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THE HEAT EQUATION UNDER CONDITIONS

ON THE MOMENTS IN HIGHER DIMENSIONS

DELIO MUGNOLO AND SERGE NICAISE

Abstract. We consider the heat equation on the N-dimensional cube (0, 1)N

and impose different classes of integral conditions, instead of usual boundary
ones. Well-posedness results for the heat equation under the condition that the
moments of order 0 and 1 are conserved had been known so far only in the case
of N = 1 – for which such conditions can be easily interpreted as conservation
of mass and barycenter. In this paper we show that in the case of general
N the heat equation with such integral conditions is still well-posed, upon
suitably relax the notion of solution. Existence and uniqueness of solutions with
general initial data in a suitable space of distibutions over (0, 1)N are proved by
introducing two appropriate realizations of the Laplacian and checking by form
methods that they generate analytic semigroups. The solution thus obtained
does however solve the heat equation only in a certain distributional sense.
However, it turns out that one of these realizations is tightly related to a well-
known object of operator theory, the Krein–von Neumann extension of the
Laplacian. This connection also establishes well-posedness in a classical sense,
as long as the initial data are L2-functions.

1. Introduction

Fifty years ago, J.R. Cannon has suggested in [6] that realistic mechanical consid-
erations suggest to study diffusion equations imposing a condition on the moment
of order 0 of the unknown (i.e., on the total mass of the system), thus dropping one
of the boundary conditions. Cannon’s analysis was limited to the one-dimensional
case, both in [6] and his later research surveyed in [7]. His original setting has been
significantly generalized over the years (cf. [16, § 1] for a historical overview), in
particular replacing also the remaining boundary condition by a condition on the
moment of order 1 (i.e., on the barycenter).

Still, to the best of our knowledge only a few tentative extensions of the above
conditions for heat or wave equations on higher dimensional domains have been
proposed in the literature: We mention [15, 14, 17], where earlier related references
are also collected. A first difficulty is that in case of a bounded domain in dimension
N ≥ 2 (unlike in the 1-dimensional case) infinitely many (boundary) conditions are
necessary to determine a solution, while prescribing the moments of order 0 and 1
yields only finitely many conditions.

In this note, we introduce a general setting which in our opinion yields the
proper N -dimensional extensions of the 1-dimensional moment conditions studied
in [5, 16]. Because the moments of order 0 and 1 of a given function are its integrals
against the two vectors that span the space of one-dimensional harmonic functions,
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it is natural to conjecture that for N ≥ 2 Cannon’s setting should be extended
by imposing orthogonality to the harmonic functions. This allows to define two
diffusion-type operators A and Ã and to study the associated parabolic problem.

We stress that neither of these operators is a classical Laplacian: Rather, each of
them is an isomorphic image of (a realization of) the Laplacian in a suitable space
of distributions of H−1-type. An analogous problem has been already observed
in [16]. Roughly speaking, A turns out to be an operator with conditions on the
moment of order 0 along with uncountably many further conditions (that however
impose in particular that the N linear moments of order 1 of the unknown have to
vanish); whereas Ã will be an operator with periodic boundary conditions and a
condition on the moment of order 0 only. This is discussed in detail in Section 4.
Nevertheless, A and Ã agree with the Laplacian in the sense of distributions.

In the special case of N = 1 it has been shown in [16, §§ 3–4] that the solution
of the abstract Cauchy problems associated with either of them also solves the
classical heat equation. Indeed, the orbits of the semigroups generated by A and Ã
contain only elements whose smoothness suffices to ensure that the generator acts
on them as the usual second derivative: This can be proved carefully describing the
smoothing enhancement yielded by analyticity of the semigroups.

It seems that a similar strategy is not successful in the present higher dimensional
context. In fact, a direct computation suggests that in general the elements of
the orbits are not much better than L2. Nevertheless, we will eventually show in
Section 5 that the semigroups actually solve the usual heat equation (with moment
conditions) – at least in a suitably weak, distributional sense.

Finally, in Section 6 we comment on the well-posedness of the relevant diffusion
problem in a more usual L2-setting. We also emphasize the connections between our
investigations and Krein’s theory of self-adjoint extensions: Also this observation
seems to be new.

2. The functional setting

Let Ω ⊂ RN be an open domain with Lipschitz boundary. It is well-known (see
e.g. [1, Thm. 2.5]) that

(2.1) H1(Ω) = H1
0 (Ω)⊕Har(Ω),

where Har(Ω) denotes the space of (weakly) harmonic functions, i.e.,

Har(Ω) :=

{

u ∈ H1(Ω) :

∫

Ω

∇u∇vdx = 0 ∀v ∈ H1
0 (Ω)

}

.

Furthermore, the trace operator γ0 is an isomorphism between Har(Ω) (the orthog-

onal of its null space) and H
1
2 (∂Ω) (its range).

