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Exponential stability of a network of serially connected
Euler-Bernoulli beams

D. Mercier, V. Régnier ∗

December 9, 2013

Abstract

The aim is to prove the exponential stability of a system modelling the vibrations
of a network of N Euler-Bernoulli beams serially connected. Using a result due to K.
Ammari and M. Tucsnak, the problem is reduced to the estimate of a transfer function
and the obtention of an observability inequality. The solution is then expressed in terms of
Fourier series so that one of the sufficient conditions for both the estimate of the transfer
function and the observability inequality is that the distance between two consecutive
large eigenvalues of the spatial operator involved in this evolution problem is superior to
a minimal fixed value. This property called spectral gap holds. It is proved using the
exterior matrix method due to W. H. Paulsen. Two more asymptotic estimates involving
the eigenfunctions are required. They are established using an adequate basis.

Key words Network, Beams, Stability, Spectral gap, Exterior matrices.
AMS 34B45, 74K10, 93B60, 93D15.

1 Introduction
In the last few years various physical models of multi-link flexible structures consisting of finitely
many interconnected flexible elements such as strings, beams, plates, shells have been mathe-
matically studied. See the references by Ali Mehmeti, von Below and Nicaise in [16] as well as
[10] and [13], for instance. The spectral analysis of such structures has some applications to
control or stabilization problems (cf. [13]).
For interconnected strings (corresponding to a second-order operator on each string), a lot of
results have been obtained: the asymptotic behaviour of the eigenvalues (see the references
by Ali Mehmeti, von Below and Nicaise in [16]), the relationship between the eigenvalues and
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algebraic theory (cf. papers by von Below, Nicaise and [13]), qualitative properties of solutions
(see papers by von Below cited in [16] for example) etc...
For interconnected beams (corresponding to a fourth-order operator on each beam), some re-
sults on the asymptotic behaviour of the eigenvalues and on the relationship between the eigen-
values and algebraic theory were obtained by Nicaise and Dekoninck with different kinds of
connections using the method developed by von Below in [8] to get the characteristic equation
associated to the eigenvalues.
The authors used the same method in [15] to compute the spectrum for a hybrid system of N
flexible beams connected by n vibrating point masses. This type of structure was studied by
Castro and Zuazua in many papers (see [9] and the papers by the same authors cited in [16] as
well one by Castro and Hansen also cited there).
In another paper (see [16]), the authors used the technique of exterior matrices due to W. H.
Paulsen (presented for other purposes in [18]) which D. Mercier had already used in the same
type of context in [14]. The aim of these papers was to establish controllability. The technique
of exterior matrices used in [16] helped us prove controllability in a more general context than
what we had done in [15]. This is why we keep this method for the present paper.

In a joint work by the authors and K. Ammari and J. Valein, the stabilization of a chain
of Euler-Bernoulli beams and strings was proved using a spectral analysis also based on the
exterior matrices technique (see [6]).

In this paper we will investigate the same problem as in [10]. In that paper, Chen and al.
have established the exponential stability of the problem but with an assumption on the ma-
terial constants (the mass densities are supposed to be decreasing and the flexural rigidities
must be increasing). They remark that the assumption makes the beam more flexible at the
extremity with the control and seem to think that the exponential stability could not hold
without this assumption.
Our purpose is to prove, using another method (that of the exterior matrices - they have used
a moment method), that in fact, the exponential stability always holds. The problem is dif-
ferent from the one we had studied in [16]. A feedback law is added but the interior masses
have disappeared. Moreover we prove the exponential stability of the problem and not only its
controllability.

The network we consider is a chain of N serially connected branches (N ≥ 2) with n = N + 1

vertices (denoted by Ei).
Let us call (PK) the stability problem:

mjuj,tt(x, t) + aju
(4)
j (x, t) = 0, ∀j ∈ {1, . . . , N},(1)

u1(0, t) = u
(1)
1 (0, t) = 0,(2)

uj(lj, t)− uj+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(3)

u
(1)
j (lj, t)− u(1)j+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(4)
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aju
(2)
j (lj, t)− aj+1u

(2)
j+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(5)

aju
(3)
j (lj, t)− aj+1u

(3)
j+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(6)

aNu
(2)
N (lN , t) = 0,(7)

aNu
(3)
N (lN , t) = z(t).(8)

where the feedback law is chosen as :

z(t) = KuN,t(lN , t),(9)

where K > 0, t ≥ 0.

The scalar function uj(x, t) contains the information on the vertical displacement of the j-
th beam. This displacement is described by the first equation where mj is the constant mass
density of the j-th beam and aj its flexural rigidity (1 ≤ j ≤ N).
The third, fourth, fifth and sixth equations are transmission conditions. The second, seventh
and eighth ones are boundary conditions. Note that the damping function z = z(t) acts on the
system through the exterior node EN on the quantity aNu

(3)
N (lN , t).

The goal of the paper is to establish on the first hand the existence and uniqueness of the
solution of Problem (PK) with a regularity depending on that of the initial conditions, on the
other hand, that the energy of the solution decays to zero exponentially.

Before starting to study the core of the problem, we apply in Section 2 the terminology of
networks to our particular network. The whole terminology can be found in early contributions
of Lumer and Gramsch as well as in papers by Ali Mehmeti ([1] and [2]), von Below (cf. [8])
and Nicaise ([17] and [3]) in the eighties. We also give some properties of the spatial operator
A involved in the considered evolution problem and construct an operator B and its adjoint to
rewrite the problem as the abstract evolution equation (28). The aim is to apply the results of
the paper by Ammari and Tucsnak ([4] and also [5]).

In Section 3, we give the main results: two properties of the eigenelements of the operator
A. One called the spectral gap concerns the asymptotic behaviour of the difference between
two consecutive eigenvalues, the other one is an estimate from both above and below of the
value of an eigenfunction at x = lN .
Both results are sufficient conditions to establish the estimate of the transfer function required
by Ammari and Tucsnak’s method (cf. [4] and [5]) as well as the observability inequality called
(2.5) in their paper and rewritten in our context as (44). The exponential stability of the
problem follows.

The proof of the spectral gap (asymptotic behaviour of the difference between two consec-
utive eigenvalues) is given in Section 4. This asymptotic behaviour is given by that of the
roots of a function called f∞. In order to avoid the cancellation of the large order terms, the
characteristic equation is computed using the exterior matrix method due to Paulsen (see [18])
and already used by D. Mercier in [14].
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Two estimates involving the evaluation of an eigenfunction of the problem at the node where
the damping acts as well as a norm of the same eigenfunction remain to be proved. It is the
aim of Section 5. The choice of the basis hi (cf. the notation at the beginning of Section 5) in
which the eigenfunctions are decomposed is crucial for the asymptotic behaviour of the eigen-
functions to be studied since the expressions are very complicated especially for large values of
N . In particular the exponential factor in h3 has an important role since its presence keeps the
exponential terms from being disseminated in the different matrices which would not allow an
easy estimation of the involved quantities as λ tends to infinity.

2 Data and Framework

2.1 Domain and notation
The domain that we consider is a network of N (N ∈ N − {0, 1}) serially connected beams

which can be modelled by a graph G =
N⋃
j=1

kj. Each branch kj having an origin and an end

such that the end of the branch kj(1 ≤ j ≤ N − 1) is connected to the beginning of the branch
kj+1. By the intermediary of a parametrization we will identify each branch kj with the interval
[0, lj], 0 represents the beginning of kj and lj the end. For each branch kj, we fix mechanical
constants mj > 0 (the mass density of the beam kj) and aj > 0 (the flexural rigidity of kj). The
vibration of the branch kj is modelled by the function uj(t, x), t ≥ 0, x ∈ [0, lj], j = 1, ..., N.

The total vibration of the structure is the vectorial function u = (uj)j=1,...,N .

Notation for derivatives. In this paper, for a function u = u(x, t) we make the choice
to denote by ut (utt, ..., ) the first (second,...) time derivative and u(1) (u(2), ...) the first (sec-
ond,...) spatial derivative.

2.2 The stability problem
We assume that each beam is uniform, with constant mass density mj and flexural rigidity
aj, j = 1, ..., N. The problem, denoted by (PK), is the following:

mjuj,tt(x, t) + aju
(4)
j (x, t) = 0, ∀j ∈ {1, . . . , N},(10)

u1(0, t) = u
(1)
1 (0, t) = 0,(11)

uj(lj, t)− uj+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(12)

u
(1)
j (lj, t)− u(1)j+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(13)

aju
(2)
j (lj, t)− aj+1u

(2)
j+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(14)

aju
(3)
j (lj, t)− aj+1u

(3)
j+1(0, t) = 0, ∀j ∈ {1, . . . , N − 1},(15)
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aNu
(2)
N (lN , t) = 0,(16)

aNu
(3)
N (lN , t) = z(t).(17)

The feedback law is chosen as :
z(t) = KuN,t(lN , t),(18)

where K > 0, t ≥ 0.

