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LAMAV, Université de Valenciennes, 59313 Valenciennes, France

Pavel Saponov†

National Research University Higher School of Economics,

International Laboratory of Representation Theory and Mathematical Physics

20 Myasnitskaya Ulitsa, Moscow 101000, Russia

&

IHEP, Division of Theoretical Physics, 142281 Protvino, Russia

April 12, 2018

Abstract

The aim of the paper is twofold. First, we introduce analogs of (partial) derivatives on
certain noncommutative algebras, including some enveloping algebras and their ”braided
counterparts” — the so-called modified Reflection Equation algebras. With the use of the
mentioned derivatives we construct an analog of the de Rham complex on these algebras.
Second, we discuss deformation property of some quantum algebras and show that contrary
to a commonly held view, in the so-called q-Witt algebra there is no analog of the PBW
property. In this connection, we discuss different forms of the Jacobi condition related to
quadratic-linear algebras.

AMS Mathematics Subject Classification, 2010: 46L65, 46L87, 81T75
Key words: Jackson derivative, q-Witt algebra, Jackson sl(2) algebra, Jacobi condition,

deformation property, (modified) Reflection Equation algebra

1 Introduction

In our recent publications [GPS2, GS3, GS4] we introduced the notion of partial derivatives
on some noncommutative (NC) algebras, in particular, on the enveloping algebras of the Lie
algebras gl(m) and their super- and braided (see below) analogs. These partial derivatives differ
from their classical counterparts by the form of the Leibniz rule.

In this connection a natural question arises: given a NC algebra A, what operators acting on
this algebra can be considered as an appropriate analogs of partial derivatives? This question
is pertinent if A is a deformation (quantization) of the symmetric algebra Sym(V ) of a vector
space V or its super or braided analog. In this paper we give an answer to this question for the
enveloping algebras of some Lie algebras.
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†Pavel.Saponov@ihep.ru
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Note that the answer depends on a given Lie algebra. Nevertheless, once such partial deriva-
tives are introduced, we are able to define an analog of the de Rham complex on the corre-
sponding enveloping algebra. Compared with all known approaches to the problem of defining
such a complex, our method leads to objects possessing good deformation property1. However,
the terms of our complex are endowed with one-sided A-module structures, whereas using the
classical Leibniz rule for the de Rham operator requires a two-sided A-module structure. Also,
we define the notion of the Weyl algebra W(U(g)) generated by the enveloping algebra of a
given Lie algebra and the corresponding partial derivatives and give some example of these
Weyl algebras.

Besides, we generalize all considered objects (partial derivatives, Weyl algebra, de Rham
complex) to the Reflection Equation algebra and its modified version. This algebra and all
related objects are called braided since they arise from braidings (see section 4). For a more
precise meaning of this term the reader is referred to [GS3]. The explicit construction of the
objects mentioned above is one of the purposes of the present paper.

From the other side, certain deformations of the usual derivative are known for a long time,
for instance, the q-derivative (also called the Jackson derivative) defined by

∂q(f(t)) =
f(qt)− f(t)

t(q − 1)
(1.1)

or the difference operator

∂~(f(t)) =
f(t+ ~)− f(t)

~
(1.2)

(called below the ~-derivative) or their slight modifications. It is tempting to use them in order
to introduce analogs of algebras whose construction is based on the usual derivative. The most
known examples are the q-Witt and q-Virasoro algebras.

The other purpose of the paper is to study deformation property of the enveloping algebra
of the q-Witt algebra. We show that contrary to the claim of [H], the PBW property fails in
this enveloping algebra. We demonstrate it in the section 5, as well as a similar claim for the
enveloping algebra of the ~-Witt algebra, constructed with the use of the ~-derivative instead
of the usual one. Our reasoning is based on the paper [PP] where a version of the Jacobi
condition useful for dealing with quadratic algebras and their quadratic-linear deformations is
exhibited2. This condition is necessary for the PBW property and since it is not satisfied for
the aforementioned algebras, we arrive to our conclusion.

