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DIFFUSION PROCESSES ON AN INTERVAL

UNDER LINEAR MOMENT CONDITIONS

DELIO MUGNOLO AND SERGE NICAISE

Abstract. We discuss a class of diffusion-type partial differential equations on a bounded interval and
discuss the possibility of replacing the boundary conditions by certain linear conditions on the moments
of order 0 (the total mass) and of another arbitrarily chosen order n. Each choice of n induces the
addition of a certain potential in the equation, the case of zero potential arising exactly in the special
case of n = 1 corresponding to a condition on the barycenter. In the linear case we exploit smoothing
properties and perturbation theory of analytic semigroups to obtain well-posedness for the classical
heat equation (with said conditions on the moments). Long time behavior is studied for both the linear
heat equation with potential and certain nonlinear equations of porous medium or fast diffusion type.

In particular, we prove polynomial decay in the porous medium range and exponential decay in the
fast diffusion range, respectively.

1. Introduction

In [Váz83] J.L. Vázquez made the simple observation that possibly diffusion-type equations of the
form

(1.1)
∂u

∂t
(t, x) = ∆(|u|p−2u)(t, x),

which are well-known to be associated with a well-posed Cauchy problem in H−1(Rd) if d = 1 (and even
for d > 1), enjoy conservation of mass and barycenter. Here and in the following, p is some constant
strictly larger than 1: This result applies therefore to both the porous medium equation (PME) and
the fast diffusion equation (FDE) along with the linear heat equation, corresponding to the cases of
p ∈ (2,∞), p ∈ (1, 2) and p = 2, respectively.

Vázquez’ assertion is easily explained: For a density distribution function f : R → R denote by µn(f)
the n-th moment (say, about 1), i. e.,

µn(f) :=

∫

R

(1− x)nf(x) dx for f ∈ L1(R).

Then in particular µ0(f) and µ1(f) represent the total mass and the barycenter of the distribution
described by f , respectively. Now, differentiating with respect to time the moments of order 0 and 1
of a solution u of (1.1) with initial data u0 and integrating by parts with respect to space a simple
localization argument shows that

µ0(u(t)) = µ0(u0) and µ1(u(t)) = µ1(u0) ∀t ≥ 0.

Choosing boundary conditions judiciously, one can see that conservation of mass and/or barycenter
may also hold in the case of a PME or a FDE on a bounded interval. Observe that conservation of
mass and barycenter can also be defined for solutions so irregular that boundary conditions do not make
sense – this is particularly relevant in the case of the PME and the FDE, which are typically solved
in spaces of distributions ([Váz07, Chapt. 10]). May then the condition that mass and barycenter be
conserved replace boundary conditions altogether?
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Imposing conditions on the moments may appear bizarre. However, since certain moment conditions
boil down to boundary conditions if solutions are regular enough ([MN11, Cor. 4.10]), at a second glance
it looks reasonable to investigate well-posedness under such conditions in the case of a bounded domain.
Beginning with [Can63], many authors have studied linear partial differential equations equipped with
conditions on the moments complementing those on the boundary values. In [MN11] the present authors
have gone on to observe that, in fact, in the case of the linear heat equation one can drop the boundary
conditions and obtain well-posedness under a wide class of linear conditions on the moments of order 0
and 1 – and in particular, whenever both of them are assumed to vanish constantly, i.e.,

(1.2) µn(u(t)) = 0 ∀t ≥ 0, n = 0, 1.

This special case had already been discussed by A. Bouziani and his coauthors starting with [BB96],
see [MN11] for more detailed references. A somehow comparable approach has been followed in [Váz07,
§ 9.6], where an analysis based on mere finiteness of mass is performed.

There exist counterexamples showing that, in general, moments of higher order are not conserved
under the evolution of (1.1) on R, cf. [Váz07, § 9.6.4]. Hence it is not natural to expect well-posedness
upon imposing a condition analogous to (1.2) for any two moments. Our aim in this article is to show
that, however, suitable conditions on µ0 and a further moment µn suffice to obtain well-posedness of
certain modified evolution equations – which can be looked at as PMEs or FDEs with a potential
depending on n.

It turns out that the analysis of diffusion equations on an interval under conditions on µ0 and µn for
general n can be performed closely following some techniques developed in [MN11]. The extension of
such techniques to the more general setting of the present article is discussed thoroughly in Section 2.
As it is, the well-posedness results presented in [MN11] are just a special case of those that we obtain
in Section 3.

However, serious problems seem to arise in the truly nonlinear case, i.e., whenever we discuss (1.1) for
p 6= 2 – this is the topic of Section 4. Both the PME and the FDE with Dirichlet boundary conditions
are well-known to be the flow of the gradient associated with a suitable energy functional (also known as
the functional’s subdifferential in the language of nonlinear semigroup theory, see e.g. [Sho97, Example
IV.6.B] and [Váz07, Chapt. 10], and more generally [Bré73] for the abstract theory) with respect to
an H−1-inner product. (Observe that a different, more involved but also mightier approach based on
flows on Riemannian manifolds has been introduced by F. Otto in a celebrated article [Ott01]). In our
setting the gradient flow structure is still present, but unlike in the linear case we are not able to show
that for initial data smooth enough this evolution equation is just the PME or the FDE with a certain
potential. Nevertheless, we obtain well-posedness of a certain n-dependent nonlinear evolution equation
that strongly resembles the PME or the FDE, and we are able to show that its long-time behavior
depends on p. In particular, we show that for all n the decay of the H−1-norm of the solutions is
polynomial if p ∈ (2,∞) and exponential if p ∈ (1, 2]. Our analysis is made different from the classical
case by the fact that for this new evolution equation integration by parts is not easily applied – this in
turn prevents us from applying the classical method based on the weak formulation of the PME or the
FDE, which are the backbone of many proofs in [Váz07].

2. The functional analytical setting

If we consider (0, 1) as the torus T , then the test function set D(T ) is in fact the set of smooth
functions in [0, 1] such that the derivatives at all orders coincide at 0 and 1. In the same manner we
will use the Sobolev space H1(T ), by which we denote the subspace of those u ∈ H1(0, 1) such that
u(0) = u(1) (i.e., of those H1-functions supported on the torus). We use L2(0, 1) as pivot space and
denote by H−1(T ) (resp., D′(T )) the dual of H1(T ) (resp., D(T )). For p ∈ (1,∞), p 6= 2, we define
the Sobolev spaces W 1,p(T ) and W−1,p(T ) likewise. In this paper we refrain from considering the case
of (1.1) for p ∈ (0, 1], which is known to require a quite different approach, cf. [Váz06, § 2.2.1].

Remark 2.1. It was already observed in [MN11, Lemma 2.1] that each element of D′(T ) can be
identified with an element of D′(0, 1), but the identified vector is not unique. We denote this non-
injective identification operator by Id, and by Idm its restriction to {u ∈ H−1(T ) : µ0(u) = 0} which,
by [MN11, Lemma 2.4], is an isomorphism.
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For all n ∈ N0 we denote by µn the linear functional defined by

µn(f) :=

∫ 1

0

(1− x)nf(x) dx,

which is bounded on L1(0, 1) (and even on H−1(T ) for n = 0).
For n ∈ N0 and ϕ ∈ D(T ) we denote by Jnϕ the function defined by

Jnϕ(x) :=

∫ 1

x

ϕ(y) dy − µ0(ϕ)(1 − x)n, x ∈ (0, 1),

and set for all u ∈ H−1(0, 1)

(2.1) 〈Pnu, ϕ〉 := 〈u, Jnϕ〉 ∀ϕ ∈ D(T ).

which is meaningful since Jnϕ ∈ H1
0 (0, 1).

We obtain the following analogue of [MN11, Lemma. 2.2], where the attention was devoted to P1

only.

Lemma 2.2. Let p ∈ [1,∞) and n ∈ N. Then the following assertions hold.

(1) For all u ∈ Lp(0, 1), Pnu can be written as

(2.2) Pnu(x) = Iu(x)− µn(u), ∀x ∈ (0, 1),

where

Iu(x) :=

∫ x

0

u(y)dy, ∀x ∈ (0, 1).