2.3 Abstract framework
In order to study the above system (PK) we need to formulate it in an abstract setting. More
precisely, we shall see that the framework given in [4] is well adapted to our problem (PK).

2.3.1 The operator A : definition and properties

For that purpose, we define the Hilbert space

H =
N∏
j=1

L2(0, lj),

endowed by the inner product

(u, ũ)H =
N∑
j=1

mj

∫ lj

0

< uj(x), ũj(x) > dx,

where < ., . > represents the Hermitian product in C.
We also define the space V

V = {u ∈
N∏
j=1

H2(0, lj) satisfying (19) to (21) hereafter},

u1(0) = u
(1)
1 (0) = 0,(19)

uj(lj)− uj+1(0) = 0, ∀j ∈ {1, . . . , N − 1},(20)

u
(1)
j (lj)− u(1)j+1(0) = 0, ∀j ∈ {1, . . . , N − 1},(21)

as well as the sesquilinear form a(u, v) for (u, v) ∈ V × V by

a(u, v) =
N∑
j=1

aj

∫ lj

0

< u
(2)
j (x), v

(2)
j (x) > dx.(22)

Next, we define the linear operator A : D(A) −→ H by

Au =

(
aj
mj

u
(4)
j

)
1≤j≤N

,
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with domain

D(A) =

{
u ∈ H : u ∈

(
N∏
j=1

H4(0, lj)

)
∩ V, satisfying (23) to (26) hereafter

}

aju
(2)
j (lj)− aj+1u

(2)
j+1(0) = 0, ∀j ∈ {1, . . . , N − 1},(23)

aju
(3)
j (lj)− aj+1u

(3)
j+1(0) = 0, ∀j ∈ {1, . . . , N − 1},(24)

aNu
(2)
N (lN) = 0,(25)

aNu
(3)
N (lN) = 0.(26)

The operator A is a linear unbounded self-adjoint and strictly positive operator in H. The
domain of A

1
2 is D(A

1
2 ) = V (the proof based on Friedrichs extension is left to the reader).

2.3.2 The operators B and B∗

We define the operator B : C −→ V ′ such that ∀z ∈ C, Bz = ACz, where V ′ is the dual space
of V with respect to the inner product of the pivot space H and Cz = u is the solution of

u
(4)
i = 0, i = 1, ..., N

which satisfies conditions (19), (20), (21), (23), (24), (25) as well as the following condition

aNu
(3)
N (lN) = −z.(27)

Then its adjoint B∗ : V −→ C is defined by B∗Φ = ΦN(lN), for any Φ ∈ V and the system
(PK) is described by

utt(t) + Au(t) +K ·BB∗ut(t), u(0) = u0, ut(0) = u1, t ∈ [0,∞).(28)

with u(t) ∈ V . A solution of (28) is u such that u(t) ∈ V for t ∈ [0,∞) and, for any Φ ∈ V :

(utt(t),Φ)H + a(u(t),Φ) +Ka(CB∗(ut(t)),Φ) = 0 ⇐⇒
N∑
j=1

mj

∫ lj

0

< uj,tt(t, x),Φj(x) > dx

+
N∑
j=1

aj

∫ lj

0

< u
(2)
j (t, x),Φ

(2)
j (x) > dx+K

N∑
j=1

aj

∫ lj

0

< p
(2)
j (t, x),Φ

(2)
j (x) > dx = 0

(29)
where p = (p1, . . . , pN) is the solution of

p
(4)
i = 0, i = 1, ..., N

which satisfies conditions (19), (20), (21), (23), (24), (25) and aNp
(3)
N (lN) = −uN,t(lN , t).

Two integrations by parts and adapted choices for Φ lead to the equivalence between Problem
(PK) and the abstract rewriting (28). Thus, the framework given in [4] is well adapted to our
problem (PK) (see equations (1.3), (1.4) in [4]).
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2.3.3 The dissipative operator Ad

The dissipative operator Ad introduced by Ammari and Tucsnak ([4]) in the same paper is still
Ad : D(Ad) −→ V ×H defined by

Ad =

(
0 I

−A −K ·BB∗
)

with domain
D(Ad) = {(u, v) ∈ V ×H : Au+K ·BB∗v ∈ H, v ∈ V }.

Thus the abstract equation (28) can be rewritten as

wt(t) = Adw(t), w(0) = w0, t ∈ [0,∞)(30)

with w(t) ∈ D(Ad), w0 = (u0, u1).

Let us state some classical results based on Lumer-Phillips Theorem.

Proposition 2.1 (existence and uniqueness of the solution, decreasing of the energy)

1. Assume that w0 = (u0, u1) ∈ D(Ad). Then equation (30) has a unique solution

w ∈ C(0,∞, D(Ad)) ∩ C1(0,∞;V ×H).(31)

Thus equation (28) has a unique solution

u ∈ C1(0,∞;V )(32)

such that B∗u(·) ∈ H1(0, T ;C) and

‖B∗ut‖2L2(0,T ;C) ≤ C‖(u0, u1)‖2V×H(33)

where the constant C > 0 is independent of (u0, u1).

2. We still assume that w0 = (u0, u1) ∈ D(Ad). The energy of the solution u(t) given above,
defined by

E(u(t)) =
1

2

{
‖ut(t)‖2H + ‖A1/2u(t)‖2H

}
(34)

satisfies

E(u(0))− E(u(t)) =

∫ t

0

|B∗ut(s)|2ds ≥ 0,∀t ≥ 0.(35)
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3 Main results

3.1 Properties of the eigenelements of the operator A
Consider the eigenvalue problem: λ2 ∈ σ(A) (λ > 0) is an eigenvalue of A with associated
eigenvector φ ∈ D(A) if and only if φ satisfies the transmission and boundary conditions (19),
(20), (21), (23), (24), (25), (26) of Section 2.3.1 and

(EP )

{
φ
(4)
j = q4jλ

2φj on (0, lj), ∀ j ∈ {1, ...,N},
φj ∈ H4((0, lj)), ∀j ∈ {1, ..., N},

with qj = (mj/aj)
1/4.

The following results are useful for stability. They are proved in Sections 4 and 5 respectively.

Theorem 3.1 (the spectral gap)

Let λ2k, k ∈ N∗, (λk > 0) be the (strictly) monotone increasing sequence of eigenvalues of Prob-
lem (EP ) given above then

lim
k→+∞

(λk+1 − λk) = +∞.(36)

Theorem 3.2 (uniform estimates for |φN(lN)|)
Consider the eigenvalue problem (EP ) given above. For any eigenfunction φ ∈ D(A) associated
to the eigenvalue λ2 and for any K > 0, there exists two constants K1 and K2 such that:

K1 · ‖φ‖2H ≤ |φN(lN)|2 ≤ K2 · ‖φ‖2H(37)

with the norm ‖ · ‖H introduced in Section 2.3.1.

3.2 Strong stability
Using the abstract framework given in last section, we prove the decay to zero of the energy
of any solution of the abstract equation (30) with suitable initial condition. It is enough
to establish that the operator Ad (introduced in Definition 2.3.3) has no eigenvalues on the
imaginary axis.

Theorem 3.3 (strong stability)
It holds

lim
t→+∞

E(u(t)) = 0(38)

for any solution w = (u, v) of the abstract equation (30) with w0 in V ×H.

Proof. First we compute <[(Adw,w)V×H].
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(Adw,w)V×H = (v, u)V + (−Au−K ·BB∗v, v)H = a(v, u)− (Au, v)H −K(BB∗v, v)H
= a(u, v)− a(u, v)−K|B∗v|2 = −2i=(a(u, v))−K|vN(lN)|2.(39)

Thus <[(Adw,w)V×H] = −K|vN(lN)|2.
Now we want to prove that the operator Ad has no eigenvalues of the form iµ, with µ ∈ R.
To this end, we suppose that there exists w = (u, v) 6= (0, 0) in D(Ad), such that Adw = iµw.
Then, by definition of Ad, it holds:{

v = iµu,

Au+K ·BB∗v = −iµv.(40)

Now for such a w, <[(Adw,w)V×H] = <[iµ(w,w)V×H] = 0. It follows vN(lN) = 0. Since
vN(lN) = B∗v, system (40) implies uN(lN) = 0 and Au = µ2u. Moreover, since (u, v) ∈ D(Ad),
Au+K ·BB∗v ∈ H i.e. Au ∈ H (since B∗v = vN(lN) = 0). Thus u ∈ D(A).
Two cases must be envisaged:

• either µ 6= 0. In that case, any eigenfunction of the conservative operator A satisfies
uN(lN) 6= 0 (see Theorem 3.2). This is a contradiction with our assumption.