In this connection we discuss other forms of the Jacobi condition which are useful for gen-
eralizing some other objects and operators associated with Lie algebras, namely, the Chevalley-
Eilenberg complex and the adjoint representation. It is worth noticing that in general these
forms of the Jacobi condition are not equivalent and each of them plays its own role in the
theory of quadratic(-linear) algebras.

The paper is organized as follows. In the next section we compare different ways of as-
sociating a differential algebra with the enveloping algebra of gl(m). In section 3 we discuss
a generalization of this construction onto the enveloping algebras of some other Lie algebras.
In section 4 we extend our construction to the Reflection Equation algebra. Here, the central
problem consists in a convenient definition of the algebra generated by the differentials of the

1For finitely generated quadratic-linear(-constant) algebras (in particular, enveloping ones) we deal with, this
property means that an analog of the PBW theorem is valid for them and homogeneous components of the
corresponding quadratic algebra have stable dimensions (at least for a generic value of the parameter). Note that
nowadays the term ”PBW property” is often used as a synonym of our ”good deformation property”. We prefer
to reserve this term for a deformation of quadratic algebras by linear(-constant) terms.

2A version of this construction covering quadratic-linear-constant deformations of quadratic algebras was
considered in [BG].
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generators of the initial algebra such that the corresponding de Rham operator d meets the usual
property d2 = 0. In section 5 we consider the aforementioned versions of the Witt algebra and
show that the PBW property fails in their enveloping algebras. We complete the paper (section
6) with a discussion on different forms of the Jacobi condition related to different generalizations
of the Lie algebra notion.

Acknowledgement. The work of P.S. was supported by The National Research University
Higher School of Economics Academic Fund Program in 2014–2015, research grant No 14-01-
0173.

2 Partial derivatives on U(gl(m)): different approaches

In what follows we deal with different deformations of the symmetric algebra Sym(g), where
g is a Lie algebra. Our main example is g = gl(m)~, where the subscribe ~ means that the
parameter ~ is introduced as a multiplier in the gl(m) Lie bracket. As usual, we fix a basis {nj

i},
1 ≤ i, j ≤ m, in gl(m) and the Lie brackets of the Lie algebra gl(m)~ read

[nj
i , n

l
k] = ~(nl

iδ
j
k − nj

kδ
j
i ), 1 ≤ i, j, k, l,≤ m.

In each homogenous component of the algebra Sym(gl(m)) we fix a basis consisting of sym-
metric elements, i.e. those invariant with respect to the action of the symmetric group. Denote
{eβ} the corresponding basis of the whole algebra Sym(gl(m)). Any element eβ is a polynomial
in the generators of the algebra Sym(gl(m)). A similar basis in the filtered quadratic-linear
algebra U(gl(m)~) will be denoted {êβ}. The element êβ can be obtained by replacing the
generators of Sym(gl(m)) in the polynomial eβ by the corresponding generators of the algebra
U(gl(m)~).

Now, consider a linear map

α : Sym(gl(m)) → U(gl(m)~)

defined on the above bases as follows
α(eβ) = êβ .

This map is the central ingredient of the Weyl quantization method.
Using this map we can pull forward any operator Q : Sym(gl(m)) → Sym(gl(m)) to that

Qα : U(gl(m)~) → U(gl(m)~) as follows

Qα = α ◦ Q ◦ α−1.

In particular, we can pull forward partial derivatives from the algebra Sym(gl(m)) to that
U(gl(m)~) and consider them as an appropriate noncommutative analog of the usual partial
derivatives. And visa versa, any operator defined in the algebra U(gl(m)~) can be pulled back
to Sym(gl(m)). For instance, the product in the latter algebra being pulled back to the former
algebra is called ⋆-product (induced from U(gl(m)~). This product is often used in a quantization
of dynamical models (see [K]). In such models (for example, the Schrodinger one) the kinetic
part composed of momenta is classical but the usual product of coordinate functions is replaced
by the ⋆-product.