In particular, (Pnu)
′ = u whenever u ∈ Lp(0, 1).

(2) Moreover, Pn is a bounded linear operator from W−1,p(T ) to Lp(0, 1) and from Lp(0, 1) to
W 1,p(0, 1) as well as from {f ∈ Lp(0, 1) : µ0(f) = 0} to W 1,p(T ).

(3) Finally, (Pnu)
′ = u in H−1(0, 1) for all u ∈ H−1(0, 1).

Proof. Let u ∈ Lp(0, 1) be fixed. Denote for a moment P̃nu the right-hand side of (2.2) (which is by
construction an element of W 1,p(0, 1)), i.e.,

P̃nu(x) := Iu(x)− µn(u), x ∈ (0, 1).

By integrations by parts for all ϕ ∈ D(T ) one has
∫ 1

0

P̃nu(x)ϕ(x) dx =

∫ 1

0

(Iu(x) − µn(u))ϕ(x) dx

=

∫ 1

0

(∫ x

0

u(y) dy

)

ϕ(x) dx− µn(u)µ0(ϕ).

Accordingly, for 0 ≤ y ≤ x ≤ 1 by Fubini’s Theorem we find
∫ 1

0

P̃nu(x)ϕ(x) dx =

∫ 1

0

(∫ 1

y

ϕ(x) dx

)

u(y) dy − µn(u)µ0(ϕ)

=

∫ 1

0

(
∫ 1

y

ϕ(x) dx− µ0(ϕ)(1 − y)n
)

u(y) dy

=

∫ 1

0

u(x)Jnϕ(x) dx.

This proves that Pnu = P̃nu, hence (1), and furthermore Pnu ∈ W 1,p(0, 1).
In a second step we first easily check that for ϕ ∈ D(T ), Jnϕ is in W 1,q(T ) with 1

p
+ 1

q
= 1 (it is even

in W 1,q
0 (0, 1)) and that

‖Jnϕ‖W 1,q
0 (0,1) . ‖ϕ‖Lq(0,1).

According to (2.1) we then get

|〈Pnu, ϕ〉| ≤ ‖u‖W−1,p(T )‖Jnϕ‖W 1,q
0 (0,1) . ‖u‖W−1,p(T )‖ϕ‖Lq(0,1).
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Therefore

‖Pnu‖Lp(0,1) . ‖u‖W−1,p(T ), ∀u ∈ D(T ),

which proves that Pn is a bounded operator from W−1,p(T ) to Lp(0, 1) due to the density of D(T ) into
W−1,p(T ). As the boundedness of Pn from Lp(0, 1) to W 1,p(0, 1) has been observed above, point (2) is
proved.

Finally, the assertion (3) follows the definition of Pn and the fact that Jn(ϕ
′) = −ϕ for all ϕ ∈

H1
0 (0, 1). �

In particular,

(Pn1)(x) = x−

∫ 1

0

(1− x)n dx = x−
1

n+ 1
.

Observe that, unlike for n = 1, for n ≥ 2 one has in general

(2.3) Pn 6∈ L
(

{f ∈ H−1(T ) : µ0(f) = 0}, {f ∈ Lp(0, 1) : µ0(f) = 0}
)

,

since 〈Pnu, 1〉 6= 0.

Remark 2.3. Recall that by [MN11, Lemma 2.3]

(P1u|P1v) + µ0(u)µ0(v), u, v ∈ H−1(T ),

defines an equivalent inner product on H−1(T ), and in particular

(2.4) ‖Id−1
m u‖H−1(T ) ≃ ‖P1Id

−1
m u‖L2(0,1), ∀u ∈ H−1(T ).

In fact, we can say more. Taking into account Remark 2.4.(1) and reasoning just like in the proof
of [MN11, Lemma 2.3] one can easily see that

‖u‖H−1(T ) . ‖Pnu‖L2 + |µ0(u)|, ∀u ∈ H−1(T ).

Accordingly, we can even say that

(Pnu|Pnv) + µ0(u)µ0(v), u, v ∈ H−1(T ),

defines an equivalent inner product on H−1(T ) for all n ∈ N.

Remark 2.4. Let n ∈ N.

(1) Observe that for all n ∈ N

µn(f) = n

∫ 1

0

(1 − x)n−1

∫ x

0

f(z)dzdx = nµn−1(If) ∀f ∈ L1(0, 1).

(2) Let f ∈ L1(0, 1). Then by Lemma 2.2.(1) and integrating by parts

µn−1(Pnf) =

∫ 1

0

(1− x)n−1If(x) dx − µn(f)

∫ 1

0

(1− x)n−1dx

=

[

(1− x)n

n

∫ x

0

f(x)dx

]x=1

x=0

−

∫ 1

0

(1− x)n

n
f(x) dx+

1

n
µn(f)

= −
1

n
µn(f) +

1

n
µn(f) = 0.

(3) Observe also that

Pnδ1 = 0 in D′(T ),

since for all φ ∈ D(T ) 〈Pnδ1, φ〉 = 〈δ1, Jnφ〉 = Jnφ(1) = 0.
(4) It is also important for the following that

(2.5) Pnh(0) = −µn(h) and Pnh(1) = µ0(h)− µn(h) ∀h ∈ L1(0, 1)

as well as

(2.6) µ0(Pn(h)) =

∫ 1

0

Pnh(x) dx = µ1(h)− µn(h) ∀h ∈ L1(0, 1) :

both identities are direct consequences of (2.2).
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(5) It is a straightforward observation that [MN11, Rem. 2.6] can be generalized as follows: For all
p ∈ [1,∞), all f ∈W 2,p(0, 1) and all ψ ∈ Lp(0, 1), we have

(2.7) Id−1
m (f ′′ + ψ) = f ′′ + ψ + (µ0(f

′′ + ψ))δ1 in W−1,p(T ),

and in particular by (3)

Pn(Id
−1
m (f ′′ + ψ)) = Pn(f

′′ + ψ) in Lp(0, 1).

(6) Finally, observe that by Lemma 2.2 and (2.5) Pn is bounded from {f ∈ Lp(0, 1) : µ0(f) = 0} to

W 1,p(T ) and from {f ∈ Lp(0, 1) : µ0(f) = µn(f) = 0} to W 1,p
0 (0, 1).

The crucial point for our investigation is that an integration-by-parts-type formula holds. Recall that
we are denoting by Idm the isomorphism between {u ∈ H−1(T ) : µ0(u) = 0} and H−1(0, 1) and let
u ∈ H1(0, 1). Then for all u ∈ H1(0, 1) and all h ∈ H1(T ), by Remark 2.3 one has

(

Id−1
m (u′′)|h

)

H−1(T )
= (PnId

−1
m (u′′)|Pnh)L2

= (u′ − a|Pnh)L2 ,

where

(2.8) a := 〈u′ − Pn(u
′′), 1〉.

Hence, (2.6) and a standard integration by parts yield
(

Id−1
m (u′′)|h

)

H−1(T )
= (u′|Pnh)L2 − a(µ1(h)− µn(h))

= −(u|h)L2 + [uPnh]
1
0 − a(µ1(h)− µn(h))(2.9)

since by Lemma 2.2.(3) (Pnh)
′ = h.

Remark 2.5. Note that

a = u(1)− u(0)− 〈u′′, (1− id)− (1− id)n〉

because

〈Pn(u
′′), 1〉 = 〈u′′, Jn1〉

– this is the duality between H−1(0, 1) and H1
0 (0, 1), with the function Jn1 ∈ H1

0 (0, 1) given by

(Jn1)(x) = (1− x)− (1− x)n ∀x ∈ (0, 1).

For n = 1, Jn1 ≡ 0 and we get 〈Pn(u
′′), 1〉 = 0, but in any case, this is does not really matter since a is

multiplied by 0 in (2.9).

Indeed, we can still improve the formula in (2.9) for n ≥ 2.

Theorem 2.6. Let u ∈ H1(0, 1) and h ∈ L2(0, 1). Then

(

Id−1
m (u′′)|h

)

H−1(T )
= −(u|h)L2 +









u(1)
nu(0)− n(n− 1)µn−2(u)

(1 − n)u(0)− u(1) + n(n− 1)µn−2(u)





∣

∣

∣





µ0(h)
µ1(h)
µn(h)









C3

.