• Or µ = 0. Then, if u is an eigenfunction associated to the eigenvalue µ2 = 0,

0 = (Au, u)H = a(u, u) =
N∑
j=1

aj

∫ lj

0

< u
(2)
j (x), u

(2)
j (x) > dx

which implies u(2)j = 0 on (0; lj) for any j in {0, . . . , N}. From condition (11), it follows
u1 = 0 (indeed u1 must be a polynomial function with degree 1 which vanishes as well as
its first derivative at 0). Then conditions (12) and (13) combined with u1(l1) = u2(0) = 0

and u(2)2 = 0 on (0; l2) imply u2 = 0 and so on: uj = 0 on (0; lj) for any j in {0, . . . , N}.
This is a contradiction.

The conclusion is that Ad has no eigenvalues of the form iµ, with µ ∈ R. The result follows,
using the main theorem of [7].

3.3 Exponential stability
Using Theorem 2.2 of [4] we can state the exponential stability of our system. To this end,
we prove (1.5) of [4] (also called hypothesis (H), which is the estimate of a transfer function)
directly (using the orthonormal basis formed by the eigenfunctions of the operator A) as well as
the estimate (2.5) which is an observability inequality. To establish (H), we need the spectral
gap and since the proof of the spectral gap is a long and technical proof based on the same
ideas as those we have already used in a previous paper (cf. [16]), it is given in next section.
As for the observability inequality (2.5), its proof requires both the spectral gap and a uniform
estimate for |φN(lN)| which is proved via an adaptation of ancient results (same paper [16]).
It is also given in another section. Note that some new technical difficulties appear in the
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calculations and proofs of Sections 4 and 5 and that, although they are based on the same ideas
as a previous paper, they are not trivial at all.

Theorem 3.4 (exponential stability)
The system described by the abstract equation (30) is exponentially stable in V ×H.

Proof. To prove this theorem, we use Theorem 2.2 of [4]. In the first part of the proof, we
will check that the following hypothesis (H) is satisfied:

(H): If β > 0 is fixed and Cβ = {λ ∈ C|<(λ) = β}, the function

λ ∈ Cβ → H(λ) = λB∗(λ2 + A)−1B ∈ L(C)

is bounded.

Since the proof is long, we divide it into several steps.

First step: rewrite H(λ) as a series. We start by computing B(1) (B is a linear op-
erator defined on C thus computing B(1) is enough to know any value B(λ)).
Since B(1) ∈ V ′ then there exists a sequence (αk)k∈N∗ such that

∞∑
k=1

∣∣∣∣αkλk
∣∣∣∣2 <∞ and B(1) =

∞∑
k=1

αkφk.

(with V introduced in Definition 2.3.1, (φk)k the orthonormal basis formed by the eigenvectors
of the operator A and λ2k the eigenvalues).
Let h =

∑∞
k=1 hkφk any element of V (i.e

∑∞
k=1 |hkλk|2 <∞) then

< B(1), h >V ′,V =
∞∑
k=1

< αk, hk > .(41)

We also have

< B(1), h >V ′,V =< 1, B∗h >C,C= hN(lN) =
∞∑
k=1

hk φk,N(lN).(42)

From (41) and (42) we deduce that

B(1) =
∞∑
k=1

φk,N(lN)φk.

Now, as previously, we directly compute (λ2I + A)−1B(1) in the orthonormal basis (φk)k and
easily find that

(λ2I + A)−1B(1) =
∞∑
k=1

φk,N(lN)

λ2 + λ2k
φk.

Therefore

H(λ) = λB∗(λ2I + A)−1B(1) = λ
∞∑
k=1

|φk,N(lN)|2

λ2 + λ2k
.
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Second step: find an estimate for the imaginary part of H(λ)/λ on the line Cβ. We
can choose β = 1 without loss of generality. Calculating the imaginary part of H(1+iy)/(1+iy)

leads to:

− 1

2y
=
(
H(λ)

λ

)
=
∞∑
k=1

|φk,N(lN)|2 · f1(y, λk), for λ = 1 + iy, y ∈ R.

where f1(y, λ) =
1

4y2 + (1− y2 + λ2)2
.

Due to Theorem 3.2, K1 ≤ |φk,N(lN)|2 ≤ K2 (the norm of each φk in H is one).
Thus, the function we need to estimate from above is the function of y defined by

Σ(y) =
∞∑
k=1

1

4y2 + (1− y2 + λ2)2
.

For a fixed y > 0, the sum Σ is separated into three terms: one with the small values of λk,
one with the values of λk which are close to the value of y (these values contribute mostly to
the sum but their number is finite) and the last one with the big values of λk.

1. By definition, Σ1(y) =
∑

k:λk≤y−
√
y

1

4y2 + (1− y2 + λ2)2
. The function f1 is an increasing

function of λ as soon as y is large enough. Indeed the derivative ∂λf1(y, λ) is equal to

4λ (y2 − λ2 − 1)(
4y2 + (1− y2 + λ2)2

)2 .
Then, since λ ≤ y −√y, f1(y, λ) ≤ f1(y, y −

√
y) and

f1(y, y −
√
y) =

1

4y2 + (1− y2 + (y −√y)2)2
.

1

y4
.

Note that the notation A . B means the existence of a positive constant C, which is
independent of A and B such that A ≤ CB.
Now, from the spectral gap (cf. Theorem 3.1), λk & k2. Then, denoting by Ny, the
number of λk such that λk ≤ y −√y, it holds:

(Ny)2 . λNy ≤ y −√y.

Thus, for large values of y, Σ1(y) . Ny
1

y4
.
√
y

y4
.

1

y2
.

2. By definition, Σ2(y) =
∑

k:y−√y≤λky+
√
y

1

4y2 + (1− y2 + λ2)2
.

First f1(y, λ) ≤ 1

4y2
.
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Secondly, the number Ny which is the number of λk such that y − √y ≤ λk ≤ y +
√
y

is bounded as regards y. Indeed Ny is smaller than the quotient of the amplitude of
the interval (2√y) over the minimum gap between two consecutive values of λk (with
y −√y ≤ λk ≤ y +

√
y). Now the gap between two values of λk is:

λk+1 − λk = (
√
λk+1 −

√
λk)(

√
λk+1 +

√
λk)

≥ σ(
√
λk+1 +

√
λk) ≥ 2σ

√
λk & k

(43)

where the parameter σ is introduced in the proof of Theorem 4.10.
Now, we define k0 the largest integer such that λk0 ≤ y −√y. Then, for any k such that

y −√y ≤ λk ≤ y +
√
y, λk+1 − λk & k0. Thus Ny .

2
√
y

k0
.

Moreover there exists γ2 > 0, λk ≤ γ2k
2 (cf. [11]) and since y−√y ≤ λk0+1 ≤ γ2(k0 +1)2,

k0 ≥

√
y −√y
γ2

− 1 and Ny .
2
√
y

√
y

. 1.

The conclusion is: Σ2(y) .
1

y2
.

3. By definition, Σ3(y) =
∑

k:y+
√
y≤λk

1

4y2 + (1− y2 + λ2)2
. The derivative ∂yf1(y, λ) is equal

to

4y (λ2 − y2 − 1)(
4y2 + (1− y2 + λ2)2

)2 .
If λ ≥ y +

√
y, it is positive then f1(y, λ) ≤ f1(y(λ), λ) with y(λ) +

√
y(λ) = λ and

y(λ) ≤ λ i.e. y(λ) =
1

2

(
2λ+ 1−

√
4λ+ 1

)
. Since λk & k2 (as it was said above), the

series
∑

k

1

λk
is convergent and it follows, after calculations:

f1(y, λ) .
1

λ3
which implies Σ3(y) .

1

y2

∑
k:y+

√
y≤λk

1

λk
.

1

y2
.

The conclusion of this part is that the imaginary part of H(λ)/λ satisfies:∣∣∣∣=(H(λ)

λ

)∣∣∣∣ . 1

y
, for any λ ∈ Cβ = {λ ∈ C|<(λ) = β}.