Equivalently, these models can be treated in terms of the algebra U(gl(m)~) but then the
partial derivatives (momenta) of the kinetic part should be replaced by their images with respect
to the map α. In fact, this method of defining the partial derivatives on the algebra U(gl(m)~)
can be presented as follows. One realizes a given element of the algebra U(gl(m)~) in a symmetric
form and employs the usual Leibniz rule to this element.
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Note that other methods of defining the map α (for instance, the Wick one) also can be
used. However, the way exhibited above (in fact, the Weyl quantization method) gives rise to a
GL(m)-covariant map.

The second method of defining the partial derivatives on the algebra U(gl(m)~) consists in
modifying the Leibnitz rule. The modified Leibniz rule can be realized via the coproduct defined
on the partial derivatives as follows3

∆(∂j
i ) = ∂j

i ⊗ 1 + 1⊗ ∂j
i + ~

∑

k

∂j
k ⊗ ∂k

i . (2.1)

Hereafter, we use the notation ∂j
i = ∂ni

j
for the partial derivative in the element ni

j. Thus, we

set by definition that
∂j
i (n

l
k) = δliδ

j
k, (2.2)

i.e. this action is nothing but the pairing of the dual bases {nj
i} and {∂j

i }. Besides, we naturally
assume the derivatives to be linear operators killing elements of the ground field K which is
assumed to be C or R depending on the context. Then, using the coproduct (2.1), one can
extend the action of the derivatives on polynomials in the generators.

The second form of the Leibniz rule suggested in [GS3] consists in the following. Consider an
associative product nj

i ◦nl
k = δjkn

l
i in the Lie algebra gl(m). Note that [nj

i , n
l
k] = nj

i ◦nl
k−nl

k ◦n
j
i .

Then, in addition to (2.2), the action of a derivative on a quadratic monomial in generators is
defined as follows:

∂j
i (n

b
a n

d
c) = ∂j

i (n
b
a)n

d
c + nb

a ∂
j
i (n

d
c) + ~ ∂j

i (n
b
a ◦ nd

c).

In general, the action of a derivative ∂j
i on a p-th order monomial nj1

i1
...n

jp
ip

gives rise to a sum of
monomials whose order varies from zero (a constant term) to p− 1. In this sum the (p− k)-th
order component (1 ≤ k ≤ p) is composed from all monomials, each of them being obtained by
the pairing of ∂j

i and the ◦-product of a subset of k elements from the initial monomial. Besides,
the sum of all such (p− k)-th order monomials has a multiplier ~

k−1. We illustrate this rule by
an example of a third order monomial:

∂j
i (n

b
a n

d
c n

l
k) = ∂j

i (n
b
a)n

d
c n

l
k + nb

a ∂
j
i (n

d
c)n

l
k + nb

a n
d
c ∂

j
i (n

l
k)

+ ~

(

∂j
i (n

b
a ◦ nd

c)n
l
k + ∂j

i (n
b
a ◦ nl

k)n
d
c + nb

a ∂
j
i (n

d
c ◦ nl

k)
)

+ ~
2∂j

i (n
b
a ◦ nd

c ◦ nl
k).

Observe that the partial derivatives commute with each other. Denote D the unital algebra
generated by the partial derivatives. It becomes a bi-algebra being equipped with the coproduct
defined on the generators by formula (2.1) and the counit ε : D → K defined in the usual way:
it kills all generators ∂j

i and maps 1D (the unit of D) into the unit of the field.
The above coproduct allows one to introduce the so-called permutation relations between

the partial derivatives and elements of the algebra U = U(gl(m)~) by the following rule

∂j
i ⊗ nl

k = (∂j
i )1 ⊲ n

l
k ⊗ (∂j

i )2, where ∆(∂j
i ) = (∂j

i )1 ⊗ (∂j
i )2

in Sweedler’s notation. Also, the notation ⊲ stands for the action of an operator on an element.
Explicitly these permutation relations read:

∂j
i ⊗ nl

k − nl
k ⊗ ∂j

i = δliδ
j
k 1U ⊗ 1D + ~ 1U ⊗ (∂l

iδ
j
k − ∂j

kδ
l
i).