Proof. The case n = 1 has already been discussed. For n ≥ 2, our starting point is again (2.9). From
the property Jn1 ∈ H1

0 (0, 1) and an integration by parts, we can write

〈Pn(u
′′), 1〉 = −〈u′, (Jn1)

′〉

=

∫ 1

0

u′(x)(1 − n(1− x)n−1) dx

= u(1)− u(0)− n(n− 1)

∫ 1

0

u(x)(1 − x)n−2) dx− n[u(x)(1 − x)n−1]10

= u(1)− u(0)− n(n− 1)µn−2(u) + nu(0).

Hence we deduce that for n ≥ 2, the constant in (2.8) is given by

a = n(n− 1)µn−2(u)− nu(0).
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Now, applying (2.5) we find

[uPnh]
1
0 = u(1)Pnh(1)− u(0)Pnh(0)

= u(1)(µ0(h)− µn(h)) + u(0)µn(h)

= u(1)µ0(h) + (u(0)− u(1))µn(h).

Applying the previous identities to (2.9) we obtain
(

Id−1
m (u′′)|h

)

H−1(T )
= −(u|h)L2 + u(1)µ0(h) + (u(0)− u(1))µn(h)

−
(

n(n− 1)µn−2(u)− nu(0)
)

(µ1(h)− µn(h)),

and the claimed formula follows. �

If n = 1, this is the formula already obtained in [MN11, Lemma 2.13]. Otherwise, we have obtained
a more general identity that allows us to extend the study of diffusion processes under linear conditions
on µ0 and µ1 (as e.g. in [BB96, MN11]) to linear conditions on µ0 and µn for general n ∈ N.

For each subspace Y of C2 and each p > 1 we can consider the reflexive Banach space

V
(1)
Y,p :=

{

f ∈ Lp(0, 1) :

(

µ0(f)
µ1(f)

)

∈ Y

}

.

Lemma 2.7. Let k ∈ N. Then for all m ∈ Nk with pairwise distinct entries, the operator






µm1

...
µmk






: C∞[0, 1] → C

k

is surjective.

Proof. We are going to prove more, namely that the vector valued mapping






µ0

...
µmk







is surjective from the space Pmk
(0, 1) of all polynomials of degree at most mk to Cm+1. For m ∈ N

fixed, it is well known that there exists a (m+ 1)× (m+ 1) invertible matrix Mm such that










1
(1− id)

...
(1− id)m











=Mm











Q0

Q1

...
Qm











,

where Qk is the Legendre-type polynomial of degree k defined on (0, 1) through the standard Legendre
polynomial Pk of degree k defined on (−1, 1) by

Qk(x) = Pk(2x− 1), ∀x ∈ (0, 1).

Setting

µ̃k(h) :=

∫ 1

0

h(x)Qk(x) dx, h ∈ L1(0, 1),

we deduce that

(2.10)







µ0

...
µm






=Mm







µ̃0

...
µ̃m






.

As the Legendre polynomials are pairwise orthogonal, the mapping






µ̃0

...
µ̃m






: Pm(0, 1) → C

m+1
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is trivially surjective. By (2.10) and the invertibility of Mm, we conclude that






µ0

...
µm






: Pm(0, 1) → C

m+1

is also surjective. �

We denote by HY the Hilbert space

(2.11) HY :=

{

{f ∈ H−1(T ) : µ0(f) = 0}, if Y = {0}2 or Y = {0} × C,

H−1(T ), otherwise.

It has been shown in [MN11] that an equivalent inner product is given in either case by

(2.12) (f |g)HY
:=

∫ 1

0

P1f(x)P1g(x)dx+ µ0(f)µ0(g).

Lemma 2.8. The space V
(1)
Y,p is dense in HY for each Y subspace of C2.

Proof. By construction, V
(1)
Y,p ⊂ HY and hence the inclusion V

(1)
Y,p ⊂ HY is clear.

The proof of the converse inclusion is divided in several steps, but follows closely [MN11, Cor. 2.4
and Thm. 4.2]. We first prove the assertion for Y = {0}2.
(1) To begin with, observe that it follows from (2.12) that

(2.13) (f |g)H{0}2
=

∫ 1

0

P1f(x)P1g(x)dx, ∀f, g ∈ H{0}2 .

and

(2.14) ‖u‖H−1(T ) ≃ ‖P1u‖L2 ∀u ∈ H{0}2 .

To prove the claimed inclusion, we show that each f ∈ H{0}2 that is orthogonal to V
(1)
{0}2,p

for the inner

product (·|·)H{0}2
is identically zero. In fact, let f ∈ H{0}2 be orthogonal to V

(1)
{0}2,p

. Then it satisfies

(P1f |P1g)L2 = 0, ∀g ∈ V
(1)
{0}2,p

.

But according to its definition (2.1) we get equivalently

(2.15) 〈f, J1P1g〉 = 0, ∀g ∈ V
(1)
{0}2,p

.

Now define

(2.16) W := {u ∈ H1(T ) ∩W 2,p(0, 1) : u′(0) = u′(1) = 0}.

This space is dense in H1(T ) since for u ∈ H1(T ), u−u(0) belongs to H1
0 (0, 1). Hence for all u ∈ H1(T )

there exists a sequence of ϕn ∈ D(0, 1) such that

ϕn → u− u(0) in H1
0 (0, 1),

and therefore ϕn + u(0) ∈W with

ϕn + u(0) → u in H1(T ).

Now for h ∈W , we take g := −h′′ ∈ V
(1)
{0}2,p

. By construction

J1P1g(x) = h(x)− h(1), ∀x ∈ (0, 1).

Plugging this identity in (2.15) yields

(2.17) 〈f, h− h(1)〉 = 0, ∀h ∈W.

But due to the fact that µ0(f) = 0, we deduce that

〈f, h〉 = 0, ∀h ∈ W.

As W is dense in H1(T ), we conclude that f = 0.
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If Y = {0} × C, we see that

HY = V
(1)
{0}2,p

⊂ V
(1)
{0}×C,p

⊂ HY ,

and the assertion follows.
(2) We consider the remaining cases. More precisely, it suffices to study the case of 1-dimensional Y

with Y 6= {0} × C, because once proved this for Y = C2 and any 1-dimensional subspace Y0 we have

HY = V
(1)
Y0,p

⊂ V
(1)
C2,p

= Lp(0, 1) = HY .

Hence, assume that there exists α ∈ R such that Y is the set of all (z0, z1) ∈ C2 satisfying

(2.18) z1 = αz0.

Let f ∈ H−1(T ) be such that

(2.19) (f |g)HY
= 0, ∀g ∈ V

(1)
Y,p .

Since V
(1)
{0}2,p

⊂ V
(1)
Y,p , one has

(f |g)H−1(T ) = 0, ∀g ∈ V
(1)
{0}2,p

,

and reasoning as in (1) we deduce that (2.17) holds for the space W defined in (2.16). Since W is dense
in H1(T ), this is equivalent to

〈f, h− h(1)〉 = 0, ∀h ∈ H1(T ),

or again

(2.20) f = µ0(f)δ1 in H−1(T ).

Coming back to (2.19) and taking into account Remark 2.3 we get

(2.21) 0 = µ0(f)
(

(P1δ1|P1g)L2 + µ0(δ1)µ0(g)
)

= µ0(f)µ0(g), ∀g ∈ V
(1)
Y,p .

Now, by Lemma 2.7 there exists g ∈ Lp(0, 1) such that
(

µ0(g)
µ1(g)

)

=

(

1
α

)

,

where α is as in (2.18). Hence, we can plug such a g ∈ V
(1)
Y,p in (2.21) and we find µ0(f) = 0, hence,

by (2.20), f = 0. This concludes the proof. �

Lemma 2.9. Let n ∈ N. Then the vector space

(2.22) V
(n)
{0}2,p

:= {u ∈ Lp(0, 1) : µ0(u) = µn(u) = 0},

and hence also
V

(n)
{0}×C,p

:= {u ∈ Lp(0, 1) : µ0(u) = 0},

are dense in
H := {f ∈ H−1(T ) : µ0(f) = 0}.