Third step: find an estimate for the real part of H(λ)/λ on the line Cβ. We still
choose β = 1 and calculate the real part of H(1 + iy)/(1 + iy). It is:

<
(
H(λ)

λ

)
=
∞∑
k=1

|φk,N(lN)|2 · f2(y, λk), for λ = 1 + iy, y ∈ R.

12



where f2(y, λ) =
1− y2 + λ2

4y2 + (1− y2 + λ2)2
. We still separate the sum into three terms denoted by

Σ′1, Σ′2 and Σ′3.
Since the ideas of the proof are similar to those of the proof for the imaginary part, we give
less details for this step.

For the estimate of Σ′1, we first prove that the derivative ∂λf2(y, λ) is negative if λ ≤ y −√y

and y is large enough. Thus |f2(y, λ)| = −f2(y, λ) ≤ −f2(y, y −
√
y) .

1

y3/2
.

Now the number Ny of λk such that λk ≤ y−√y satisfies Ny .
√
y since (Ny)2 . λNy ≤ y−√y.

Thus Σ1(y) .
1

y
.

For the estimate of Σ′2, we prove that the derivative ∂λf2(y, λ) vanishes at λ such that

1 + λ2 − y2 = ±2y i.e. at λ± =
√
y2 ± 2y − 1. Moreover, f2(y, y ±

√
y) =

±1

2y
√
y

+ o

(
±1

2y
√
y

)
.

Since f2(y, λ±) =
±1

4y
, it holds, for any λ in [y−√y; y+

√
y], |f2(y, λ)| ≤ |f2(y, λ+)| . 1

y
. Thus

Σ′2 .
1

y
(recall that Ny is bounded, cf. the second step).

At last, for the estimate of Σ′3, we prove that the derivative ∂yf2(y, λ) is positive if λ ≥ y+
√
y

and y is large enough. Thus, f2(y, λ) ≤ f2(λ, λ) and since f2(λ, λ) =
1

4λ2 + 1
.

1

λ2
, it follows:

Σ′3(y) .
1

y

∑
k:y+

√
y≤λk

1

λk
.

1

y
.

The conclusion of this part is that the real part of H(λ)/λ satisfies:∣∣∣∣<(H(λ)

λ

)∣∣∣∣ . 1

y
, for any λ ∈ Cβ = {λ ∈ C|<(λ) = β}.

The second assumption for the exponential stability is the observability inequality called
(2.5) in the paper by Ammari and Tucsnak. It follows from the spectral gap and the uniform
estimate given in Section 3.1 using a result due to Haraux (cf. [12]). Indeed (2.5) is:

∃T > 0,∃C(T ),

∫ T

0

|vN(lN , t)|2dt ≥ C(T ) · ‖U0‖2V×H(44)

where U(t) = (u(t), v(t))t satisfies U ′ = AcU , U(0) = U0 ∈ D(Ac), with Ac the conservative
operator defined like Ad with K = 0.
Define Φk = (φk, iλkφk)

t an orthonormal basis of eigenfunctions of the operatorAc (in particular
‖Φk‖V×H = 1). The result due to Haraux (cf. [12]) that we already used with more details in
[16] allows to write:

13



∃T > 0,∃C1(T ),

∫ T

0

|vN(lN , t)|2dt ≥ C1(T )
∞∑
k=1

|uk0|2|λk|2|φk,N(lN)|2(45)

where U0 =
∑∞

k=1 u
k
0Φk. It follows from Theorem 3.2, |φk,N(lN)|2 ≥ K1‖φk‖2H and since there

exists C2 such that ‖φk‖2H ≥ C2
1

|λk|2
‖Φk‖2V×H

∃T > 0,∃C1(T ),∃C2,∃K1,

∫ T

0

|vN(lN , t)|2dt ≥ C1(T )C2K1

∞∑
k=1

|uk0|2.(46)

Assumption (44) follows with C(T ) = C1(T )C2K1 since ‖U0‖2V×H =
∑∞

k=1 |uk0|2.

4 Proof of the spectral gap using exterior matrices
The proof of the spectral gap follows the lines of the proof of our previous paper on the bound-
ary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses
(cf. [16]). We also use the exterior matrix method due to W. H. Paulsen (see [18]).

We need to determine the asymptotic behaviour of the characteristic equation of the eigenvalue
problem: λ2 ∈ σ(A) (λ > 0) is an eigenvalue of A with associated eigenvector φ ∈ D(A) if and
only if φ satisfies the transmission and boundary conditions (19), (20), (21), (23), (24), (25),
(26) of Section 2.3.1 and

(EP )

{
φ
(4)
j = q4jλ

2φj on (0, lj), ∀ j ∈ {1, ...,N},
φj ∈ H4((0, lj)), ∀j ∈ {1, ..., N},

with qj = (mj/aj)
1/4.

4.1 Recall of notation and of some properties
Let φ be a non-trivial solution of the above eigenvalue problem (EP ) and λ2 (λ > 0) be the
corresponding eigenvalue.
For each j ∈ {1, ..., N}, the vector function Vj is defined by

Vj(x) =

(
φj(x),

φ
(1)
j (x)
√
λ

, aj
φ
(2)
j (x)

λ
, aj

φ
(3)
j (x)

λ
√
λ

)t

, ∀x ∈ [0, lj].

Keeping the notation aj and lj introduced in Section 2, the matrix Aj is Aj := A(qj, bj,mj)

with qj = (mj/aj)
1/4, bj = qjlj and A(q, b, m) the square matrix of order 4 defined by
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A(q, b,m) =
1

2



ch+ c
sh+ s

q

q2 (ch− c)
m

q (sh− s)
m

q (sh− s) ch+ c
q3 (sh+ s)

m

q2 (ch− c)
m

m (ch− c)
q2

m (sh− s)
q3

ch+ c
sh+ s

q
m (sh+ s)

q

m (ch− c)
q2

q (sh− s) ch+ c


(47)

with the notation c = cos(b
√
λ), s = sin(b

√
λ), ch = cosh(b

√
λ), sh = sinh(b

√
λ).

To finish with, the matrix M(λ) is given by

M(λ) = ANAN−1...A2A1.(48)

Lemma 4.1 (a few trivial but useful properties)
With the notation introduced above:

Vj(lj) = AjVj(0), ∀j ∈ {1, ..., N},
Vj+1(0) = Vj(lj), ∀j ∈ {1, ..., N − 1},
VN(lN) = M(λ)V1(0).

The proof is analogous to that of [16].

Theorem 4.2 (the characteristic equation for the eigenvalue problem corresponding to a chain
of N branches)
λ2 > 0 is an eigenvalue of A if and only if λ satisfies the characteristic equation

f(
√
λ) = det(M22(λ)) = 0,(49)

where M22(λ) is the square matrix of order 2 which is the restriction of the matrix M(λ), given
by (48), to its last two lines and its last two columns.

For that property again, the proof is similar to that of [16].

4.2 Rewriting of the characteristic equation using the exterior matrix
method

The exterior matrix method presented in [18] is a very useful method which allows to compute
asymptotically the eigenfrequencies for the vibrations of serially connected elements which are
governed by fourth-order equations. But our goal is to get the spectral gap. The main idea is
to exploit the special properties of the exterior matrices associated to our problem in order to
obtain the desired results.
The whole section makes use of the same ideas as in a previous paper by D. Mercier (see [14]).

First, we simply recall the definition of exterior matrix and some useful results that we need in
the sequel (see [18] for more details).
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Definition 4.3 If M = (mij) is a 4 × 4 matrix, then the exterior matrix of M is the 6 × 6

matrix given by:

ext(M) =

(
ext(M)11 ext(M)12
ext(M)21 ext(M)22

)
,

where each block ext(M)ij, i, j = 1, 2, is a 3× 3 matrix given hereafter:

