and d are positive. Now we want to show that v(r) := ∂ r R 0,1 (r) < 0 for all r ∈ ]0, 1[. As R 0,1 (1) = 0, we then obtain also R 0,1 > 0 on [0, 1[. First observe that v is given by ( 21)

v(r) = -c α 0,1 J 1 (α 0,1 r) + d κ α 0,1 I 1 κ α 0,1 r .
A simple computation using ( 42) and (47) shows that v solves ( 22)

-∂ 2 r v -1 r ∂ r v + 1 r 2 + κ 2 α 2 0,1 v = -cα 0,1 α 2 0,1 + κ 2 α 2 0,1 J 1 (α 0,1 r), v(0) = 0, v(1) = 0.
This problem can be rewritten under the form

(23) -∂ r (r ∂ r v) + r 1 r 2 + κ 2 α 2 0,1 v = -cα 0,1 α 2 0,1 + κ 2 α 2 0,1 r J 1 (α 0,1 r), v(0) = 0, v(1) = 0. Since -cα 0,1 α 2 0,1 + κ 2 α 2 0,1 r J 1 (α 0,1 r) is negative in ]0, 1[, multiplying (23) 
by v + and integrating we obtain

0 1 0 r|∂ r (v + )(r)| 2 dr 1 0 -cα 0,1 α 2 0,1 + κ 2 α 2 0,1 r J 1 (α 0,1 r)v + dr 0.
This implies that v + ≡ 0 i.e., v 0. On the other hand, if there exists

r 0 ∈ ]0, 1[ such that v(r 0 ) = max [0,1] v = 0 then ∂ r v(r 0 ) = 0, ∂ 2 r v(r 0
) 0 which gives a contradiction with [START_REF]of Standards and Technology[END_REF].

This implies that v < 0 on ]0, 1[ and concludes the proof.

Theorem 13. Let κ > 0, k ∈ N, and R k,1 be the function defined by

(24) R k,1 (r) = c J k (α k,1 r) + d I k κ α k,1 r
with (c, d) a nontrivial solution to [START_REF] Gazzola | Polyharmonic boundary value problems. positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF].

Then |R k,1 | > 0 in [0, 1[. Proof. As (c, d) is a nontrivial solution of (12) with α = α k,1 , we may choose c = I k κ α k,1 and d = -J k (α k,1
) in [START_REF] Relton | Applied Bessel Functions[END_REF]. Since α k,1 ∈ ] j k,1 , j k+1,1 [, we deduce that c and d are positive.

For r ∈ ]0, j k,1 /α k,1 ], R k,1 (r) is clearly positive as the sum of a nonnegative and a positive term.

To prove that R k,1 is positive on ] j k,1 /α k,1 , 1[, suppose on the contrary the existence of r * ∈ ] j k,1 /α k,1 , 1[ such that R k,1 (r * ) = 0. A simple computation using (42) and (47) shows that u :

= R k,1 is a solution to (25) -∂ r (r ∂ r u) + k 2 r 2 + κ 2 α 2 k,1 r u = c α 2 k,1 + κ 2 α 2 k,1 r J k (α k,1 r) u(r * ) = 0, u(1) = 0. Note that, for any r ∈ ]r * , 1[, α k,1 r ∈ ] j k,1 , α k,1 [ ⊆ ] j k,1 , j k+1,1 [ ⊆ ] j k,1 , j k,2 [
and so the right hand side of ( 25) is negative. Multiplying the equation by u + and integrating yields

0 1 r * r|∂ r (u + )| 2 dr 1 r * c α 2 k,1 + κ 2 α 2 k,1 r J k (α k,1 r)u + dr 0,
and so u + ≡ 0 i.e., u 0 on [r * , 1]. Now, evaluating (25) at r = 1 and taking into account the clamped boundary conditions yields

∂ 2 r R k,1 (1) = -c α 2 k,1 + κ 2 α 2 k,1 J k (α k,1 ) > 0.
This contradicts the fact that R k,1 is nonpositive on [r * , 1] and concludes the proof.