Proof. The proof is based on Lemma 2.8, i.e., on the validity of the same assertion in the special case
of n = 1. Let w ∈ H : we are looking for a sequence (wk)k∈N ⊂ Kerµn here and below in the proof,
µn is seen as a mapping from H ∩ Lp(0, 1) into C) that approximates w in H−1(T ). By Lemma 2.8,
we already know that this is possible for n = 1: that is, there exists a sequence (vk)k∈N ⊂ Kerµ1 that
approximates w in H−1(T ). Now, for n ≥ 2 observe that the binomial formula yields

(1− t)n = (1 − t) + p̃(t), t ∈ (0, 1),

with p̃ ∈ H1(T ), and accordingly

µn(v) = µ1(v) + 〈p̃, v〉H1(T ),H−1(T ) ∀v ∈ L1(0, 1),

and in particular
0 = µ1(vk) = µn(vk)− 〈p̃, vk〉H1(T ),H−1(T ) ∀k ∈ N.

Thus, by continuity,
lim
k→∞

µn(vk) = lim
k→∞

〈p̃, vk〉 = 〈p̃, w〉 =: c.
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We distinguish the two cases c = 0 and c 6= 0.

(1) If c = 0, it suffices to take

wk := vk −
µn(vk)

µn(p̃)
p̃

(observe that µn(p̃) =
∫ 1

0
|(1− t)|2ndt 6= 0), so that wk ∈ Kerµn for all k ∈ N and moreover

lim
k→∞

wk = w.

(2) If c 6= 0, write w = w1 + αv0, with v0 ∈ Kerµn such that µ1(v0) = 〈p̃, v0〉 6= 0, i.e., v0 ∈
Kerµn \Kerµ1. Now, set

α :=
〈p̃, w〉

〈p̃, v0〉

and observe that for w1 := w − αv0 one has 〈p̃, w1〉 = 0, hence w1 ∈ Kerµn owing to the first
case. As v0 ∈ Kerµn we conclude that w ∈ Kerµn as well.

This concludes the proof. �

Also the following holds.

Lemma 2.10. Let n ∈ N and Y be a subspace of C2 with Y 6= {0}2 and Y 6= {0}× C. Then the vector
space

V
(n)
Y,p :=

{

u ∈ Lp(0, 1) :

(

µ0(u)
µn(u)

)

∈ Y

}

is dense in H−1(T ).

Proof. The proof closely follows that of [MN11, Thm. 4.2]. Like in that proof, we begin by observing
that if Y 6= {0}2 and Y 6= {0} × C, then either Y = C

2 or there exists α ∈ C such that Y is the set of
all (z0, z1) ∈ C2 satisfying

(2.23) z1 = αz0.

Let us first assume that Y 6= C2 and let f ∈ H−1(T ) be such that

(2.24) (f |g)H−1(T ) = 0, ∀g ∈ V
(n)
Y,p ,

and in particular

(f |g)H−1(T ) = 0, ∀g ∈ V
(n)
{0}2,p

.

Just like in the proof of Corollary 2.8 we deduce that (2.17) holds for the space W defined in (2.16).
Since W is dense in H1(T ), this is equivalent to

〈f, h− h(1)〉 = 0, ∀h ∈ H1(T ),

or again

(2.25) f = µ0(f)δ1 in H−1(T ).

Plugging into (2.24) we get

(2.26) 0 = µ0(f)
(

(P1δ1|P1g)L2 + µ0(δ1)µ0(g)
)

= µ0(f)µ0(g), ∀g ∈ V
(n)
Y,p ,

because by Remark 2.4.(3) P1δ1 = 0. By Lemma 2.7 there exists g ∈ Lp(0, 1) such that
(

µ0(g)
µn(g)

)

=

(

1
α

)

,

where α is as in (2.23). Hence, we can plug such a g ∈ V
(n)
Y,p in (2.26) and we find µ0(f) = 0, hence,

by (2.25), f = 0. This shows that V
(n)
Y,p is dense in H−1(T ) if Y 6= C2. For the case Y = C2, however,

by definition V
(n)
Y,p = Lp(0, 1), and the claimed density is clear. �

Summing up, we have proved the following n-th-moment-analogue of Lemma 2.8.

Corollary 2.11. Let n ∈ N and Y be a subspace of C2. The space V
(n)
Y,p is dense in HY for each Y

subspace of C2.
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3. The linear case

It is instructive to consider the linear case of p = 2 first.

Lemma 3.1. Let n ∈ N and Y be a subspace of C2. Then the sesquilinear form

a(u, v) :=

∫ 1

0

u(x)v(x) dx, u, v ∈ V
(n)
Y,2 ,

is densely defined, symmetric, continuous and coercive in HY .

Then, well-posedness of first and second order abstract Cauchy problem associated with this form
follow directly, by means of the general theory of quadratic forms.

Corollary 3.2. Let n ∈ N and Y be a subspace of C2. Then the operator (AY , D(AY )) associated

with (a, V
(n)
Y,2 ) is positive definite on H. In particular, −AY generates a cosine operator function with

associated phase space V
(n)
Y,2 × HY and hence an exponentially stable, contractive, analytic semigroup

(e−tAY )t≥0 of angle π
2 on HY . This semigroup is immediately of trace class.

3.1. The case of µ0(u) = 0. It remains to determine the operator associated with the form, and hence
the Cauchy problems actually solved by the cosine operator functions and the operator semigroup. To
begin with, we consider the case where we impose µ0(u) = 0, corresponding to setting Y = {0}2 or
Y = {0} × C.

Theorem 3.3. Let n ∈ N and define a bounded linear functional γ : H1(0, 1) → C by

γ(f) :=

{

(n− 1)(2n− 1)f(0)− (n− 1)2(2n− 1)µn−2(f), if n ≥ 2,
0 if n = 1.

(3.1)

If either Y = {0}2 or Y = {0}×C, then the operator (AY , D(AY )) associated in HY with the quadratic
form a has domain given by

D(AY ) = {u ∈ H1(0, 1) : µ0(u) = µn(u) = 0} or

D(AY ) = {u ∈ H1(0, 1) : µ0(u) = 0, u(0) = u(1)}

respectively, and its action is given in both cases by

AY u = Id−1
m (−u′′ + γ(u)(1− id)n−2).

We recall that Idm is the isomorphism introduced in Remark 2.1. The above theorem shows that in
particular

AY u = −u′′ + γ(u)(1− id)n−2 in D′(0, 1).

Proof. We only consider the case of n ≥ 2, as the case of n = 1 has been proved in [MN11, Thm. 3.1
and 3.3]. Denote

K := {u ∈ H1(0, 1) : µ0(u) = µn(u) = 0}.

Let us first show the inclusion D(AY ) ⊂ K. Let f ∈ D(AY ). Then there exists g ∈ H−1(T ) for which
µ0(g) = 0 (i.e., g ∈ HY ) and such that

(f |h)L2 = a(f, h)
!
= (g|h)H{0}2

=

∫ 1

0

(Png)(x)(Pnh)(x) dx ∀h ∈ V
(n)
Y,2 ,

by virtue of Remark 2.3. Now for g ∈ H−1(T ) it follows from Lemma 2.2.(1) that Png ∈ L2(0, 1), hence

(Pn(Png))
′ = Png. Integrating by parts we obtain that in particular for all h ∈ V

(n)
{0}2,2

∫ 1

0

(Png)(x)(Pnh)(x) dx =

∫ 1

0

(Pn(Png))
′(x)(Pnh)(x) dx

= −

∫ 1

0

(Pn(Png))(x)(Pnh)′(x) dx

= −

∫ 1

0

(Pn(Png))(x)h(x) dx.
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This shows that
(f |h)L2 = −(Pn(Png)|h)L2 ∀h ∈ V

(n)
{0}2,2

because of (2.5). Let us now denote by Π the orthogonal projection of L2(0, 1) onto the closed subspace
of polynomials of one variable spanned by 1 and (1− id)n. Then we have

f = −(I −Π)Pn(Png) + Πf = −Pn(Png) + Π(Pn(Png) + f).