ext(M)11 =



∣∣∣∣ m11 m12

m21 m22

∣∣∣∣ ∣∣∣∣ m13 m12

m21 m23

∣∣∣∣ ∣∣∣∣ m11 m14

m21 m24

∣∣∣∣
∣∣∣∣ m11 m12

m31 m32

∣∣∣∣ ∣∣∣∣ m11 m13

m31 m33

∣∣∣∣ ∣∣∣∣ m11 m14

m31 m34

∣∣∣∣
∣∣∣∣ m11 m12

m41 m42

∣∣∣∣ ∣∣∣∣ m11 m13

m41 m43

∣∣∣∣ ∣∣∣∣ m11 m14

m41 m44

∣∣∣∣


,

ext(M)12 =



∣∣∣∣ m13 m14

m23 m24

∣∣∣∣ − ∣∣∣∣ m12 m14

m22 m24

∣∣∣∣ ∣∣∣∣ m12 m13

m22 m23

∣∣∣∣
∣∣∣∣ m13 m14

m33 m34

∣∣∣∣ − ∣∣∣∣ m12 m14

m32 m34

∣∣∣∣ ∣∣∣∣ m12 m13

m32 m33

∣∣∣∣
∣∣∣∣ m13 m14

m43 m44

∣∣∣∣ − ∣∣∣∣ m12 m14

m42 m44

∣∣∣∣ ∣∣∣∣ m12 m13

m42 m43

∣∣∣∣


,

ext(M)21 =



∣∣∣∣ m31 m32

m41 m42

∣∣∣∣ ∣∣∣∣ m31 m33

m41 m43

∣∣∣∣ ∣∣∣∣ m31 m34

m41 m44

∣∣∣∣
−
∣∣∣∣ m21 m22

m41 m42

∣∣∣∣ − ∣∣∣∣ m21 m23

m41 m43

∣∣∣∣ − ∣∣∣∣ m21 m24

m41 m44

∣∣∣∣
∣∣∣∣ m21 m22

m31 m32

∣∣∣∣ ∣∣∣∣ m21 m23

m31 m33

∣∣∣∣ ∣∣∣∣ m21 m24

m31 m34

∣∣∣∣


,
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ext(M)22 =



∣∣∣∣ m33 m34

m43 m44

∣∣∣∣ −
∣∣∣∣ m32 m34

m42 m44

∣∣∣∣ ∣∣∣∣ m32 m33

m42 m43

∣∣∣∣
−
∣∣∣∣ m23 m24

m43 m44

∣∣∣∣ ∣∣∣∣ m22 m24

m42 m44

∣∣∣∣ −
∣∣∣∣ m22 m23

m42 m43

∣∣∣∣
∣∣∣∣ m23 m24

m33 m34

∣∣∣∣ −
∣∣∣∣ m32 m34

m22 m24

∣∣∣∣ ∣∣∣∣ m22 m23

m32 m33

∣∣∣∣


.

Lemma 4.4 If M1 and M2 are 4× 4 matrices, then

ext(M1M2) = ext(M1)ext(M2).

Proof. Sketch of the proof (for more details see Lemma 1 of [18].)
Given a matrix M ∈M4(R), we define a linear map M∗ inM4(R) such that :

∀A ∈M4(R), M∗(A) = MAMT .(50)

It is easy to prove that the map M →M∗ is a homomorphism (i.e we have M∗
1M

∗
2 = (M1M2)

∗)

and that M∗ sends anti-symmetric matrices to anti-symmetric matrices, so we can restrict M∗

to this subspace. A basis for the 4× 4 anti-symmetric matrices is

e1 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , e2 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , e3 =


0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0

 ,

e4 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

 , e5 =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , e6 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 .

Using this basis, we find that M∗, when restricted to anti-symmetric matrices can be expressed
by the 6× 6 matrix ext(M) given in Definition 4.3.
(50) expresses that the map M →M∗ is a homomorphism.

Theorem 4.5 (the characteristic equation rewritten in terms of exterior matrices)
Let λ2 > 0 be an eigenvalue of A then λ satisfies the characteristic equation

f(
√
λ) = et4ext(M(λ))e4 = 0,(51)

or equivalently
f(
√
λ) = et4ext(AN)ext(AN−1)...ext(A1)e4 = 0,(52)

where M(λ) is the square matrix of order 4 given by (48) and et4 = (0, 0, 0, 1, 0, 0).

Proof. The proof is analogous to that of the paper [16]. The only difference is that the
determinant of M22 is the term of the 4-th line and 4-th column of the matrix ext(M).
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4.3 The asymptotic behaviour of the characteristic equation
As in [14], we study the asymptotic behaviour of the exterior matrices involved in ext(M(λ))

in order to get the asymptotic behaviour of the characteristic equation (52) as λ tends to ∞.
This is enough to establish the following property called spectral gap. Let λ2k, k ∈ N∗, (λk > 0)

be the (strictly) monotone increasing sequence of eigenvalues of Problem (EP ) given at the
beginning of Section 4 then

lim
k→+∞

(λk+1 − λk) = +∞.(53)

Thus the aim of the following is to study the asymptotic behaviour of the exterior matrix of
each matrix Aj contained in the expression (48). From now on the notation o(λ) is used for
a square matrix of the appropriate size such that all its terms are dominated by the function
λ 7→ λ asymptotically.
Definition 4.6 (definition of the matrices C, S and of the vectors V1 and V2)

C(q,m) =



1
q3

m
0 − q4

m2

q

m
0

m

q3
2

1

q
− q

m
0

1

q

0 q 1 0 −1

q
1

−m
2

q4
−m
q

0 1 −m
q3

0

m

q
0 −q −q

3

m
2 −q

0 q 1 0 −1

q
1


.(54)

S(q,m) =



0
q3

m

q2

m
0 − q

m

q2

m

−m
q3

0
1

q

q

m
− 2

q2
1

q

−m
q2

−q 0
q2

m
−1

q
0

0 −m
q
−m
q2

0
m

q3
−m
q2

m

q
2q2 q −q

3

m
0 q

−m
q2

−q 0
q2

m
−1

q
0


.(55)

V1(q,m) =

(
− q4

m2
,− q

m
, 0, 1,−q

3

m
, 0

)t
.(56)

V2(q,m) =

(
0,
q

m
,
q2

m
, 0,−q

3

m
,
q2

m

)t
.(57)
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Lemma 4.7 (properties of H, C, S, V1 and V2)
The exterior matrix of Aj may be written as:

ext(Aj) = ebj
√
λH(qj, bj,mj) + o(ebj

√
λ).

where the matrix H is:

H(qj, bj,mj) = cos(bj
√
λ)C(qj,mj) + sin(bj

√
λ)S(qj,mj)).(58)

The rank of both matrices C(q,m) and S(q,m) defined above is 2. A basis for the range of
C(q,m) is {V1(q,m), V2(q,m)}. Idem for the range of S(q,m).

Proof. The first property is proved via a long calculation using the definition of exterior
matrices. We do not give the details here. But for instance the first coefficient of ext(Aj) is :

1

2

(
1 + cos(bj

√
λ) · cosh(bj

√
λ)
)

=
ebj
√
λ

4
cos(bj

√
λ) + o(ebj

√
λ).

A simple computation for the matrix C(q,m) leads to L3 = q ·
(
q3

m
L2 − L1

)
, L4 = −m

2

q4
L1,

L5 =

(
q2 +

m

q

)
L1 −

q5

m
L2 and L6 = L3. And for the matrix S(q,m), L2 =

2q3

m
L1 −

1

q2
L5,

L3 =
q4

m
L1 −

1

q
L5, L4 =

1

q4
L1 and L6 = L3. Hence the rank is 2 for both matrices.

The vector V1 is in the range of C and S since V1 = C(0, 0, 0, 1, 0, 0)t and V1 = S(0, 0, 0, 1, q3/m, 0)t.
Likewise for V2: V2 = C(0, 0, 0,−1,−q3/m, 0)t and V1 = S(0, 0, 0, 1, 0, 0)t.
At last V1 and V2 satisfy: λ1V1(q,m) + λ2V2(q,m) = 0 implies λ1 = λ2 = 0.

Lemma 4.8 For all j = 1, . . . , N − 1 we have

(
1∏
i=j

H(qi, bi,mi)).e4 = αj(
√
λ)V1(qj,mj) + βj(

√
λ)V2(qj,mj)(59)

where Vk(q,m), k = 1, 2 are introduced in Definition 4.6 and e4 in Theorem 4.5, αj(.), β(.) are
trigonometrical polynomials which only depend on qi, bi,mi, i = 1..., j.

Moreover, there exists a constant dj > 0 (which only depends on the material constants) such
that the Wronskian Wj(x) = αj(x)β′j(x)− α′j(x)βj(x) satisfies

Wj(x) ≥ dj > 0, ∀x ∈ R.(60)

Proof. We argue by iteration. We suppose that j = 1. By Definition 4.6 and Lemma 4.7, it
holds:

H(q1, b1,m1)e4 = cos(b1
√
λ)V1(q1,m1) + sin(b1

√
λ)V2(q1,m1).

Thus (59) holds for j = 1 with α1(x) = cos(b1x), β1(x) = sin(b1x). Since ∀x ∈ R, W1(x) = b1,
then, for j = 1, (60) is true with d1 = b1 > 0.
Now, suppose that (59) holds for j − 1 and that there exists a constant dj−1 such that:
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∀x ∈ R, Wj−1(x) ≥ dj−1 > 0.