If TN denotes the N -dimensional torus, we can consider the (Hilbert) space
H1(TN), defined as usual as the space of periodic functions defined on TN . Through-
out this article we will denote

µ0(h) := 〈h, 1〉, h ∈ H−1(TN ),

the mean – i.e., the moment of order 0 – of a distribution h.
Now, H1

0 ((0, 1)
N) is a closed subspace of H1(TN), hence we can consider its

orthogonal complement which, as above, turns out to be
(2.2)

Har(TN ) :=

{

u ∈ H1(TN) :

∫

TN

∇u∇vdx = 0 ∀v ∈ H1
0 (Ω)

}

=: H1(TN )⊖H1
0

(

(0, 1)N
)

.

Hence, using L2
(

(0, 1)N
)

as pivot space we can find the decomposition

(2.3) H−1(TN ) = H−1
(

(0, 1)N
)

⊕
(

Har(TN)
)′
,

where H−1
(

(0, 1)N
)

:= (H1
0 (0, 1)

N )′.
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Remark 2.1. In other words, Har(TN) is the space of periodic H1-functions that
are (weakly) harmonic, whereas Har

(

(0, 1)N
)

is the space of all (weakly) harmonic

H1-function on the unit cube. It is by definition clear that Har(TN) is a subspace
of Har

(

(0, 1)N
)

. In fact, it will in general be a proper subspace: For N = 1 we

e.g. find that Har(TN) and Har
(

(0, 1)N
)

are isomorphic to the spaces P0 and P1 of
polynomials of degree 0 and of degree less than or equal to 1, respectively.

Let us denote by Id the orthogonal projector ofH−1(TN) onto its closed subspace
H−1

(

(0, 1)N
)

and by Idm the restriction of Id to the annihilator

H := {w ∈ H−1(TN) : 〈w, v〉 = 0 ∀v ∈ Har(TN)}

of Har(TN), which is an isomorphism from H to H−1
(

(0, 1)N
)

.
Denote by

H
1
2 (∂TN) := {γ0v : v ∈ H1

(

TN
)

},

where γ0 is here the trace operator from H1
(

(0, 1)N
)

into H
1
2 (∂(0, 1)N ). The

space H
1
2 (∂TN) is smaller than H

1
2 (∂(0, 1)N) due to the periodicity assumption on

elements from H1
(

TN
)

. NeverthelessH
1
2 (∂TN) is a Hilbert space with the induced

norm
‖ϕ‖

H
1
2 (∂TN )

:= inf
v∈H1(TN)
ϕ=γ0v

‖v‖H1(TN ).

Lemma 2.2. For all ϕ ∈ H
1
2 (∂TN), there exists a unique Rϕ ∈ Har(TN) such

that
γ0Rϕ = ϕ on ∂(0, 1)N .

In other words, Har(TN) is isomorphic to H
1
2 (∂TN).

The existence of the right inverse of the trace operator, seen as an operator

from the space of weakly harmonic functions to the space of H
1
2 -functions over the

boundary of a domain, is classical - see e.g. the much more general discussion in [13,
§ 2.7] or the alternative approach in [10, Lemma 1.2].

Define

Ṽ := {f ∈ L2
(

(0, 1)N
)

: (f |g) = 0 ∀g ∈ Har(TN)},

V := {f ∈ L2
(

(0, 1)N
)

: (f |g) = 0 ∀g ∈ Har
(

(0, 1)N
)

},

that are clearly two closed subspaces of L2
(

(0, 1)N
)

. Indeed by introducing V0 and

V1 as the closure of Har(TN) and Har
(

(0, 1)N
)

in L2
(

(0, 1)N
)

, respectively,

V0 := Har(TN)L
2

V1 := Har ((0, 1)N)L
2

one sees that Ṽ and V are the L2-orthogonal complements of V0 and V1, respectively
– shortly:

Ṽ = V ⊥
0 and V = V ⊥

1 .

As Har(TN) ⊂ Har
(

(0, 1)N
)

and hence V0 ⊂ V1, we conclude that

V ⊂ Ṽ .