Accordingly, in either case f ∈ H1(0, 1) in view of Lemma 2.2.(2). Moreover,

f ′′ = −g + (ΠPn(Png))
′′

in D′(0, 1).

As
Π (Pn(Png) + f) (x) = α+ β(1 − x)n,

for some α, β ∈ R, we have found that

f ′′ = −g + n(n− 1)βxn−2 in D′(0, 1).

By [MN11, Lemma 2.4] this yields that

AY f = Id−1
m (−f ′′ + n(n− 1)β(1 − x)n−2).

Clearly β depends on f and its dependence will be given below.

Let us finally check that the additional conditions in the definition of D(AY ) hold. For all h ∈ V
(n)
Y,p

(f |h)L2 = a(f, h)
!
= (AY f |h)HY

=
(

Id−1
m (−f ′′ + γ(f)(1− id)n−2)| h

)

H−1(T )

=
(

Id−1
m (k′′)|h

)

H−1(T )

where

−k(x) := f(x)−
1

n(n− 1)
γ(f)(1− x)n)), x ∈ (0, 1),

for some γ(f) ∈ C to be determined below. Hence in view of Theorem 2.6, and since µ0(h) = 0, we find
that

(f |h)L2 =
(

Id−1
m (k′′)|h

)

H−1(T )

= −(k|h)L2 +

((

nk(0)− n(n− 1)µn−2(k)
(1− n)k(0)− k(1) + n(n− 1)µn−2(k)

)

∣

∣

∣

(

µ1(h)
µn(h)

))

C2

Observe that

−(k|h)L2 = (f |h)L2 −
1

n(n− 1)
γ(f)µn(h)

and furthermore due to Lemma 2.7

(3.2) 0 = −k(0) + (n− 1)µn−2(k)

in case Y = {0}2 (and hence µn(h) = 0); or else

(3.3)

{

nk(0) = n(n− 1)µn−2(k)
1

n(n−1)γ(f) = (1 − n)k(0)− k(1) + n(n− 1)µn−2(k)

if Y = {0} × C.
Hence, (3.2) can be re-written as

f(0)−
1

n(n− 1)
γ(f)− (n− 1)µn−2(f) +

1

n
γ(f)µn−2((1 − id)n) = 0

or rather

f(0)− (n− 1)µn−2(f)−
1

n(n− 1)
γ(f) +

1

n(2n− 1)
γ(f) = 0.

Finally, we find

(3.4) f(0)− (n− 1)µn−2(f)−
1

(n− 1)(2n− 1)
γ(f) = 0.
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If Y = {0} × C, (3.3) can be re-written as
{

0 = −k(0) + (n− 1)µn−2(k)
n(n− 1)γ(f) = (1− n)k(0)− k(1) + nk(0),

i.e., (3.4) is satisfied and moreover

1

n(n− 1)
γ(f)

!
= k(0)− k(1) = −f(0) +

1

n(n− 1)
γ(f) + f(1).

Summing up, we see that necessarily

γ(f) = (n− 1)(2n− 1)f(0)− (n− 1)2(2n− 1)µn−2(f) if Y = {0}2,

or else
{

γ(f) = (n− 1)(2n− 1)f(0)− (n− 1)2(2n− 1)µn−2(f)
f(0) = f(1)

if Y = {0} × C.

The converse inclusion can be proven likewise, exploiting our integration-by parts-type formula as in
the first part of the proof. �

Remark 3.4. Let us emphasize that taking into account [MN11, Thm. 3.1 and 3.3] and Theorem 3.3
one sees that the domains of AY coincide for all n ∈ N, in the case of Y = {0} × C. Comparing the

special cases of n = 1 and n = 2 one sees that AY u = Id−1
m (−u′′) for n = 1 whereas we have just proved

that AY u = Id−1
m (−u′′ + 3u(0)) if n = 2. In general, Id−1

m

(

γ(u)(1− id)n−2
)

can be regarded as some
sort of potential. In the linear case, this potential can be easily dealt with and, if desired, switched off.
We will see in Section 4 that things are different in the nonlinear case.

Corollary 3.5. Let n ∈ N and define the bounded linear functional γ : H1(0, 1) → C as in (3.1). Let
η ∈ C. Then the operator given by

u 7→ Id−1
m (u′′) + ηId−1

m

(

γ(u)(1− id)n−2
)

.

either with domain

{u ∈ H1(0, 1) : µ0(u) = µn(u) = 0} or

{u ∈ H1(0, 1) : µ0(u) = 0, u(0) = u(1)}

generates on {f ∈ H−1(T ) : µ0(f) = 0} an analytic, uniformly exponentially stable semigroup of angle
π
2 that is immediately of trace class.

Proof. The assertion follows directly from the observation that

u 7→ Id−1
m

(

γ(u)(1− id)n−2
)

is a relatively compact perturbation of AY , and from well known perturbation results, cf. [ABHN01,
Thm. 3.7.25]. �

The following generalizes the well-posedness result [MN11, Thm. 3.7].

Theorem 3.6. Let n ∈ N and η ∈ C. The heat-type equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + ηγ(u)(1− x)n−2, t > 0, x ∈ (0, 1),

(where γ(u) is the same term defined in (3.1)) with moment conditions

µ0(u(t)) = µn(u(t)) = 0, t > 0,

or

µ0(u(t)) = 0, u(t, 0) = u(t, 1), t > 0,

and initial condition

u(0, ·) = u0 ∈ {f ∈ H−1(T ) : µ0(f) = 0}

is well-posed.
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We remark explicitly that letting η = 0 we recover well-posedness of the standard heat equation with
the above conditions on the moments.

In the proof of this theorem we will need the following two results.

Lemma 3.7. Let p ∈ (1,∞). If f ∈W 2,p(0, 1), then

Pn(Id
−1
m (f ′′ + γ(f)(1− x)n−2)) = Pn(f

′′ + γ(f)(1− x)n−2) in L2(0, 1).

Proof. The claim follows from [MN11, Rem. 2.6] and Remark 2.4.(3). �

Lemma 3.8. Let n ≥ 2. Then the following assertions hold.

(1) If Y = {0}2, then one has
(3.5)
D(A2

Y ) = {u ∈ H3(0, 1) : µ0(u) = µ0(u
′′ − γ(u)(1− id)n−2) = µn(u) = µn(u

′′ − γ(u)(1− id)n−2) = 0}.

(2) If Y = {0} × C, then one has
(3.6)
D(A2

Y ) = {u ∈ H3(0, 1) : µ0(u) = µ0(u
′′ − γ(u)(1− id)n−2) = 0, u(0) = u(1), u′′(0)− γ(u) = u′′(1)}.

In either case,

AY u = −u′′ + γ(u)(1− id)n−2, ∀u ∈ D(A2
Y ).

Proof. In either cases, the inclusion “⊃” holds because for u in the right-hand side of (3.5), −u′′ +
γ(u)(1 − id)n−2 clearly belongs to D(AY ) and AY u = −u′′ + γ(u)(1 − id)n−2, which also belongs to
D(AY ).

We only prove that “⊂” holds in (1), the corresponding proof in (2) being analogous. Let us take
u ∈ D(A2

Y ). Then u ∈ H1(0, 1) and

AY u = Id−1
m

(

−u′′ + γ(u)(1− id)n−2
)

∈ H1(0, 1).

We first prove that u′′ ∈ H1(0, 1), which clearly implies that u ∈ H3(0, 1). Now, set for shortness
f := −u′′ + γ(u)(1− id)n−2 that clearly belongs to H−1(0, 1) and consequently

〈f, v, 〉H−1(0,1)−H1
0 (0,1)

= 〈Id−1
m f, v〉H−H1(T ) = 〈AY u, v〉H−H1(T ) ∀v ∈ D(0, 1).

Now, because by assumption AY u ∈ H1(0, 1) we deduce that in fact

〈f, v, 〉H−1(0,1)−H1
0 (0,1)

= (AY u|v)L2 ,

hence u′′ = −AY u + γ(u)(1 − id)n−2 ∈ H1(0, 1) and we conclude that u ∈ H3(0, 1), as we wanted to
prove.