Thus, with (58) of Lemma 4.7 we may write:(
1∏
i=j

H(qi, bi,mi)

)
e4 = H(qj, bj,mj)(αj−1(

√
λ)V1(qj−1,mj−1)

+ βj−1(
√
λ)V2(qj−1,mj−1))

= (cos(bj
√
λ)C(qj,mj) + sin(bj

√
λ)S(qj,mj))

× (αj−1(
√
λ)V1(qj−1,mj−1) + βj−1(

√
λ)V2(qj−1,mj−1)).

(61)

Now, from Lemma 4.7, we know that there exist constants zi, i = 1, ...8. such that

C(qj,mj)V1(qj−1,mj−1) = z1V1(qj,mj) + z2V2(qj,mj),

C(qj,mj)V2(qj−1,mj−1) = z3V1(qj,mj) + z4V2(qj,mj),

S(qj,mj)V1(qj−1,mj−1) = z5V1(qj,mj) + z6V2(qj,mj),

S(qj,mj)V1(qj−1,mj−1) = z7V1(qj,mj) + z8V2(qj,mj).

(62)

Using the expressions of C(qj,mj) , S(qj,mj), V1(qj−1,mj−1) and V2(qj−1,mj−1) given in Defi-
nition 4.6 we get after some computations:

z1 = z6 =
(mj−1qj +mjqj−1)(mj−1q

3
j +mjq

3
j−1)

mj−1q3j
,

z2 = z3 = −z5 = z8 =
mjqj−1(q

2
j − q2j−1)

mj−1q3j
,

z4 = −z7 =
mjqj−1(qj + qj−1)

2

mj−1q3j
.

(63)

Using (62) in the development of the last expression of (61)

(
1∏
i=j

H(qi, bi,mi))e4 = αj(
√
λ)V1(qj,mj) + βj(

√
λ)V2(qj,mj)

with 
αj(x) = cos(bjx)(z1αj−1(x) + z2βj−1(x))

+ sin(bjx)(−z2αj−1(x)− z4βj−1(x)),

βj(x) = cos(bjx)(z2αj−1(x) + z4βj−1(x))

+ sin(bjx)(z1αj−1(x) + z2βj−1(x)).

(64)

That proves (59). Thanks to (64), we compute Wj(x) and we find:

Wj(x) = bj[(z
2
1 + z22)α2

j−1(x) + 2z2(z1 + z4)αj−1(x)βj−1(x) + (z22 + z24)β2
j−1(x)]

+ (z1z4 − z22)Wj−1(x).

Since (z21 + z22)(z22 + z24)− [z2(z1 + z4)]
2 = (z22− z1z4)2 ≥ 0, we deduce from the previous identity

that

Wj(x) ≥ (z1z4 − z22)Wj−1(x).

From (63) we find that
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(z1z4 − z22) =
mjqj−1(qj−1 + qj)

2
(
mjq

2
j−1 +mj−1q

2
j

)2
m3
j−1q

7
j

> 0

Due to these last two inequalities, we get the conclusion :

dj = (z1z4 − z22)dj−1 > 0.

Lemma 4.9 (asymptotic behaviour of the characteristic equation)
Assume that the characteristic equation is still given by Theorem 4.5. Then there exists a
constant K which is independent of the variable λ such that:

f
(√

λ
)

= eK
√
λ ·
(
f∞(
√
λ) + g(

√
λ)
)

where

f∞

(√
λ
)

= et4 · (
1∏

i=N

H(qi, bi,mi)) · e4(65)

with et4 = (0, 0, 0, 1, 0, 0), H(qi, bi,mi), V1(q,m) and V2(q,m) given in Definition 4.6. The
function g satisfies limλ→+∞ g(

√
λ) = 0.

Thus, the asymptotic behaviour of the spectrum σ(A) corresponds to the roots of the asymptotic
characteristic equation

f∞

(√
λ
)

= 0.(66)

These roots are all simple. Moreover, there exists a constant d > 0 (which depends only on the
material constants) such that for any root x0 of f∞

|f ′∞(x0)| ≥ d.(67)

Proof.

• The first step is to prove the existence of the form eK
√
λ ·
(
f∞(
√
λ) + g(

√
λ)
)
for f

(√
λ
)
:

each ext(Aj) is of the form ext(Aj) = ebj
√
λH(qj, bj,mj) + o(ebj

√
λ) (cf. Lemma 4.7) with

H(q, b,m) = O(1).
Multiplying these expressions where j varies between 1 and N , we get:
eK
√
λ · (
∏1

j=N H(qj, bj,mj)) + o(K
√
λ) with K =

∑
i=1N bi.

• The second step is to compute f∞
(√

λ
)

= et4 · (
∏1

i=N H(qi, bi,mi)) · e4 using Lemma 4.8
and its proof. Since et4 · V1(q,m) = 1 and et4 · V2(q,m) = 0

f∞

(√
λ
)

= et4 ·H(qN , bN ,mN) · (
1∏

i=N−1

H(qi, bi,mi)) · e4 = fNcN + gNsN(68)

with fN = z1αN−1 + z2βN−1 and gN = −z2αN−1− z4βN−1. And the wronskian W (fN , gN)

satisfies: W (fN , gN) = (z22 − z1z4)WN−1 ≤ d < 0 with d = (z22 − z1z4)dN−1 and dN−1 the
constant introduced in Lemma 4.8 (depending only on the material constants).
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• The third step is to compute the derivative of f∞(x) (for the sake of completeness, we
give the proof which is exactly the same one as in [16]).

f
′
∞(x) = cos(bNx)[f

′
N(x) + bNgN(x)] + sin(bNx)[g

′
N(x)− bNfN(x)].

We deduce that for all x ∈ R, ∆(x) = (f∞(x))2 + (f ′∞(x))2 has the following form:

∆(x) = (cos(bNx) sin(bNx))M(x)

(
cos(bNx)

sin(bNx)

)
,(69)

where the matrix M(x) is symmetric, positive and given by

M(x) =

(
M11(x) M12(x)

M21(x) M22(x)

)
and

M11(x) = fN(x)2 + b2NgN(x)2 + 2bNgN(x)f
′
N(x) + f

′
N(x)2,

M12(x) = (1− b2N)fN(x)gN(x)− bN(fN(x)f
′
N(x)− gN(x)g

′
N(x)) + f

′
N(x)g

′
N(x),

M21(x) = M12(x),

M22(x) = b2NfN(x)2 + gN(x)2 − 2bNfN(x)g
′
N(x) + gN

′(x)2.

Let λmin(x), λmax(x) be the two eigenvalues of M(x) such that 0 ≤ λmin(x) ≤ λmax(x).
After some computation we find

λmin(x)λmax(x) = det(M(x))

= b2N(fN(x)2 + gN(x)2)2 − 2bN(fN(x)2 + gN(x)2)W (fN , gN)(x)

+ W (fN , gN)(x)2.

= (W (fN , gN)(x) + bN(fN(x)2 + gN(x)2))
2
.

Consequently with the estimate of the wronskian given at the end of the first step,

∀x ∈ R, det(M(x)) = λmin(x)λmax(x) ≥ W (fN , gN)(x)2 ≥ d2.(70)

On the other hand, since fN and gN are trigonometric polynomials, the trace of M(x) is
bounded on R. Thus, there exists d′ > 0 such that

∀x ∈ R, 0 ≤ tr(M(x)) = λmin(x) + λmax(x) ≤ d′2.(71)

From (70) and (71) we deduce that λmin(x) ≥
(
d

d′

)2

> 0. Therefore from (69) we get

∀x ∈ R, ∆(x) ≥
(
d

d′

)2

> 0.

That means that if x0 is a root of f∞ then |f ′∞(x0)| ≥
d

d′
> 0.
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All the required properties are now proved to state the main result of this section:

Theorem 4.10 (the spectral gap)
Let λ2k, k ∈ N∗, (λk > 0) be the (strictly) monotone increasing sequence of eigenvalues of Prob-
lem (EP ) given at the beginning of Section 4 then

lim
k→+∞

(λk+1 − λk) = +∞.(72)

Proof. Since all the roots of f∞ are simple and since there exists a constant d > 0 (which
depends only on the material constants) such that for any root x0 of f∞

|f ′∞(x0)| ≥ d.(73)

it holds
√
λk+1 −

√
λk > σ with σ > 0 (cf. Theorem 5.3 of [14]).

Now λk+1−λk = (
√
λk+1−

√
λk)(

√
λk+1 +

√
λk) with limk→+∞ λk = +∞, hence the announced

result.