We are going to need below a certain characterization of V0. For that purpose,
we can notice that V0 is trivially included into the domain of ∆L2 – the part of ∆
in L2

(

(0, 1)N
)

–, i.e., into

D(∆L2) :=
{

v ∈ L2
(

(0, 1)N
)

: ∆v ∈ L2
(

(0, 1)N
)}

,

which is a Hilbert space in its own right whenever equipped with the natural graph
norm

v 7→
(

‖v‖2L2((0,1)N ) + ‖∆v‖2L2((0,1)N )

)
1
2

.
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It follows from the general theory of interior elliptic regularity that if u ∈ D(∆L2),
then in general one only has u ∈ H2

loc, hence a trace of u need not exist as an
element of L2

(

∂(0, 1)N
)

. However, we can give a meaning of its trace on each face
as a vector in a suitable space of distributions. Indeed following [11, Thm 1.5.3.4],
the space D([0, 1]N) – the set of the restriction of elements of D(RN ) to (0, 1)N – is
dense in D(∆L2) and for all i = 1, · · · , n, the trace operator

γi± : v 7→ vΓi±
,

which is certainly defined for v ∈ D([0, 1]N ), has a unique continuous extension

from D(∆L2) into (H̃
1
2 (Γi±))

′. We denote also this extension by γi±. Here and
below we are denoting by Γi± the faces of the hypercube, which are defined by

Γi− := {x ∈ [0, 1]N : xi = 0 and xj ∈ (0, 1), ∀j 6= i},

Γi+ := {x ∈ [0, 1]N : xi = 1 and xj ∈ (0, 1), ∀j 6= i}.

Furthermore H̃
1
2 (Γi±) denotes the subspace of elements w ∈ H

1
2 (Γi±) such that w̃,

its extension by zero outside Γi±, belongs to H
1
2

(

∂(0, 1)N
)

.

Definition 2.3. Let s > 1
2 . We call a function v ∈ D(∆L2)∪Hs

(

(0, 1)N
)

periodic
if it satisfies

(2.4) γi−v = Tiγi+v in
(

H̃
1
2 (Γi+)

)′

, ∀i = 1, · · · , n.

Here Ti :
(

H̃
1
2 (Γi+)

)′

→
(

H̃
1
2 (Γi−)

)′

is the operator defined by means of

〈Tiψ, ϕ〉 := 〈ψ, T ∗
i ϕ〉 ∀ψ ∈

(

H̃
1
2 (Γi+)

)′

, ϕ ∈ H̃
1
2 (Γi−),

with

(T ∗
i ϕ)(x1, · · · , 1, · · · , xn) := ϕ(x1, · · · , 0, · · · , xn) for a.e. (x1, · · · , 1, · · · , xn) ∈ Γi+.

Lemma 2.4. One has

V0 ⊂
{

v ∈ L2
(

(0, 1)N
)

: ∆v = 0 in D′
(

(0, 1)N
)

satisfying (2.4)
}

.

Proof. As Har(TN) ⊂ H1
(

TN
)

, any u ∈ Har(TN ) clearly satisfies (2.4). Since
there exists C > 0 such that

‖γi−v − Tiγi+v‖ ≤ C
(

‖v‖2L2((0,1)N ) + ‖∆v‖2L2((0,1)N )

)
1
2

, ∀v ∈ D (∆L2) ,

we directly conclude that any v ∈ V0 still satisfies (2.4). �

Remark 2.5. Note that in particular any function in H1(TN) is periodic in the
sense of the above definition, and by Lemma 2.4 so is any element of H1

(

TN
)

+V0,
too.

3. An equivalent inner product in H−1(TN )

Lemma 3.1. For all f ∈ H−1(TN ) there exists a unique uf ∈ H1
m(TN ) such that

div∇uf = f − µ0(f).

An equivalent inner product in H−1(TN ) is therefore given by

(∇uf |∇ug)L2(TN )N + µ0(f)µ0(ḡ), f, g ∈ H−1(TN).

In the proof we will need a closed subspace H1
m(TN) of H1

(

TN
)

defined by

H1
m(TN) :=

{

u ∈ H1(TN) :

∫

(0,1)N
u(x)dx = 0

}

.

By the Poincaré-type inequality

∃C > 0 : ‖u‖L2(TN ) ≤ C‖∇u‖L2(TN )N , ∀u ∈ H1
m(TN ),
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see e.g. [8, Prop. 5.44], which is based on the compactness of the embedding of
H1((0, 1)N ) into L2((0, 1)N ), cf. [11, Thm. 1.4.3.2]), we know that

u 7→ ‖∇u‖L2(TN )N

defines a norm on H1
m(TN) that is equivalent to the standard H1-norm.

Proof. Given f ∈ H−1(TN ), we set

f0 = f − 〈f, 1〉,

where here and below the duality bracket is between H−1(TN) and H1(TN). Hence
f0 ∈ H−1(TN ) and satisfies

〈f0, 1〉 = 0.

Now by the Theorem of Riesz–Fréchet there exists a unique solution uf ∈ H1
m(TN )

of

(3.1)

∫

(0,1)N
∇uf · ∇v̄dx = −〈f0, v〉 ∀v ∈ H1

m(TN).

Since 〈f0, 1〉 = 0, this identity remains valid on the whole H1(TN), namely

(3.2)

∫

(0,1)N
∇uf · ∇v̄dx = −〈f0, v〉 ∀v ∈ H1(TN ).