But now as f belongs to H1(0, 1), by [MN11, Lemma 2.4]

Id−1
m f = f − µ0(f)δ1.

Because both f and Id−1
m f and hence also µ0(f)δ1 belong to H1(0, 1), we have that necessarily µ0(f) = 0

and therefore by Theorem 3.3 and Lemma 3.7,

AY u = −u′′ + γ(u)(1− id)n−2.

Accordingly, because u ∈ D(A2
Y ) and hence µn(AY u) = 0, it follows that µn(u

′′ − γ(u)(1− id)n−2) = 0.
This completes the proof. �

Proof of Theorem 3.6. We have seen that −AY generates an analytic semigroup, hence well-posedness
of the corresponding parabolic problem follows. By standard analytic semigroup theory each initial
data in HY is immediately mapped by the semigroup into D(A2

Y ). Hence, by Lemma 3.7 the claim will
follow if we show that D(A2

Y ) ⊂ H2(0, 1). But this is just one of the claims of Lemma 3.8. �

Remark 3.9. Throughout this section we could have considered some perturbations of the quadratic
form a, as we have done in [MN11, § 3 and § 4]. In particular, for any 2 × 2-matrix K the additional
term

b(u, v) :=

(

K

(

µ0(u)
µn(u)

)

∣

∣

∣

(

µ0(v)
µn(v)

))

, ∀u, v ∈ H1(0, 1),
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may be studied. For the sake of brevity, we avoid to discuss this issue thoroughly: It suffices to observe
that for all n ∈ N there exists Cn > 0 such that

(3.7) |µn(g)|
2 ≤ Cn‖g‖L2‖g‖H−1(T ), ∀g ∈ L2(0, 1) :

this can be shown following the proof of [MN11, Lemma 2.12] and taking into account Remark 2.4.(1).
Accordingly, the sesquilinear form a + b fits the framework of [Cro04], hence (minus) the operator
associated with this form in HY generates a cosine operator function and an analytic semigroup of
angle π

2 .

3.2. The general case. We now complete our discussion of the linear heat equation by considering
the remaining cases.

Theorem 3.10. Let n ∈ N and Y be a subspace of C2, Y 6= {0}2 and Y 6= {0} × C. Then the operator
(AY , D(AY )) associated in HY with the quadratic form a is given by

D(AY ) =

{

u ∈ H1(0, 1) :

(

µ0(u)
µn(u)

)

∈ Y

}

AY u = Id−1
m (−u′′ + γ(u)(1− id)n−2)− c(u)δ1,

where γ(u) is defined as in (3.1) and c(u) ∈ C is uniquely determined by the condition

(3.8)

(

c(u) + u(1)
u(0)− u(1)

)

∈ Y ⊥

Proof. Again, we only treat the case n ≥ 2 and refer the reader to [MN11, Thm. 4.3] for the case n = 1.
We denote

K1 :=

{

u ∈ H1(0, 1) :

(

µ0(u)
µn(u)

)

∈ Y

}

and proceed in a way similar to that in the proof of Theorem 3.3 in order to determine AY , which by
definition is given by

D(AY ) := {f ∈ V
(n)
Y,2 : ∃g ∈ H−1(T ) : a(f, h) = (g|h)H−1(T ) ∀h ∈ V

(n)
Y,2 },

AY f := g.

Let us first check the inclusion D(AY ) ⊂ K1. Let f ∈ D(AY ). Then f ∈ V
(n)
Y,2 and there exists

g ∈ H−1(T ) such that

(3.9) (f |h)L2 =

∫ 1

0

(Png)(x)(Pnh̄)(x) dx + µ0(g)µ0(h̄) ∀h ∈ V
(n)
Y,2 .

Now, because g ∈ H−1(T ), by Lemma 2.2, we can consider Png that belongs to L2(0, 1). Therefore by
integration by parts and taking into account Lemma 2.2.(1) we obtain that

∫ 1

0

(Png)(x)(Pnh̄)(x) dx =

∫ 1

0

(Pn(Png))
′(x)(Pnh̄)(x) dx

= −

∫ 1

0

(Pn(Png))(x)h(x) dx + [Pn(Png)(Pnh̄)]
1
0 ∀h ∈ V

(n)
Y,2 .

Now, observe that the scalar number

µ0(g)µ0(h) + [Pn(Png)(Pnh̄)]
1
0 ∈ C

is a linear combination of µ0(h) and µn(h), hence it can be written in the form

c0µ0(h) + cnµn(h) =

∫ 1

0

(c0 + c1(1 − x)n)h(x)dx,

for some c0, cn ∈ C. Letting ρ(x) := c0 + c1(1− x)n, we obtain that

(f |h)L2 = (−Pn(Png) + ρ|h)L2 ∀h ∈ V
(n)
Y,2 .
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Therefore, denoting by Π as in the proof of Theorem 3.3 the orthogonal projection of L2(0, 1) onto
the vector space spanned by 1 and (1 − id)n, we obtain (by restricting the previous identity to all

h ∈ V
(n)
{0}2,2 ⊂ V

(n)
Y,2 )

(I −Π)(f + Pn(Png)− ρ) = 0,

or equivalently

(3.10) f = (I −Π)(−Pn(Png) + ρ) + Πf = −Pn(Png) + Π(Pn(Png) + f).

This proves that f belongs to H1(0, 1) and (differentiating (3.10) twice) that

(3.11) g = −f ′′ + γ(1− id)n−2,

in the distributional sense (i.e. in D′(0, 1)) for some γ ∈ C. Hence, by [MN11, Lemma 2.4], there exists
c(f) ∈ C such that

AY f = g = Id−1
m (−f ′′ + γ(1− id)n−2)− cδ1,

and in fact c(f) = −µ0(g).
It remains to check the condition (3.8). But we first notice that, for all f ∈ D(AY ), (3.10) leads to

f ′ = −Png −
γ

n− 1
(1− id)n−1,

for the same γ as in (3.11). By (3.9) we obtain
∫ 1

0

f(x)h̄(x) dx =

∫ 1

0

(−f ′(x)−
γ

n− 1
(1− x)n−1)(Pnh̄)(x) dx − c(f)µ0(h)

= −

∫ 1

0

f ′(x)(Pnh̄)(x) dx −
γ

n− 1
µn−1(Pnh̄)− c(f)µ0(h) ∀h ∈ V

(n)
Y,2 .

As µn−1(Pnh̄) = 0 by Remark 2.4.(2), we deduce that

(3.12)

∫ 1

0

f(x)h(x) dx = −

∫ 1

0

f ′(x)(Pnh̄)(x) dx − c(f)µ0(h) ∀h ∈ V
(n)
Y,2 .

Integrating by parts the first term on the right-hand side we obtain

−

∫ 1

0

f ′(x)(Pnh̄)(x) dx =

∫ 1

0

f(x)h̄(x) dx + f(0)(Pnh̄)(0)− f(1)(Pnh̄)(1)

=

∫ 1

0

f(x)h̄(x) dx − f(0)µn(h̄)− f(1)(µ0(h)− µn(h̄)),

owing to Lemma 2.2.(1) and (2.5), respectively. Plugging this identity in (3.12) we find that

−(f(1) + c(f))µ0(h) + (f(1)− f(0))µn(h̄) = 0 ∀h ∈ V
(n)
Y,2 .

By the surjectivity result from Lemma 2.7, we have shown (3.8): Let us notice that (3.8) determines in
a unique way c.

We now prove the converse inclusion. Let then f ∈ K1. Then we can take

g := Id−1
m (−f ′′ + γ(1− id)n−2)− cδ1,

with c ∈ C fixed by the condition (3.8) (and is equal to −µ0(g)) and γ will be fixed later on. Hence by
definition of the inner product in H−1(T ) and the fact that Pnδ1 = 0 by Remark 2.4.(3), we will have

for any h ∈ V
(n)
Y,2

(g|h)H−1(T ) = (Pn(Id
−1
m (−f ′′ + γ(1− id)n−2))|Pnh)L2 − cµ0(h)

= −(Pn(Id
−1
m f ′′|Pnh)L2 + γ(Pn(1− id)n−2)|Pnh)L2 − cµ0(h).