Lemma 14. Let κ > 0, k ∈ N, ∈ N * and R k, be the function defined by (9) with α = α k, and (c, d) = (0, 0) a solution to [START_REF] Gazzola | Polyharmonic boundary value problems. positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF]. As it is customary, let ( j k,n ) n 1 be the positive zeros of J k in increasing order, except for k = 0 for which we set j 0,1 = 0. Then

Proof. Up to a multiplicative constant, the function R k, can be written as

(27) R k, (r) := cJ k (α k, r) + dI k κ α k, r with c = I k κ α k, > 0 and d = -J k (α k, ).
To fix the ideas, the proof will be carried out for even; the case of odd being similar. Because α k, ∈ ] j k, , j k+1, [ (see Theorem 7), d < 0. Note also that the lower bound on α k, implies that j k,n /α k, < 1 for all n = 1, . . . , . If n is even, then J k ( j k,n ) < 0 which immediately implies that R k, ( j k,n /α k, ) < 0. To conclude the proof, it remains to show that R k, ( j k,n /α k, ) > 0 when n is odd. It is well known [24, p. 37] that |J k ( j k,n )| decreases with respect to n. Thus, for odd n ∈ {1, . . . , }, J k ( j k,n ) > J k ( j k, +1 ) J k (α k, ) = -d where the last inequality results from the fact that j k, +1 is the point of maximum of J k over the interval [ j k, , j k, +1 ] and α k, ∈ ] j k, , j k+1, [. Moreover, as I k is increasing,

I k κ α k, j k,n α k, < I k κ α k, = c. Putting the last two inequalities together proves that R k, ( j k,n /α k, ) > 0 for odd n. Lemma 15. Let k ∈ N and ∈ N * . Then ∀κ ∈ ]0, +∞[, I k κ α k, (κ) α k k, (κ) -J k α k, (κ) κ α k, (κ) k > 0.
Remark 16. For odd values of , the estimate α k, ∈ ] j k, , j k+1, [ implies J k (α k, ) < 0 and the statement thus clearly holds. The following proof shows that the statement is true for all values of .

Proof. Let us rewrite the statement as

g κ α k, -h(α k, ) > 0, where g(z) := I k (z) z k and h(z) = J k (z) z k .
A simple computation using (45) yields ∂ z g(z) = I k+1 (z)/z k > 0. So g is increasing and, using the expansion (49) of I k around 0, one gets:

∀z > 0, g(z) > lim z→0 g(z) = 1 2 k k! .
The proof will be complete if we show

(28) ∀z > 0, 1 2 k k! = lim z→0 h(z) > h(z).
The equality directly follows from the expansion (48). Using (40), one gets

∂ z h(z) = -J k+1 (z)/z k . Thus h is decreasing on ]0, j k+1,1 ] ⊇ ]0, j k,1 ].
Because |J k ( j k,n )| decreases with respect to n (see [24, p. 37]), one deduces that, for all z j k,1 , J k ( j k,1 ) > |J k (z)| and so h( j k,1 ) > |h(z)|. The fact that j k,1 ∈ ]0, j k,1 ] where h is decreasing establishes the inequality (28).

Theorem 17. Let κ > 0, k ∈ N, ∈ N * and R k, be the function defined by [START_REF] Coster | Nodal properties of eigenfunctions of a generalized buckling problem on balls[END_REF] with α = α k, and (c, d) = (0, 0) a solution to [START_REF] Gazzola | Polyharmonic boundary value problems. positivity preserving and nonlinear higher order elliptic equations in bounded domains[END_REF]. The function R k, possesses -1 roots in ]0, 1[, all of which are simple.

Proof. Lemma 14 says that R k, ( j k,n /α k, ) takes alternate signs when n runs from 1 to . Thus R k, possesses at least -1 zeros. It remains to show that there is only one root in each interval ] j k,n /α k, , j k,n+1 /α k, [, n = 1, . . . , -1, and that there are no roots in ]0, j k,1 /α k, [ and ] j k, /α k, , 1[. A direct computation using the definition (27) of R k, as well as (42) and (47) shows that u = R k, is a solution to:

(29) -∂ r (r ∂ r u) + k 2 r 2 + κ 2 α 2 k, r u = c α 2 k, + κ 2 α 2 k, r J k (α k, r).
Note also that, for n = 1, . . . , ,

sign R k, j k,n α k, = sign dI k κ α k, r = sign(d). (30) 
The expansions (48) and (49) yield

R k, (r) = γ r k 2 k k! 1 + o(1)
where γ := cα k k, + d(κ/α k, ) k is positive because of the choice of c and d in (27) and Lemma 15. Thus, there exists ε > 0 such that R k, (r) > 0 for all r ∈ ]0, ε]. Without loss of generality, we can assume that ε < j k,1 /α k, .

On ]ε, j k,1 /α k, [, the right hand side of (29) is positive. Because R k, (ε) and R k, ( j k,1 /α k, ) are both positive, the maximum principle implies that R k, > 0 on [ε, j k,1 /α k, ]. Thus R k, has no root in ]0, j k,1 /α k, [. If d > 0, by (30), we have R k, ( j k,1 /α k, ) > 0 and the same reasoning shows that R k, > 0 on ] j k,1 /α k, , j k,1 /α k, [. If d < 0, R k, must have a root in the previous interval. That root is unique because, if r 1 < r 2 were two roots, applying the maximum principle on ] j k,1 /α k, , r 2 [ would imply that R k, (r 1 ) > 0, a contradiction. Moreover, the Hopf boundary Lemma implies that this root is simple.