By choosing smooth enough test functions v, we see that

div∇uf = f0 in D′
(

(0, 1)N
)

,

or equivalently

(3.3) f = div∇uf + 〈f, 1〉.

According to (3.2), we have

‖∇uf‖
2
L2(TN )N = −〈f0, uf 〉 ≤ ‖f0‖H−1(TN )‖uf‖H1(TN ),

and by the equivalence of norm mentioned before, we get

‖∇uf‖L2(TN )N . ‖f0‖H−1(TN ) . ‖f‖H−1(TN ).

Conversely (3.2) is equivalent to

〈f, v〉 = −

∫

(0,1)N
∇uf · ∇v̄dx+ 〈f, 1〉〈v, 1〉 ∀v ∈ H1(TN).

Consequently

‖f‖H−1(TN ) = sup
‖v‖

H1(TN )=1

|〈f, v〉|

≤ sup
‖v‖

H1(TN )
=1

(∣

∣

∣

∣

∣

∫

(0,1)N
∇uf · ∇v̄dx

∣

∣

∣

∣

∣

+ |〈f, 1〉||〈v, 1〉|

)

. ‖∇uf‖L2(TN )N + |〈f, 1〉|.

This completely proves the assertion. �

Remark 3.2. Let us briefly compare the theory we have just developed with that
introduced in [16] in the one-dimensional setting. We define the “primitive” PNf ∈
L2(TN)N of any f ∈ H−1(TN ) by

PNf := ∇uf +
µ0(f)

N

(

~x−
~1

2

)

, ∀f ∈ H−1(TN)
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where ~x and ~12 denote the vector-valued functions

~x : (x1, · · · , xN ) 7→







x1
...
xN






and

~1

2
: (x1, · · · , xN ) 7→

1

2







1
...
1






,

respectively. From this expression, we see that

divPNf = f in D′
(

(0, 1)N
)

,

and

〈PNf, α〉 = 0 ∀α ∈ C
N .

It finally follows from Lemma 3.1 that the inner product

(f |g)H−1(TN ) = (PNf |PNg)L2(TN ) + µ0(f)µ0(ḡ),

induces a norm equivalent to the standard norm of H−1(TN).

Note further that if f ∈ L2(TN), then the solution uf ∈ H1
m(TN ) of (3.1) belongs

to H2(TN ) and therefore PNf belongs to H1(TN)N .

Definition 3.3. We define an operator L from H1
(

(0, 1)N
)

to H by

Lf := Id−1
m (∆f).

Observe that L is well-defined because ∆f ∈ H−1
(

(0, 1)N
)

for all f ∈ H1
(

(0, 1)N
)

.

Remark 3.4. If in particular f ∈ H1
(

TN
)

∩ H2
(

(0, 1)N
)

satisfying Neumann

boundary conditions, then Lf = ∆f ∈ L2 ((0, 1))
N

⊂ H−1
(

(0, 1)N
)

and hence

in particular Id−1
m (∆f) ∈ H−1

m

(

TN
)

. Hence there exists by Lemma 3.1 a unique

uLf ∈ H1
m(TN) such that

∆uLf = Lf − µ0(Lf),

that is,

∆uLf = Lf.

Because f − µ0(f) ∈ H1
m(TN), one can easily conjecture that

(3.4) uLf = f − µ0(f).

This is indeed the case, as
∫

(0,1)N
∇(f − µ0(f)) · ∇v̄ dx =

∫

(0,1)N
∇f · ∇v̄ dx

=

∫

∂(0,1)N

∂f

∂n
v̄dx−

∫

(0,1)N
∆f v̄ dx

= −

∫

(0,1)N
∆f v̄ dx, ∀v ∈ H1

m(TN),

by the Gauß–Green formula.

Remark 3.5. Note that our definition implies directly that

µ0(Lf) = 〈Id−1
m ∆f, 1〉 = 0, ∀f ∈ H1

(

(0, 1)N
)

,

and that Id−1
m ∆f = ∆f in D′

(

(0, 1)N
)

.

Theorem 3.6. The space V and hence Ṽ are densely and compactly embedded in
H.
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Proof. Denote by H̃ the closure of V in H . To prove that

H = H̃,

it then suffices to show that any f ∈ H orthogonal to V is zero. Let f ∈ H be
orthogonal to V , i.e.,

(f |g)H−1(TN ) = 0 ∀g ∈ V.

As µ0(f) = µ0(g) = 0, we deduce that
∫

(0,1)N
∇uf · ∇ūg dx = 0 ∀g ∈ V.

According to (3.1), we get equivalently

〈f, ug〉 = 0 ∀g ∈ V.