But simple calculations and an integration by parts yield

(3.13) (Pn(1− id)n−2)|Pnh)L2 =
n

(n− 1)(2n− 1)
(µ1(h̄)− µn(h̄)).
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Hence by Theorem 2.6, for all h ∈ V
(n)
Y,2 we get

(3.14) (g|h)H−1(T ) = (f |h)L2 +





−(f(1) + c)
−nf(0) + n(n− 1)µn−2(f) +

nγ
(n−1)(2n−1)

−f(0) + f(1)− n(n− 1)µn−2(f) + nf(0)− nγ
(n−1)(2n−1)









µ0(h)
µ1(h)
µn(h)



 .

From this identity we see that f will belong to D(AY ) if the second entry of the second term in the
right-hand side of this identity is zero. This motivates us to choose γ such that

−nf(0) + n(n− 1)µn−2(f) +
nγ

(n− 1)(2n− 1)
= 0,

which is equivalent to (3.1). With this choice we see that (3.14) is equivalent to

(g|h)H−1(T ) = (f |h)L2 +

(

−(f(1) + c)
−f(0) + f(1)

)(

µ0(h)
µn(h)

)

= (f |h)L2 , ∀h ∈ V
(n)
Y,2 ,

the second identity following from (3.8). This shows that

a(f, h) = (g|h)H−1(T ), ∀h ∈ V
(n)
Y,2 ,

and proves that f belongs to D(AY ). �

Corollary 3.11. Under the assumptions of Theorem 3.10, let η ∈ C. Then the operator AY given by

D(AY ) :=

{

u ∈ H1(0, 1) :

(

µ0(u)
µn(u)

)

∈ Y

}

,

AY u := Id−1
m (u′′) + ηγ(u)Id−1

m

(

(1− id)n−2
)

,

generates on HY = H−1(T ) an analytic, uniformly exponentially stable semigroup of angle π
2 that is

immediately of trace class.

Proof. Again the assertion follows directly from the observation that

u 7→ γ(u)Id−1
m

(

(1− id)n−2
)

is a relatively compact perturbation of AY . Hence a well known perturbation result, cf. [ABHN01,
Thm. 3.7.25], allows us to conclude. �

As a consequence we obtain the following existence result.

Theorem 3.12. Let n ∈ N and η, y ∈ C. Then the heat equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + ηγ(u(t, ·))(1− x)n−2, t > 0, x ∈ (0, 1),

(where γ(u) is the same term defined in (3.1)) with moment conditions

µn(u(t, ·)) = yµ0(u(t, ·)), t > 0,

−µn(u
′′(t, ·)) +

γ(u(t, ·))

2n− 1
= y(−µ0(u

′′(t, ·)) +
γ(u(t, ·))

n− 1
), t > 0,

and

−µ0(u
′′(t, ·)) +

γ(u(t, ·))

n− 1
= (u(t, 1)− u(t, 0))ȳ − u(t, 1) t > 0,

and initial condition

u(0, ·) = u0 ∈ H−1(T )

is well-posed.

Proof. It suffices to apply the previous Corollary with Y spanned by (1, y)⊤ and Lemma 3.13 below.
Note that the condition (3.8) is then equivalent to

c(u) = −u(1)− (u(0)− u(1))ȳ.

This concludes the proof. �
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Lemma 3.13. Under the assumptions of Theorem 3.10 one has

D(A2
Y ) =

{

u ∈ H3(0, 1) : µn(u) = yµ0(u),

µn(u
′′ − γ(u)(1− id)n−2) = yµ0(u

′′ − γ(u)(1− id)n−2),

µ0(u
′′ − γ(u)(1− id)n−2) = (u(1)− u(0))ȳ − u(1)

}

,

when Y is spanned by (1, y)⊤ and

AY u = −u′′ + γ(u)(1− id)n−2, ∀u ∈ D(A2
Y ).

Proof. The inclusion “⊃” holds because for u in the right-hand side of (3.15), −u′′ + γ(u)(1 − id)n−2

clearly belongs to D(AY ) and AY u = −u′′ + γ(u)(1− id)n−2, which also belongs to D(AY ).
We now prove the converse inclusion “⊂”. Let us fix u ∈ D(A2

Y ). Then u ∈ H1(0, 1) and

AY u = Id−1
m

(

−u′′ + γ(u)(1− id)n−2
)

− c(u)δ1 ∈ H1(0, 1).

This identity implies that

−u′′ = AY u− γ(u)(1− id)n−2 in D′(0, 1),

and the assumption AY u ∈ H1(0, 1) implies that u ∈ H3(0, 1). With this regularity at hands, by [MN11,
Rem. 2.6] we see that

AY u = −u′′ + γ(u)(1− id)n−2) +
(

µ0(u
′′)− γ(u)µ0((1− id)n−2)− c(u)

)

δ1 ∈ H1(0, 1).

Hence necessarily

µ0(u
′′)− γ(u)µ0((1− id)n−2)− c(u) = 0,

and

AY u = −u′′ + γ(u)(1− id)n−2.

Because u ∈ D(A2
Y ), −u

′′ + γ(u)(1 − id)n−2 belongs to D(AY ) and the characterization of D(AY )
completes the proof. �

4. The porous medium equation

Throughout this section, we consider real valued functions spaces and we let

• p ∈ (1,∞),
• Y be a subspace of R2,
• n ∈ N.

We consider the functional EY : HY → R+ ∪ {+∞} defined by

EY : f 7→

{

1
p

∫ 1

0
|f(x)|pdx, if f ∈ V

(n)
Y,p ,

+∞, otherwise,

where HY and V
(n)
Y,p are the spaces introduced in (2.11) and (2.22). It turns out that the subdifferential

of EY has particularly good properties.

Theorem 4.1. Let Y be a subspace of R2. Then the functional EY is proper and convex. Further-

more, EY is continuously Fréchet differentiable as a functional on V
(n)
Y,p and lower semicontinuous as a

functional on HY .

Proof. It is clear that EY is proper and convex. Moreover, it is continuously differentiable – in fact, the
Fréchet derivative of EY is given by

(4.1) E ′
Y (f)h =

∫ 1

0

|f(x)|p−2f(x)h(x) dx, f, h ∈ V
(n)
Y,p .

Thus, EY is in particular lower semicontinuous as a functional on V
(n)
Y,p , and lower semicontinuity as

a functional on HY follows from [Sho97, Lemma IV.5.2]. �
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Remark 4.2. An additional term of the form Φ(

(

µ0(f)
µn(f)

)

), where Φ : Y → R is a convex continuously

differentiable function, may be easily dealt with by means of simple perturbation results for nonlinear
forms, see e.g. [MP11].

Theorem 4.3. Let γ(·) be defined by (3.1). Then the following assertions hold.

(1) If either Y = {0}2 or Y = {0} × R, then the subdifferential ∂EY of EY with respect to HY agrees
with the nonlinear operator AY given by

D(AY ) := {f ∈ Lp(0, 1) : |f |p−2f ∈ H1(0, 1) : µ0(f) = µn(f) = 0} or

D(AY ) := {f ∈ Lp(0, 1) : |f |p−2f ∈ H1(0, 1) : µ0(f) = 0, f(0) = f(1)}

respectively, whose action is given in both cases by

AY f := Id−1
m (−(|f |p−2f)′′ + γ(f)(1− id)n−2).

(2) If Y 6= {0}2 and Y 6= {0} × R, then the subdifferential ∂EY of EY with respect to HY agrees with
the nonlinear operator AY given by

D(AY ) :=

{

f ∈ Lp(0, 1) : |f |p−2f ∈ H1(0, 1) and

(

µ0(f)
µn(f)

)

∈ Y

}

,

whose action is given by

AY f := Id−1
m (−(|f |p−2f)′′ + γ(|f |p−2f)(1− id)n−2)− c(f)δ1.

Here c(f) ∈ R is uniquely determined by the condition

(4.2)

(

c(f) + |f |p−2(1)f(1)
|f |p−2(0)f(0)− |f |p−2(1)f(1)

)

∈ Y ⊥.