On the interval ] j k,1 /α k, , j k,2 /α k, [, the right hand side of (29) is negative. If d < 0, R k, is negative at both endpoints of ] j k,1 /α k, , j k,2 /α k, [ and applying the maximum principle shows that R k, < 0 on the whole interval. If d > 0, R k, must have a root in the previous interval. As before that root must be unique (if r 1 < r 2 are two roots, apply the maximum principle on ]r 1 , j k,2 /α k, [ to get a contradiction) and simple.

The above arguments show that in all cases, R k, possesses a single root in ] j k,1 /α k, , j k,2 /α k, [ and that root is simple. The same reasoning applies to all intervals ] j k,n /α k, , j k,n+1 /α k, [.

To conclude, let us now prove that there is no root in the last interval ] j k, /α k, , 1[. Choosing c > 0 and d as above, by Lemma 14 for the first equality, (30) and the bounds on α k, of Theorem 7 for the second one and evaluating (29) at r = 1 and taking into account the clamped boundary conditions for the last one, we obtain sign R k, j k,

α k, = (-1) +1 , sign R k, j k, α k, = sign(d) = sign -J k (α k, ) = (-1) +1 , sign ∂ 2 r R k, (1) = -sign J k (α k, ) = (-1) +1 . (31)
Because the sign of the right hand side of (29) on ] j k, -1 /α k, , j k, /α k, [ is also (-1) +1 and that interval contains ] j k, /α k, , j k, /α k, [, the maximum principle implies that R k, has the same sign on the whole interval ] j k, /α k, , j k, /α k, [. In particular, it has no root there. On ] j k, /α k, , 1[, the sign of the right hand side of ( 29) is (-1) . Thus, if there was a root r * in that interval, the maximum principle applied to ]r * , 1[ would imply that R k, has sign (-1) over that interval. This contradicts (31) and shows that there is no root in that interval either.

Remark 18. The function R 0,1 is pictured on Fig. 4 for "small" and "large" values of κ. The different graphs of R 0,2 illustrate the nodal properties proved in Theorem 17. In view of Fig. 3, the second eigenfunction space is spanned by R 1,1 (r) e ±iθ and thus necessarily changes sign due to its angular part. However, its radial part R 1,1 does not change sign as established in Theorem 13. It is no longer monotone though.

r 1 R 0,1 r 1 R 0,2 r 1 R 1,1 FIGURE 4. Graphs of R 0,1 ,
R 0,2 and R 1,1 for κ = 0.1 (red), κ = 10 (orange), κ = 30 (green) and κ = 100 (blue).

EXTENSION TO ANY DIMENSION

In this section, we show how the previous results may be extended to any dimension N 2. This generalization is straightforward so we only sketch the modifications to be made.

To find the eigenvalues of (1), we use spherical coordinates r = |x| ∈ [0, +∞[ and θ = x |x| ∈ S N-1 and the ansatz u = R(r)Y k (θ ) where Y k is a spherical harmonic of degree k ∈ N, i.e., an harmonic homogeneous polynomial of degree k. Expressing ∆ in spherical coordinates, equations ( 6) and ( 7) become, respectively,

∂ 2 r R + N -1 r ∂ r R + α 2 - k(k + N -2) r 2 = 0, (32) 
∂ 2 r R + N -1 r ∂ r R - κ 2 α 2 + k(k + N -2) r 2 = 0. ( 33 
)
Performing the change of variables R(r) = r (N-2)/2 B(r), one respectively gets the following equations

∂ 2 r B + 1 r ∂ r B + α 2 - ν 2 k r 2 B = 0, (34) 
∂ 2 r B + 1 r ∂ r B - κ 2 α 2 + ν 2 k r 2 B = 0. ( 35 
)
where ν k := k + N-2 2 . Following the same approach as in Proposition 4, one deduces that the eigenfunctions have the form R(r)Y k (θ ) with Asymptotic behaviour. For any given ν = -1, -2, -3, . . . , when z → 0, J ν (z) = z ν 2 ν Γ(ν + 1)

(1 + o(1)), (48)

I ν (z) = z ν 2 ν Γ(ν + 1)
(1 + o(1)). (49) A.2. Zeros. When ν 0, the positive zeros of J ν are simple and interlace according to the inequalities (50) j ν,1 < j ν+1,1 < j ν,2 < j ν+1,2 < j ν,3 < • • •

On the other hand, for all z > 0, I k (z) > 0 and is increasing.

A.3. Some inequalities.