But we will show below that

(3.5) {ug : g ∈ V }+Har(TN) is dense in H1
(

TN
)

,

and therefore as f ∈ H , we deduce that f = 0 because

〈f, v〉 = 0 ∀v ∈ H1
(

TN
)

.

It remains to prove (3.5). For u ∈ H1
(

TN
)

, we have already noticed in Lemma 2.2

that u−R(γ0u) ∈ H1
0

(

(0, 1)N
)

, therefore there exists a sequence of ψn ∈ D
(

(0, 1)N
)

such that
ψn → u−R(γ0u) in H

1
0

(

(0, 1)N
)

as n→ ∞,

or equivalently

(3.6) ψn +R(γ0u) → u in H1
(

TN
)

as n→ ∞.

Now for ψ ∈ D
(

(0, 1)N
)

, we notice that Lψ = ∆ψ ∈ V , i.e., ∆ψ is orthogonal to
the (weakly) harmonic functions: In fact if v is a (weakly) harmonic function, then
exploiting the fact that ψ has compact support the Gauß–Green formula yields

∫

(0,1)N
∆ψv̄dx = −

∫

(0,1)N
∇ψ∇v̄dx = 0,

where the last identity follows by definition of (weakly) harmonic function. Fur-
thermore, u∆ψ = ψ − µ0(ψ) by Remark 3.4.

Applying these last remarks to (3.6) means that

u∆ψn
+ µ0(ψn) +R(γ0u) → u in H1

(

TN
)

as n→ ∞.

As µ0(ψn)+R(γ0u) ∈ Har(TN) and ∆ψn ∈ V , the density assertion in (3.5) follows.
Finally, compactness follow by the compactness of the embedding H1

(

TN
)

→֒

L2
(

(0, 1)N
)

. �

We are finally in the position to prove a formula that can be seen as an H−1-
analogue of the usual Gauß–Green-formula that hold with respect to the inner
product of L2.

Lemma 3.7. For all f ∈ H1
(

TN
)

and all h ∈ L2
(

(0, 1)N
)

one has

(3.7) (Id−1
m (∆f)|h)H−1(TN ) = −(f |h)L2(TN ) + (Rγ0f |h)L2(TN ).

Proof. For all f ∈ H1
(

TN
)

, as ∆f belongs to H−1
(

(0, 1)N
)

, we can set g =

Id−1
m (∆f) that satisfies µ0(g) = 0 and consequently for all h ∈ L2

(

(0, 1)N
)

one has

(3.8) (g|h)H−1(TN ) =

∫

(0,1)N
∇ug · PNh dx,

with

PNh = ∇uh +
µ0(h)

N

(

~x−
~1

2

)

.



8 DELIO MUGNOLO AND SERGE NICAISE

Owing to (3.1), we get
∫

(0,1)N
∇ug · ∇uh dx = −〈g, uh〉,

and by the definition of Id−1
m , we obtain

∫

(0,1)N
∇ug · ∇uh dx = −〈∆f, uh −Rγ0uh〉 = −〈∆(f −Rγ0f), uh −Rγ0uh〉.

Hence by the definition of ∆(f −Rγ0f) as element of H−1
(

(0, 1)N
)

, we get

∫

(0,1)N
∇ug · ∇uh dx = 〈∇(f −Rγ0f) · ∇(uh −Rγ0uh) dx

= −

∫

(0,1)N
(f −Rγ0f)∆(uh −Rγ0uh) dx.

As Rγ0uh is harmonic and ∆uh = h− µ0(h), we get
∫

(0,1)N
∇ug · ∇uh dx = −

∫

(0,1)N
(f −Rγ0f)(h− µ0(h)) dx(3.9)

= −

∫

(0,1)N
fh dx+

∫

(0,1)N
Rγ0fh dx+ µ0(h)

∫

(0,1)N
(f −Rγ0f) dx.

On the other hand, one sees that

∫

(0,1)N
∇ug ·

(

~x−
~1

2

)

dx =

∫

(0,1)N
∇ug · ∇v dx,

where v ∈ H1
(

TN
)

is defined by

v(x) :=
1

2

∥

∥

∥

∥

∥

~x−
~1

2

∥

∥

∥

∥

∥

2

L2

.

Hence (3.2) yields
∫

(0,1)N
∇ug ·

(

~x−
~1

2

)

dx = −〈g, v〉,

and again by definition of Id−1
m ,

∫

(0,1)N
∇ug ·

(

~x−
~1

2

)

dx = −〈∆f, v −Rγ0v〉 = −〈∆(f −Rγ0f), v −Rγ0v〉.

As before we then obtain

∫

(0,1)N
∇ug ·

(

~x−
~1

2

)

dx = −〈f −Rγ0f,∆(v −Rγ0v)〉 = −N〈f −Rγ0f, 1〉.