Here, by definition, for a given reflexive Banach space X the subdifferential of a functional E with
respect to a Hilbert spaceH such that X is continuously and densely embedded in H is the single-valued
operator given by

D(∂E) := {f ∈ HY : ∃ g ∈ HY s.t. E ′(f)h = (g|h)HY
∀h ∈ V

(n)
Y,p },

∂E(f) := g,

cf. [Nit10, Lemma 2.8.9].

Proof. We do not deliver the proof, which can be performed closely following those of Theorems 3.3
and 3.10 if n ≥ 2, or rather the proofs of [MN11, Thm. 3.1, 3.3, 4.3] if n = 1, up to replacing f by
|f |p−2f throughout. The only noteworthy modifications are the following ones: On one hand, one has
to replace the orthogonal projection Πψ ∈ L2 of a vector ψ ∈ L2(0, 1) onto the space of polynomials

spanned by 1 and (1 − id)n by the vector Πψ ∈ Lp′

(0, 1) of best approximation of ψ ∈ Lp′

(0, 1) in the
subspace of R[x] spanned by 1 and (1− id)n: This makes sense even if Π is not an orthogonal projection,
and of course R[x] = ΠR[x] + (I − Π)R[x] is dense in Lp(0, 1). On the other hand, one must check
directly that each f ∈ D(∂E) is of class Lp(0, 1) – this can in turn be done observing that because by

assumption |f |p−2f ∈ H1(0, 1) →֒ L
p

p−1 (0, 1), fp ∈ L1(0, 1), i.e., f ∈ Lp(0, 1). �

By virtue of Theorems4.1 and 4.3, the following assertion is a direct consequence of the general
theory of nonlinear semigroups associated with subdifferentials, see e.g. [Sho97, Prop. IV.5.2] and [Bré73,
Théo. 3.2].

Proposition 4.4. Let p ∈ (1,∞). Let T > 0, u0 ∈ V
(n)
Y,p and f ∈ L2(0, T ;HY ). Then the abstract

Cauchy problem

(4.3)

{

du
dt
(t) = −AY u(t) + f(t), t > 0,

u(0) = u0,

admits a unique solution u ∈ H1(0, T ;HY ) ∩ L
∞(0, T ;V

(n)
Y,p ).

If f ≡ 0, then the the following additional assertions hold:
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• the solution of (4.3) is given by a strongly continuous semigroup of nonlinear contractions,
• u(t, ·) ∈ D(AY ) for all t > 0,
• u ∈ C([0,∞);HY ) is everywhere right differentiable and satisfies (4.3) – and in particular the
initial condition – for all t ≥ 0, and finally

• t 7→ ‖u(t)‖pLp is convex and monotonically decreasing on each interval [δ,∞) for all δ > 0.

Remark 4.5. Observe that AY is not the operator associated with the (non-signed) PME. Hence,
unlike in the setting discussed in Section 3, in the present nonlinear case we are not able to show that
the Cauchy problem associated with −AY takes the form of a common PME (possibly with potential),
because the general theory of subdifferentials apparently does not ensure enough regularity of solutions
to allow us to drop the term Id−1

m . However, taking into account Remark 2.4.(5) one observes that AY

does indeed act on twice weakly differentiable functions as a second order differential operator with a
potential term.

Observe that a possible, weaker but still sufficient approach would consist in restricting ourselves

to consider initial values in V
(n)
Y,p , or some other subspace of L2(0, 1) that is left invariant under the

semigroup; and then showing that the restriction of the semigroup is strongly continuous, and that its
generator is a restriction of AY to some subspace of H2(0, 1). In view of Lemma 3.7, this would do
the job. Unfortunately, it seems to be unclear to which extent this kind of procedure is allowed by the
general theory of nonlinear semigroups. However, it is for instance known that the operators associated
with the PME on bounded domains Ω “generate semigroups of order-preserving contractions in L1(Ω)”,
cf. [Váz07, § 20.1.2].

We have already seen that in the linear case the problem is governed by a uniformly exponentially
stable semigroup on HY . This means that the HY -norm of each solution tends to 0 as t→ ∞, uniformly
for all initial data. What about the nonlinear case? We alreay know from Theorem 4.4 that if the
inhomogeneous term f ≡ 0, then the Lp-norm of the solution is decreasing. Further information can
be obtained. Inspired by the classical analysis of the PME, see e.g. [Váz07, Thm. 11.9], we obtain the
following, where for the sake of simplicity we restrict to the case of Y = {0}2.

Proposition 4.6. Consider the abstract Cauchy problem (4.3) with u0 ∈ V
(n)
Y,p and f = 0. If Y = {0}2,

then the solution u given by Theorem 4.4 satisfies

‖u(t)‖2HY
≤ Kt−

2
p−2 if p > 2,

for some K > 0 only depending on p, whereas

‖u(t)‖2HY
≤ ‖u(0)‖2HY

e−Kt if p ≤ 2,

for some K > 0 proportional to ‖u(0)‖
p−2
2

HY
.

Observe that for p = 2 we recover information already yield from the exponential stability of the
linear semigroup (cf. Corollary 3.5), whereas for p < 2 (the case of the FDE) we deduce exponential
decay – with decay rate depending on the initial data.

Proof. By the definition of the inner product in HY and since by assumption µ0(u(t)) = µn(u(t)) = 0,
we find that

(

u(t)
∣

∣(1− id)n−2
)

HY
=

∫ 1

0

∫ x

0

u(t, y)dy(1− x)n−1dx−
n

(n− 1)(2n− 1)
µ1(u(t))

=
1

n
µn(u(t))−

n

(n− 1)(2n− 1)
µ1(u(t))

= −
n

(n− 1)(2n− 1)
µ1(u(t)),
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where the second identity follows integrating by parts. Hence for all t ≥ 0

1

2

d‖u(t)‖2HY

dt
=

(

u(t)|
du

dt
(t)

)

HY

= − (u(t)|AY u(t))HY

= −
(

u(t)|Id−1
m (−(|u(t)|p−2u(t))′′ + γ(u(t))(1 − id)n−2)

)

HY

= −
(

u(t)|(|u(t)|p−2u(t))
)

L2
− γ(u(t))

(

u(t)
∣

∣(1− id)n−2
)

HY

= −‖u(t)‖p
V

(n)
Y,p

+ (u(t, 0)− (n− 1)µn−2(u(t))) (n− 1)(2n− 1)

∫ 1

0

∫ x

0

u(t, y)dy(1− x)n−1dx.

if n ≥ 2, and a similar but simpler computations holds for n = 1. We finally arrive at

1

2

d‖u(t)‖2HY

dt
= −‖u(t)‖p

V
(n)
Y,p

.

Because V
(n)
Y,p →֒ HY , we get

1

2

d‖u(t)‖2HY

dt
≤ −C0‖u(t)‖

p
HY
,

for some C0 > 0. Setting

v(t) := ‖u(t)‖2HY
, t ≥ 0,

we have shown that

(4.4) v′(t) ≤ −Cv(t)α,

with

α :=
p

2
and C := 2C0. Now we distinguish the case α > 1 and α ≤ 1.

1) In the first case we consider the function w defined by

w(t) := C(α − 1)t− v(t)1−α, t ≥ 0.

(Without loss of generality we can assume that v(t) > 0, for all t > 0, otherwise as v is decaying, v
would be zero after a time t0 > 0).

By direct calculations, we have

w′ = (α− 1)(C + v−αv′), ∀t > 0,

and by (4.4), we get that w is decaying. Hence

w(t) ≤ w(0), ∀t > 0,

or equivalently

v(t) ≤ Kt−
1

α−1 , ∀t > 0,

with K := (C(α − 1))
− 1

α−1 > 0, which shows the polynomial decay.
2) If α ≤ 1, then again by the decay of v, we have

v(t) ≤ v(0)1−αv(t)α, ∀t > 0,

and therefore it follows from (4.4) that

(4.5) v′(t) ≤ −Kv(t)α,

with K := C
v(0)1−α . As before this property implies that the mapping t 7→ v(t)eKt is decaying and

therefore we obtain

v(t) ≤ v(0)e−Kt, ∀t > 0,

which shows the claimed exponential decay. �
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