These permutation relations can be presented in a matrix form as follows

D1 P N1 P − P N1 P D1 = P + ~(D1 P − P D1). (2.3)

3This form of the Leibniz rule was found by S.Meljanac and Z.Škoda.
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Here D = ‖∂j
i ‖ and N = ‖nj

i‖ are the matrices composed of the elements ∂j
i and nj

i respectively
(the low index labels the lines) and A1 = A⊗ 1 for any matrix A. Also, P stands for the matrix
of the usual flip. Besides, we omit the factors 1U , 1D and the sign ⊗.

The algebra generated by two subalgebras U(gl(m)~) and D, equipped with the permutation
relations (2.3), is called the Weyl algebra and is denoted W(U(gl(m)~). Note that for ~ = 0 we
get the usual Weyl algebra generated by Sym(gl(m)) and the usual partial derivatives in the
generators4.

The above permutation relations have been obtained via a passage to a limit q → 1 in
the permutation relations for the modified Reflection Equation algebra under assumption that
the Hecke symmetry is a deformation of the usual flip. In general, the permutation relations
themselves can be used for introducing partial derivatives. In order to define the action of a
derivative ∂j

i on an element a ∈ U(gl(m)~) one proceeds as follows. One permutes the factors

in the product ∂j
i ⊗ a by means of the permutation relations and applies the counit to the right

factor of the final element belonging to the tensor product U(gl(m)~)⊗D.
Concluding this section, we resume that there are three ways of defining the partial deriva-

tives on the algebra U(gl(m)~). One of them is based on using the coproduct (2.1), another one
uses the product ◦ in the algebra U(gl(m)~). The third way is based on the related permutation
relations. Similar ways also exist on the enveloping algebras of the Lie super-algebras gl(m|n)~
and their ”braided” analogs related to involutive braidings (see [GS3]). In section 4 we consider
similar algebras related to non-involutive (namely, Hecke type) braidings. For them the only
way based on permutation relations is known.

3 Partial derivatives on other enveloping algebras

The methods of defining partial derivatives on the algebra U(gl(m)~) should be modified for
other enveloping algebras. Consider some examples.

Let gh be a Lie subalgebra of the Lie algebra gl(m)~. In general, the above method of defining
the partial derivatives via permutation relations fails since in the permutation relations some
extra-terms appear which do not belong to the subalgebra gh. The same is true for the coproduct
(2.1). Nevertheless, the partial derivatives in elements of gh are well defined as operators. To
show this, we fix a complementary subspace W to gh that is gl(m)~ = gh ⊕W as vector spaces.
Then we chose a basis in the subalgebra gh and extend it to the basis in gl(m)~ by fixing a basis
in W . This new basis of the space gl(m) is subordinate to the direct sum gh ⊕W . In the space
generated by the partial derivatives we pass to the dual basis.

Let xi be an element of the chosen basis of gh. Then, on applying the derivative ∂xi to
a monomial composed of elements from gh we get a polynomial also possessing this property
though in the coproduct (2.1) presented in the new basis of gl(m) certain external derivatives
(i.e. derivatives in elements from W ) enter.

Now, consider some subalgebras of the Lie algebra gl(2)~ or more precisely, of its compact
form u(2)~. On fixing in the latter algebra the standard basis {t, x, y, z} such that

[x, y] = ~z, [y, z] = ~x, [z, x] = ~y, [t, x] = [t, y] = [t, z] = 0,

4Physicists prefer to call this algebra the Heisenberg one.
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and taking in the dual space the basis ∂t, ∂x, ∂y, ∂z, we get the following permutation relations