This identity and (3.9) in (3.8) yields the conclusion. �

Remark 3.8. Let us comment on the special case N = 1. Then for all h ∈ L2(0, 1)
P1h is equal to Ph defined as in [16, (2.5)]. Furthermore, also in view of Remark 2.1

we find that V and Ṽ agree with the two spaces with same name introduced in [16,
§ 2]. Therefore, the theory we develop in the present paper is a generalization of
that introduced in [16].
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4. Operators in the space of zero mean functions

In this section we want to determine precisely two relevant realizations of the
Laplacian in H , the space of those functionals that annihilate periodic and (weakly)
harmonic functions.

We are going to consider the sesquilinear form a defined by

(4.1) a(f, g) :=

∫

(0,1)N
f(x)g(x) dx,

with form domain either Ṽ or V . Since both Ṽ and V are dense in H by Lemma 3.6,
the form a with domain Ṽ or V is associated with a linear operator (Ã,D(Ã)) or
(A,D(A)), respectively, defined by

D(Ã) :=

{

f ∈ Ṽ : ∃g ∈ H : a(f, h) =

∫

(0,1)N
∇ug(x) · ∇ūh(x) dx ∀h ∈ Ṽ

}

,

Ãf := g

and

D(A) :=

{

f ∈ V : ∃g ∈ H : a(f, h) =

∫

(0,1)N
∇ug(x) · ∇ūh(x) dx ∀h ∈ V

}

,

Af := g.

Let us describe these two operators more precisely.

Theorem 4.1. One has

D(Ã) = Ṽ ∩ (H1
m(TN) + V0),

Ãf = −Id−1
m ∆f, ∀f ∈ D(Ã).

Observe that in view of Remark 2.5, each function in D(Ã) is weakly periodic.

Proof. Denote

K := Ṽ ∩ (H1
m(TN) + V0).

Let us first show the inclusion D(Ã) ⊂ K. Let f ∈ D(Ã). Then there exists
g = Af ∈ H−1

m (TN ) (because g ∈ H) such that
∫

(0,1)N
f(x)h(x) dx =

∫

(0,1)N
∇ug(x) · ∇ūh(x) dx, ∀h ∈ Ṽ .

But according to (3.1) we then have equivalently
∫

(0,1)N
f(x)h(x) dx = −〈h, ug〉 = −

∫

(0,1)N
h̄(x)ug(x) dx, ∀h ∈ Ṽ ,

because h belongs to L2
(

(0, 1)N
)

. This means equivalently that f+ug is orthogonal

(in the L2 sense) to Ṽ , i.e., f + ug belongs to V0. As elements of V0 are harmonic
functions, we deduce that

∆(f + ug) = 0 in D′
(

(0, 1)N
)

,

and by (3.3), we find

∆f = −g in D′
(

(0, 1)N
)

.

This shows that ∆f belongs to H−1
(

(0, 1)N
)

and reminding that g belongs to H ,
we get further

g = −Id−1
m (∆f).

Similarly as element of V0 are weakly periodic and ug ∈ H1
(

TN
)

(hence weakly
periodic), we deduce that f is weakly periodic.
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Let us now prove the converse inclusion. Let f ∈ K then g = −Id−1
m (∆f) belongs

to H and by Lemma 3.7, we get for any h ∈ Ṽ

(g|h)H = (f |h)L2 ,

as (Rγ0f |h)L2(TN ) = 0. This shows that f ∈ D(Ã) and concludes the proof. �

Theorem 4.2. One has

D(A) = V ∩ (H1
m(TN) + V1),

Af = −Id−1
m ∆f, ∀f ∈ D(A).

Proof. Denote

K := V ∩ (H1
m(TN) + V1).

Let us first show the inclusion D(A0) ⊂ K. Let f ∈ D(A0). Then there exists
g =: A0f ∈ H ≡ H−1

m (TN ) such that
∫

(0,1)N
f(x)h(x) dx =

∫

(0,1)N
∇ug(x) · ∇ūh(x) dx, ∀h ∈ V.

But according to (3.1) we then have equivalently
∫

(0,1)N
f(x)h(x) dx = −〈h, ug〉 = −

∫

(0,1)N
h̄(x)ug(x) dx, ∀h ∈ V,

because h belongs to L2
(

(0, 1)N
)

. This means equivalently that f+ug is orthogonal

(in the L2 sense) to V , i.e., f + ug belongs to V1. As elements of V1 are harmonic
functions, we deduce that

∆(f + ug) = 0 in D′
(

(0, 1)N
)

,

and by (3.3), we find

∆f = −g in D′
(

(0, 1)N
)

.

This shows that ∆f belongs to H−1
(

(0, 1)N
)

and reminding that g belongs to H ,
we get further

g = −Id−1
m (∆f).