Lemma 20. For all real number ν > -1, we have Proof. We start with the Turán type inequality [START_REF] Baricz | Turán type inequalities for modified Bessel functions[END_REF] (see also [START_REF] Ismail | Monotonicity of the zeros of a cross-product of Bessel functions[END_REF][START_REF] Laforgia | Some inequalities for modified Bessel functions[END_REF][START_REF] Lorch | Monotonicity of the zeros of a cross product of Bessel functions[END_REF]) (53) ∀z > 0, I ν-1 (z)I ν+1 (z) < I 2 ν (z), valid for all ν > -1. Then using the recurrence relation (43) this can be rewritten under the form 2ν z I ν (z) + I ν+1 (z) I ν+1 (z) < I 2 ν (z).

Setting u := I ν+1 (z) I ν (z) , the previous inequality is equivalent to (51). The estimate (52) directly follows as z > 0.

Remark 21. Note that the estimate (52) follows from [2, estimate (14)] that says that for ν > -1 ∀z > 0, I ν+1 (z)

I ν (z) < -ν -1 + ν 2 + ν+1 ν z 2 ν+1 ν z
, since the right-hand side of this estimate is smaller than the right-hand side of (52). Actually our proof uses the estimate (53), while the previous estimate uses the converse Turán type inequality ∀z > 0, I 2 ν (z) -I ν-1 (z)I ν+1 (z)

I 2 ν (z) ν + 1 ,
valid for all ν > -1.

  , 4.18, 5.5 and Proposition 5.11]. Theorem 2 is a direct consequence from Theorem 7, Lemma 8, Lemma 9, Theorem 13 and Theorem 17.

Lemma 3 .

 3 is a linear combination of I |k| ( κr α ) and of K |k| ( κr α ). Summing up, we have proved the following result. Let k ∈ Z. If α ∈ ]0, ∞[ and β = iκ/α, then the four linearly independent solutions to (5) are J |k| (αr), Y |k| (αr), I |k| ( κr α ) and K |k| ( κr α ).

( 11 )

 11 R(r) = cJ |k| (αr) + dI |k| κ α r , for some c, d ∈ R (since R and R are bounded near r = 0). Hence the boundary conditions at r = 1 lead to the system (12) c J |k| (α) + d I |k| κ α = 0, c αJ |k| (α) + d κ α I |k| κ α = 0. This 2 × 2 system has a non-trivial solution (c, d) if and only if its determinant is equal to zero, namely if and only if (10) is satisfied. The fact that (e ikθ ) k∈Z form a basis of L 2 (]0, 2π[) essentially allows to conclude that no other eigenvalues exist (see [9, Theorem 3.2] for details). Let us start with a technical result. Lemma 5. Let k ∈ N. Then the function G k : ]0, +∞[ → R : z → zI k (z) I k (z) has a positive derivative and thus is increasing on ]0, +∞[. Remark 6. Observe that, by (45),[START_REF] Grunau | Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions[END_REF] 

Lemma 9 .

 9 Let k ∈ N and > 0. Then we have lim κ→0 α k, (κ) = j k+1, while lim κ→∞ α k, (κ) = j k, .

  ) = cJ ν k (αr) + dI ν k κ α rand α being a positive solution to (37)F k (α) := κ α J ν k (α)I ν k κ α -αI ν k κ α J ν k (α) = 0.Because ν k 0, ν k+1 = ν k + 1 and the proofs do not use the fact that k is an integer, Lemma 5, Theorem 7, Lemma 8, Lemma 9,... remain valid with k replaced by ν k .

Theorem 19. Let κ > 0. Denote (α k, ) 1 the infinitely many simple roots of F k ordered in increasing order. The eigenvalues of (3) are given by

and, in spherical coordinates (r, θ ), the corresponding eigenfunctions are R k, (r)Y k (θ ) where R k, is defined by (36) with α = α k, and (c, d) = (0, 0) chosen to satisfy the boundary conditions, and Y k is a spherical harmonic of degree k. In addition the following holds.

The first eigenvalue is given by λ 0,1 and the corresponding eigenspace is spanned by x → R 0,1 (|x|). Moreover r → |R 0,1 (r)| is positive and decreasing on [0, 1[. For any k and , the function R k, possesses -1 roots in ]0, 1[, all of which are simple.

APPENDIX A. BESSEL AND MODIFIED BESSEL FUNCTIONS

A.1. Standard Properties. As convenience to the reader, we gather in this section various properties of Bessel and modified Bessel functions (see for instance [START_REF]of Standards and Technology[END_REF]) that are used in this paper.

Recurrence Relations and Derivatives. The Bessel functions J ν satisfy

The modified Bessel functions I ν satisfy