∂t t− t ∂t = 1 + ~

2 ∂
t ∂t x− x ∂t = −~

2 ∂
x ∂t y − y ∂t = −~

2 ∂
y ∂t z − z ∂t = −~

2 ∂
z

∂x t− t ∂x = ~

2 ∂
x ∂x x− x ∂x = 1 + ~

2 ∂
t ∂x y − y ∂x = ~

2 ∂
z ∂x z − z ∂x = −~

2 ∂
y

∂y t− t ∂y = ~

2 ∂
y ∂y x− x ∂y = −~

2 ∂
z ∂y y − y ∂y = 1 + ~

2 ∂
t ∂y z − z ∂y = ~

2 ∂
x

∂z t− t ∂z = ~

2 ∂
z ∂z x− x ∂z = ~

2 ∂
y ∂z y − y ∂z = −~

2 ∂
x ∂z z − z ∂z = 1 + ~

2 ∂
t.

First, consider the Lie subalgebra su(2)~ ⊂ u(2)~. As follows from [GPS2] for any polynomial
of the form f(x, y, z) = f1(x) f2(y) f3(z) the action of the partial derivative ∂x is defined by

∂x(f) = 2~−1 (B(f1)A(f2)A(f3) +A(f1)B(f2)B(f3)),

where

A(f(v)) =
1

2

(

f(v − i ~/2) + f(v + i ~/2)
)

, B(f(v)) =
i

2

(

f(v − i ~/2) − f(v + i ~/2)
)

.

Note that though the quantity i =
√
−1 enters these formulae, the result is real provided f has

real coefficients and ~ ∈ R. Similar formulae are valid for the derivatives ∂y, ∂z . Consequently,
we have

∂x(f), ∂y(f), ∂z(f) ∈ U(su(2)~).

Definition 1 Let g be a Lie algebra and U(g) its enveloping algebra. Choose a basis {xi},
1 ≤ i ≤ m in g, and denote by cki,j the structure constants of g in this basis. Introduce an

algebraW(U(g)) generated by U(g) and a commutative algebra D with generators ∂l, 1 ≤ l ≤ m,
subject to the permutation relations

[∂i, xj ] = −[xj , ∂
i] = bij,k ∂

k + δij . (3.1)

We call the algebra W(U(g)) the Weyl algebra if the Jacobi identity is valid for the bracket

[ , ] : ∧2(W ) → W ⊕ K, W = g⊕ span(∂i),

where the above bracket is defined by the initial Lie bracket on g, by the trivial bracket on D
and by the bracket (3.1) on span(∂i)⊗ g and on g⊗ span(∂i).

Note that the Jacobi identity must be adapted to the case when the image of the bracket
belongs to W ⊕ K. In fact, we have only to satisfy the relations

[∂p, [xi, xj ]] = [[∂p, xi], xj ]− [[∂p, xj ], xi],

or in terms of the structure constants

cki,jb
p
k,l = bpi,kb

k
j,l − bpj,kb

k
i,l, cpi,j = bpi,j − bpj,i.

Observe that in virtue of the PBW theorem the graded algebra GrW(U(g)) is canonically
isomorphic to the commutative algebra generated by the elements xi and ∂j.

It is straightforward checking that the algebra W(U(u(2)~)) is a Weyl algebra in the sense
of the above definition. However, an attempt to define a similar Weyl algebra for the enveloping
algebra U(su(2)~) as a quotient ofW(U(u(2)~)) fails. Indeed, it suffices to check that the relation

[∂x, [x, y]] = [[∂x, x], y]− [[∂x, y], y]

6



fails, if we assume that ∂t = 0. This example shows that in order to define the partial derivatives
on an enveloping algebra we have, in general, to consider the Weyl algebra related to a larger
Lie algebra.

It is not the case for the subalgebra g ⊂ u(2)~ generated by the elements t and x. This Lie
algebra is commutative. So, its enveloping algebra coincides with Sym(g) and the corresponding
partial derivatives and the Weyl algebra can be defined in the classical way. However, considering
the subalgebra ofW(U(u(2)~)) generated by the elements t, x, ∂t, ∂x we get another Weyl algebra
corresponding to the same Lie algebra g. Thus, we get two different Weyl algebras related to
the algebra g.