This shows the desired inclusion because by definition D(A0) ⊂ V .
The converse inclusion is proved as in the previous Theorem by using Lemma

3.7. �

Remark 4.3. If one wants to study the Laplacian acting on functions on a more
general domain Ω ⊂ RN , one may look for a Lipschitz-homeomorphism mapping
(0, 1)N into Ω. In this way, however, also the Laplacian on (0, 1)N is transformed
into a different elliptic operator on Ω. The following is a possibly more convenient
approach: Take a “partition” Γ = {Γ1, . . . ,Γ2N} of ∂Ω such that

• each set Γi ⊂ ∂Ω is open,
• the sets Γi are pairwise disjoint,
• the union of their closures covers ∂Ω, and
• such that each Γi is bijective (say, via some θi) to ΓN+i for all i = 1, . . . , N .

Define

H1
Γ(Ω) := {u ∈ H1((Ω)) : γiu = γN+iu ◦ θi on Γi, ∀i = 1, . . . , N},

where γi is the trace operator on Γi. In this way, we can regard in a natural way
the space H1

(

TN
)

as the space H1
Γ

(

(0, 1)N
)

with the partition Γ made of faces of
the hypercube, and deduce that all the constructions of this paper can be extended
to consider realizations (with linear conditions on the moments of order 0 and 1) of
the Laplacians acting on functions over general domains Ω.
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5. Well-posedness of the parabolic problem in the space of zero

mean functions

In the previous section we have showed that the densely defined sesquilinear,
symmetric, form a is bounded and coercive both on Ṽ and whenever restricted
to V . Hence, from the general theory of forms we deduce that the associated
operators Ã and A generate a cosine operator function on H . Since we are especially
interested in diffusion-type problems, we want to mention explicitly the following
immediate consequence, where we are using the compact embedding of H1

(

(0, 1)N
)

in L2
(

(0, 1)N
)

.

Proposition 5.1. Both operators −A and −Ã generate analytic, contractive, ex-
ponentially stable semigroups.

Hence, we can say that the abstract Cauchy problems associated with A and Ã
are well-posed. However, the challenge is now to understand just which are these
abstract Cauchy problem. The characterization of D(A) and D(Ã) in Theorem 4.1
and Theorem 4.2 is not very satisfying – and correspondingly poor is the description
of the differential equations effectively solved by the semigroups. Yet, we are able
to deduce well-posedness of the classical heat equation in the following weak sense.

Theorem 5.2. Let u0 ∈ D(A). Then the function

t 7→ u(t, ·) := e−tAu0(·)

solves
∂u

∂t
(t, x) = ∆u(t, x), u(0) = u0,

with conditions

(5.1)

∫

(0,1)N
u(t, y)h̄(y)dy = 0 ∀h ∈ Har

(

(0, 1)N
)

, t > 0,

in the sense of distributions, i.e., for all t > 0 (5.1) is satisfied and moreover
〈

∂u

∂t
(t, ·)−∆u(t, ·), g

〉

H−H′

= 0 for all g ∈ H1
0

(

(0, 1)N
)

.

Proof. It suffices to take into account Theorem 4.2 and recall that the analytic
semigroup (e−tA)t≥0 maps u0 into the domain of D(A) for all t > 0, and moreover
u solves

〈

∂u

∂t
(t, ·)− Id−1

m ∆u(t, ·), g

〉

H−H′

for all g ∈ H ′,

Now, Har(TN) is a closed subspace of H1
(

TN
)

and H is its annihilator, we can
deduce that there is an isomorphism

J : H1
(

TN
)

/Har(TN) → H ′,

given by

〈ϕ, J[h]〉H−H′ := 〈ϕ, h〉H−1(TN )−H1(TN ), ∀ϕ ∈ H.

Then we have that
〈

∂u

∂t
(t, ·)− Id−1

m ∆u(t, ·), g

〉

H−H′

= 0 for all g ∈ H1
(

TN
)

,

and in particular
〈

∂u

∂t
(t, ·)− Id−1

m ∆u(t, ·), g

〉

H−H′

= 0 for all g ∈ D
(

(0, 1)N
)

.

Now, the assertion follows from Remark 3.5. �

Similarly, exploiting instead Theorem 4.1, we can obtain the following.
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Theorem 5.3. Let u0 ∈ D(Ã). Then the function

t 7→ u(t, ·) := e−tÃu0(·)

solves
∂u

∂t
(t, x) = ∆u(t, x), t > 0, u(0) = u0,

in the sense of distributions, it is periodic in the sense of Definition 2.3 and satisfies
conditions

(5.2)

∫

(0,1)N
u(t, y)h̄(y)dy = 0 ∀h ∈ Har(TN), t > 0.

Observe that in particular the constant functions belong to Har(TN), and there-
fore H contains all mean zero functions – i.e., all functions with vanishing moment
of order 0. Thus, if f ∈ Ṽ (and in particular if f ∈ D(Ã)), then

∫

(0,1)N
f(x)dx = 0.