5 Proof of a uniform estimate for the eigenfunctions
Lemma 5.1 (uniform estimate for |φN(lN)|)
Consider the eigenvalue problem (EP ) given in Section 4. For any eigenfunction φ associated
to the eigenvalue λ2, there exists a constant K1 such that:

K1 · ‖φ‖2H ≤ |φN(lN)|2(74)

with the norm ‖ · ‖H introduced in Section 2.3.1.

The proof of the lemma requires some technical intermediate results.

Let us first introduce some useful notation for the following.

Notation.
Keeping the notation aj and lj introduced in Section 2 as well as qj = (mj/aj)

1/4, bj = qjlj
introduced in Section 4.1, consider the functions hi(aj, bj, λ, x) for i ∈ {1; 2; 3; 4} and x ∈ [0; lj]

denoted hi(x) for the sake of simplicity:
h1(x) = cos(qj

√
λx),

h2(x) = sin(qj
√
λx),

h3(x) = exp(−bj
√
λ) exp(qj

√
λx),

h4(x) = exp(−qj
√
λx).

(75)

G(bj, qj) is the 4× 4 Gram matrix defined by (G(bj, qj))i,k =

∫ lj

0

hi(x)hk(x)dx.

At last the matrices D and B1 are:
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D(a, q) =
1

4


2 0 − 2

aq2
0

0 2
q

0 − 2
aq3

1 −1
q

1
aq2

− 1
aq3

eb
√
λ eb

√
λ

q
eb
√
λ

aq2
eb
√
λ

aq3

(76)

B1(q,m) =
1

4



1
1

q

q2

m

q

m

q 1
q3

m

q2

m
m

q2
m

q3
1

1

q
m

q

m

q2
q 1


.(77)

Lemma 5.2
Any eigenfunction φ associated to the eigenvalue λ2 for the eigenvalue problem (EP ) given at
the beginning of Section 4 may be uniquely written as a linear combination of the (hi)’s. Denote
by (Cj)i the coefficients of the decomposition of φj in the basis (hi)i∈{1;2;3;4}

i.e. φj(x) =
4∑
i=1

(Cj)i hi(x) for j ∈ {1, · · · , N} and x ∈ [0, lj]. Then

Cj = D(aj, qj)Vj(0), and A(q, b,m) =
1

4
exp(b

√
λ)B1(q,m)(78)

with Vj and A(q, b,m) defined in Section 4.1.
(Vj being computed for the j − th component of the particular eigenfunction φ).
There exists a positive constant C (by constant we mean independent of λ) such that

‖φ‖2H =
N∑
j=1

∫ lj

0

|φj(x)|2dx ≤ C max
j∈{1···N}

(
Ct
jCj
)
.

Proof. Proving that the hi’s are linearly independent is a classical computation. (78) is proved
by calculation.
By definition of the inner product in H (section 2.3.1):

‖φ‖2H =
N∑
j=1

∫ lj

0

φj(x)2dx =
N∑
j=1

Ct
jG(bj, qj)Cj.

Now, after calculation, the matrix G(b, q) is:

G(b, q) =
1

2q
√
λ
×

cs+ b
√
λ s2 1− (c− s)e−b

√
λ c+ s− e−b

√
λ

s2 −cs+ b
√
λ 1− (c+ s)e−b

√
λ −c+ s+ e−b

√
λ

1− (c− s)e−b
√
λ 1− (c+ s)e−b

√
λ 1− e−2b

√
λ 2be−b

√
λ
√
λ

c+ s− e−b
√
λ −c+ s+ e−b

√
λ 2be−b

√
λ
√
λ 1− e−2b

√
λ

(79)
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with the notation c = cos(b
√
λ), s = sin(b

√
λ).

Note that all its terms are bounded with respect to λ. The estimate of ‖φ‖2H follows.

Lemma 5.3 (estimate of φN(lN))
Let M(λ) the 4 × 4 matrix defined by (48) in Section 4.1. Denote by α(λ) (respectively β(λ))
the first (resp. second) term of the first line of M(λ) i.e.{

α(λ) = et1M(λ)e1,

β(λ) = et1M(λ)e2,

with e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0).

Then the eigenfunction φ of Problem (EP ) associated to the eigenvalue λ2 can be chosen such
that φN(lN) = β(λ) and the asymptotic behaviour of α(λ) and β(λ) is given by: α(λ) = C · qN · eB

√
λ + o

(
eB
√
λ
)
,

β(λ) = C · eB
√
λ + o

(
eB
√
λ
)
,

with B :=
∑N

j=1 bj.

Note that the constants C are not identical nor equal to those of Lemma 5.2 but we will always
call the constants C. All of them are independent of λ but depend on the material constants
given by the aj’s, bj’s...

Proof. Any eigenfunction φ associated to the eigenvalue λ2 satisfies condition (19) of Sec-
tion 2.3.1. In particular φ1(0) = φ′1(0) = 0 so the first two components of the vector V1(0)

associated to φ (defined in Section 4.1) vanish. Moreover (25) and (26) also imply φ′′N(lN) = 0

and φ(3)
N (lN) = 0 so the third and fourth components of VN(lN) vanish : VN(lN) is of the form

((VN(lN))1, (VN(lN))2, 0, 0)t.
Now, due to Lemma 4.1, VN(lN) = M(λ)V1(0) or V1(0) = M(λ)−1VN(lN). Thus, if µ(λ) (respec-
tively ν(λ)) is the third (resp. fourth) term of the first line of M(λ)−1, then µ(λ)(VN(lN))1 +

ν(λ)(VN(lN))2 = 0.
(VN(lN))1 = ν(λ) and (VN(lN))2 = −µ(λ) is a solution of this equation which means that
the eigenfunction φ of Problem (EP ) associated to the eigenvalue λ2 can be chosen such that
φN(lN) = ν(λ) (such an eigenfunction is not normalized).

Now, to avoid the use of the inverse of the matrix M(λ), we choose to switch the indices,
which is equivalent to switch the boundary conditions i.e. in that proof as well as in the proofs
of Lemmas 5.4 and 5.6, the definitions of V and D(A) change : conditions (19), (25) and (26)
of Section 2.3.1 become φN(lN) = φ′N(lN) = 0 and φ′′1(0) = φ

(3)
1 (0) = 0. Thus the eigenfunc-

tion φ of Problem (EP ) associated to the eigenvalue λ2 can be chosen such that φN(lN) = β(λ).

The second part of the proof contains the estimate of some terms of the matrix M(λ). Recall
that
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M(λ) = ANAN−1...A2A1.

The asymptotic behaviour of Aj = A(qj, bj,mj) is given by Aj = exp(bj
√
λ)B1(qj,mj) +

o(exp(bj
√
λ)) with B1(qj,mj) defined by the decomposition

A(q, b,m) =
∑

ε∈{−1;0;1}

exp(εb
√
λ)Bε(q,m).

Combining the above estimates and using (48) lead to the desired result.

The aim is still the estimation of ‖φ‖H which requires, due to Lemma 5.2, the estimation of Cj.

Lemma 5.4 (estimate of Cj)
Let Cj be the vector already defined by (78) with a fixed j ∈ {1, · · · , N}, the vector ~b be defined

by ~b = (b1, · · · , bN) and denote by ~u · ~v :=
N∑
i=1

uivi, then there exist vectors W~ε(λ) such that Cj

is of the form

Cj :=
∑

~ε∈{−2;−1;0;1}N
e
~b·~ε
√
λW~ε(λ)(80)

and all the terms of W~ε(λ) are dominated by the function λ 7→ eB
√
λ asymptotically (with

B :=
∑N

j=1 bj).
More precisely the terms ofW~ε(λ) only contain expressions of the form cos(bj

√
λ) and sin(bj

√
λ)

with j ∈ {1, ..., N}.

Proof.

First Part. For a fixed j ∈ {1, · · · , N}, we start with isolating the terms containing ebj
√
λ

in the involved matrices.{
D(aj, qj) = ebj

√
λD+(aj, qj) +Dr(aj, qj),

Aj = A(qj, bj,mj) = ebj
√
λB+(qj,mj) +Br(qj,mj).

The decomposition of Aj is the same one as in the proof of Lemma 5.3 i.e. the matrix called
B+ in that proof is B1. The exponent r is chosen for the rest which does not contain ebj

√
λ.

Since M(λ) = AN · · ·Aj · · ·A2A1 (cf. (48)), it holds:

M(λ) = AN · · ·Aj+1

(
ebj
√
λB+(qj,mj) +Br(qj,mj)

)
Aj−1 · · ·A2A1

= ebj
√
λAN · · ·Aj+1B

+(qj,mj)Aj−1 · · ·A2A1 + AN · · ·Aj+1B
r(qj,mj)Aj−1 · · ·A2A1

=: ebj
√
λM+(λ) +M r(λ).