Furthermore, the functions gi : (0, 1)
N ∋ x = (x1, . . . , xn) 7→ xi ∈ (0, 1) belong to

Har
(

(0, 1)N
)

for all i = 1, . . . , N . Hence: If additionally f ∈ V (and in particular
if f ∈ D(A)), then

∫

(0,1)N
f(x)dx =

∫

(0,1)N
xif(x)dx = 0, i = 1, . . . , N.

In particular, for all t > 0 both (e−tA)t≥0 and (e−tÃ)t≥0 map any u0 ∈ H into
a function that has mean zero. Furthermore (e−tA)t≥0 maps any u0 ∈ H into a
function that has vanishing first linear moments along each axis, as such functions
are referred to in [19, § 9.6.5].

6. L2-results and interplays with extension theory

It is well-known that if an operator that comes from a sesquilinear form generates
an analytic semigroup, then so does its part in the form domain. In this conclusive
section we will devote our attention in particular to the part in V of the operator
A described in Theorem 4.2. To begin with, we recall a celebrated result due to
M. Krein: Each closed, densely defined, symmetric, positive definite operator has
one smallest self-adjoint positive definite extension1. This extension is nowadays
commonly called the Krein–von Neumann extension – cf. [2] for a brief introduction
to this subject including the connection with the so-called “buckling problem” of
mathematical physics, or [3] and [18, Chapter 13] for very comprehensive overviews.

It turns out that such an extension can be also characterized as follows – this is
but a special instance of [3, Thm. 2.7].

Lemma 6.1. Let S be a closed, densely defined, symmetric operator on a Hilbert
space H = L2(Ω) such that S − ǫ Id is positive definite for some ǫ > 0. Among all
its self-adjoint extensions there exists exactly one whose domain contains the null
space of S∗: This is precisely the Krein–von Neumann extension.

Now, let S be the Laplacian on L2(TN ) defined on test functions only,

Sf := −∆f, f ∈ D((0, 1)N )

Then, S is clearly symmetric (but of course not self-adjoint) and negative definite,
and in fact it follows from the Poincaré inequality that S − ǫ Id is positive definite
for some ǫ > 0 (for example, if one takes ǫ to be the lowest eigenvalue of the

1 In the sense of forms: Let a1, a2 be two densely defined symmetric bounded elliptic forms
with associated operators A1, A2. If their form domains D(a1), D(a2) satisfy D(a2) ⊂ D(a1) and
a1(x, x) ≤ a2(x, x) for all x ∈ D(a2), then A1 is said to be smaller than A2.
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Laplacian with Dirichlet boundary conditions). It follows from our construction
that the domain of the part AV of A in the form domain V , i.e.,

D(AV ) = {v ∈ V : Av ∈ V }

is orthogonal to the null space of S∗ (that is, to the space of (weakly) harmonic
functions.

Let AK be the extension of AV defined by

D(AK) = D(AV )⊕ V1,

and
AKv = AV v0, ∀v = v0 ⊕ v1 ∈ D(AV )⊕ V1.

Hence AK is a selfadjoint operator in L2((0, 1)N ), and therefore −AK is exactly the
Krein–von Neumann extension of S.

We thus obtain the following alternative characterization of the Laplacian under
conditions on the moments of order 0 and 1.

Theorem 6.2. The L2-realization −AV of the Laplacian agrees with the reduced
Krein–von Neumann Laplacian as introduced in [3, § 2]. In particular,

AV f = ∆f, ∀f ∈ D(AV ),

(and not only AV f = Id−1
m ∆f !).

Furthermore, because Ω = TN is a bounded Lipschitz domain (hence a quasi-
convex domain in the sense of [3, § 5.1]) one can apply the general theory surveyed
in [3] and in particular by [3, Thm 6.5] −AK is precisely the Laplacian with bound-
ary conditions given by

∂u

∂ν
= DNu|∂Ω on ∂Ω,

where DN is the Dirichlet-to-Neumann operator associated with ∆ on ∂Ω, defined
in a suitably weak sense, see [3, § 5–6].

Remark 6.3. In case of N = 1 we recover in particular the boundary conditions

u′(1) = u′(0) = u(1)− u(0) :

This in accordance with [16, Cor. 3.10] and also with the setting of [4]. The same
boundary conditions are also referred to as transparent conditions in numerical anal-
ysis and δ′-interaction in mathematical physics, cf. respectively [12, 9] for an inter-
pretation of these conditions and a list of related references. While the Krein–von
Neumann extension is already known to have interesting connections with elasticity
theory, cf. [3], the observation that the associated heat equation enjoys conservation
of moments of order 0 and 1 seems to be new in the literature.
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