The first and second terms of the first line of the matrix M(λ) denoted by α and β in Lemma
5.3 can be decomposed as follows:
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{
α(λ) = et1M(λ)e1 = ebj

√
λet1M

+(λ)e1 + et1M
r(λ)e1 = ebj

√
λα+(λ) + αr(λ),

β(λ) = et1M(λ)e2 = ebj
√
λβ+(λ) + βr(λ).

Thus the vector V1(0) is decomposed as well: V1(0) = (β(λ),−α(λ), 0, 0)t = eb1
√
λV +

1 (0)+V r
1 (0)

with V +
1 (0) = (β+(λ),−α+(λ), 0, 0)t. Then Cj = D(aj, qj)Aj−1 · · ·A1V1(0) may be written as:

Cj = e2bj
√
λC++

j + ebj
√
λC+

j + Cr
j with C++

j := D+(aj)Aj−1 · · ·A1V
+
1 (0)(81)

where neither C++
j , nor C+

j , nor Cr
j contains ebj

√
λ. The vanishing of C++

j remains to be proved
in order to establish (80).

Second Part. For a fixed j ∈ {1, · · · , N}, let us prove that C++
j = 0 with C++

j defined by (81).
Recall that M(λ) = ebj

√
λM+(λ) +M r(λ) with M+(λ) = AN · · ·Aj+1B

+(qj,mj)Aj−1 · · ·A2A1.
The matrices Ai for i ∈ {1, · · · , j − 1} defined in Section 4.1 are all invertible since their
determinant is equal to 1 (calculation).
The matrix B+(qj,mj) is defined as follows:

B+(q,m) =
1

4



1
1

q

q2

m

q

m

q 1
q3

m

q2

m
m

q2
m

q3
1

1

q
m

q

m

q2
q 1


.(82)

Note that the columns of B+(qj,mj) are all proportional to the first one so the rank of
B+(qj,mj) is 1. Thus the rank of M+(λ) is also 1 which means in particular that all its
lines are proportional to the first one.
Now the first (respectively second) term of the first line ofM+(λ) is, by definition, α+(λ) (resp.
β+(λ)) and V +

1 (0) = (β+(λ),−α+(λ), 0, 0)t. So the first term of the product M+(λ)V +
1 (0) is

0. And since the other lines of M+(λ) are proportional to the first one, the other terms also
vanish i.e. M+(λ)V +

1 (0) = 0.
It is equivalent to AN · · ·Aj+1B

+(qj,mj)Aj−1 · · ·A2A1V
+
1 (0) = 0 and, since (AN · · ·Aj+1) is

invertible, it implies: Aj−1 · · ·A2A1V
+
1 (0) ∈ Ker(B+(qj,mj)).

The matrix D+(aj, qj) is defined as follows:

D+(aj, qj) =
1

4


0 0 0 0

0 0 0 0

0 0 0 0

1
1

qj

1

ajq2j

1

ajq3j

 .

Since q2j/mj = 1/(ajq
2
j ), it clearly holds Ker(B+(qj,mj)) = Ker(D+(aj, qj)).

Thus C++
j := D+(aj, qj)Aj−1 · · ·A2A1V

+
1 (0) = 0.
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Lemma 5.5 (estimate of Vj(lj))
Let j ∈ {1, · · · , N} and let the vector Vj be defined as in Section 4.1. For any K > 0, there
exists a positive constant C (independent of λ) such that, if λ > K, for j ∈ {1, · · · , N} and
i ∈ {1; 2; 3; 4}

|etiVj(lj)| ≤ CeB
√
λ(83)

with et1 = (1, 0, 0, 0), et2 = (0, 1, 0, 0), et3 = (0, 0, 1, 0), et4 = (0, 0, 0, 1) and B :=
∑N

j=1 bj.

The constants are still all denoted by C. They only depend on the material constants.

Proof. The property is proved by induction. The vector V1(0) is: V1(0) = (β(λ),−α(λ), 0, 0)t

and the behaviour of α and β is given by Lemma 5.3. The components of V1(l1) = A1V1(0) keep
the same fastest growing term as the terms of V1(0). Indeed the multiplication by the matrix
A1 which contains exponential terms could a priori change the exponential into e(2b1+

∑N
j=2 bj)

√
λ

but as it was proved for Cj in the proof of Lemma 5.4, it is not the case.

Lemma 5.6 (a more precise estimate of Cj)
Let Cj be the vector already defined by (78) with a fixed j ∈ {1, · · · , N}. For any K > 0, there
exists a constant C (independent of λ) such that, if λ > K and i ∈ {1; 2; 3; 4}:

|(Cj)i| ≤ CeB
√
λ(84)

with (Cj)i the i− th term of the vector Cj as in Lemma 5.2 and B :=
∑N

j=1 bj.

Proof. Recall that Cj = D(aj, qj)Vj(0) (cf. (78)). We have just proved in the second part of the
proof of Lemma 5.5 that, for any j ∈ {1, · · · , N}, the absolute values of the four terms of Vj+1(0)

are bounded by CeB
√
λ for large values of λ. It is also clear for V1(0) = (β(λ),−α(λ), 0, 0)t due

to the estimates of α and β given in Lemma 5.3.
Now the matrix D(aj, qj) contains exponential terms but we proved in the proof of Lemma 5.4
that they do not affect the fastest growing term of Cj. Hence the result.

Theorem 5.7 (first uniform estimate for |φN(lN)|)
Consider the eigenvalue problem (EP ) given in Section 3.1. For any eigenfunction φ ∈ D(A)

associated to the eigenvalue λ2, there exist a constant K1 such that:

K1 · ‖φ‖2H ≤ |φN(lN)|2(85)
with the norm ‖ · ‖H introduced in Section 2.3.1.

Proof. Due to Lemma 5.2

‖φ‖2H ≤ C max
j∈{1···N}

(
Ct
jCj
)
.

Then (84) implies ‖φ‖2H ≤ C
(
eB
√
λ
)2

.
Now, we stated in the proof of Theorem 5.3 that the eigenfunction φ of Problem (EP ) associated
to the eigenvalue λ2 can be chosen such that φN(lN) = β(λ). The estimate of β(λ) for large
values of λ given by Theorem 5.3 gives the desired result.
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5.1 Second estimate: admissibility
Theorem 5.8 (second estimate for controllability)
Consider the eigenvalue problem (EP ) associated to Problem (P ) (given in Section 4). For any
eigenfunction φ associated to the eigenvalue λ2, there exists a constant K2 such that:

|φN(lN)|2 ≤ K2 · ‖φ‖2H(86)

with the norm ‖ · ‖H defined in Section (2.3.1).

Proof. We established in the proof of Lemma 5.2

‖φ‖2H =
N∑
j=1

∫ lj

0

φj(x)2dx =
N∑
j=1

Ct
jG(bj, qj)Cj

with Cj and G(bj, qj) defined in the same Lemma. Thus ‖φ‖2H ≥ Ct
1G(b1, q1)C1 and it remains

to estimate this expression from below.
Due to (78) it holds C1 = D(a1, q1)V1(0) and we stated in Lemma 5.3 that

V1(0) = (β(λ),−α(λ), 0, 0)t = (β, qN · β + o(β), 0, 0)t

as λ and thus β tend to infinity. Then, multiplying by the matrix D(a1, q1) given just before
Lemma 5.2, it follows

C1 = 2

(
β, β +

o(β)

q1
,−o(β)

2q1
, βeb1

√
λ +

eb1
√
λ

2q1
· o(β)

)
.

Now we proved in Lemma 5.6 that, for any K > 0, there exists a constant C (independent of
λ) such that, if λ > K and i ∈ {1; 2; 3; 4}, then |(Cj)i| ≤ Cβ(λ) with (Cj)i the i − th term of
the vector Cj. So the fourth term of C1 grows as fast as β i.e.

C1 = 2

(
β, β +

o(β)

q1
,−o(β)

2q1
, O(β)

)
.

Looking thoroughly at the terms of the matrix G(b1, q1) given in the proof of Lemma 5.2, we
can see that only two terms do not tend to zero as λ tends to infinity which can be written as:

G(b1, q1) =



b1
2q1

0 0 0

0
b1
2q1

0 0

0 0 0 0

0 0 0 0

+ o(1).

It follows Ct
1.G(b1, q1).C1 =

4b1
q1
· β2 + o(β2) and since |φN(lN)|2 = |β(λ)|2, the desired estimate

follows.
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