In general, for the two-dimensional commutative Lie algebra the permutation relations must
be of the form

∂tt− t∂t = 1 + (a1∂
t + b1∂

x), ∂tx− x∂t = (a2∂
t + b2∂

x),

∂xt− t∂x = (c1∂
t + d1∂

x), ∂xx− x∂x = 1 + (c2∂
t + d2∂

x).

It would be interesting to classify all possible families of constants a1, . . . , d2 giving rise to the
Weyl algebras on the two-dimensional commutative Lie algebra (as well as on two-dimensional
noncommutative one). Two examples above correspond to the following families of the constants.
In the classical case all constants are trivial. In the other one nontrivial constants are: a1 =
d1 = −b2 = c2 =

~

2 .
We get a little bit more general Weyl algebra by putting

b1 = c1 = a2 = 0, a1 = d1 = c2

(here we do not impose an restriction on b2).
In conclusion, we want to mention the following fact. Though the way of introducing the

partial derivatives on an enveloping algebra via permutation relations is not universal, it is more
general than the way based on the coproduct defined on the algebra D. This observation is also
valid for braided algebras considered in the next section. We have not succeeded in finding a
coproduct corresponding to the permutation relations (4.7).

4 Braided Weyl algebras and related de Rham complex

In this section we consider a braided analog of the enveloping algebra U(gl(m)~) and differential
calculus on it. By braided analog we mean the so-called Reflection Equation (RE) algebra in its
modified form. Let us recall the definition of this algebra.

Let V be a vector space over the ground field K and R : V ⊗2 → V ⊗2 be a linear invertible
operator satisfying the braid relation

(R ⊗ I)(I ⊗R)(R ⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R)

(in an equivalent form it is also called the quantum Yang-Baxter equation). Such an operator R
is called a braiding. If a braiding R is subject to an additional condition

(R− q I)(R+ q−1 I) = 0, q ∈ K,

it is called a Hecke symmetry provided q 6= 1 and an involutive symmetry provided q = 1.
By modified Reflection Equation algebra we mean a unital algebra generated by elements

nj
i , 1 ≤ i, j ≤ m, subject to the system of relations

RN1RN1 −N1RN1R = ~ (RN1 −N1R), ~ ∈ K (4.1)

7



where N = ‖nj
i‖ and N1 = N ⊗ I. We omit the term ”modified” if ~ = 0. The algebra (4.1) will

be denoted N (q, ~) provided ~ 6= 0 or N (q) provided ~ = 0.
Below we assume R to be a skew-invertible Hecke symmetry. This means that there exists

an operator Ψ : V ⊗2 → V ⊗2 such that

Tr2R12Ψ23 = Tr2Ψ12R23 = P13, (4.2)

where Tr stands for the usual trace, and indices label the spaces where the operators act. In
what follows we shall need the operators

B = Tr1Ψ12, C = Tr2Ψ12. (4.3)

As a direct consequence of the definition of the operator Ψ we have

Tr1B1R12 = I, Tr2C2R12 = I. (4.4)

The operator B is supposed to be invertible. Then, it can be shown that

B · C = q−2mI, TrB = TrC = q−mmq, mq =
qm − q−m

q − q−1
. (4.5)

Note, that the algebra (4.1) is filtered. We call it the quadratic-linear one since it is defined
by the quadratic-linear relations. We treat this algebra as a braided analog of the enveloping
algebra U(gl(m)~). Indeed, it is possible to define a braided Lie bracket such that the modified
RE algebra has the sense of the enveloping algebra of the corresponding braided Lie algebra (see
[GS1]). Furthermore, the algebra N (q, ~) has the following properties (see [GPS1]):

1. If R comes from the quantum group (QG) Uq(sl(m)), the algebra N (q, ~) has a good
deformation property. This means that the homogeneous components N k(q), k = 0, 1, 2, . . ., of
the algebra N (q) have the classical dimensions, i.e.

dim N k(q) = dimUk(gl(m)~)

for any k and a generic q. Also, for the algebra N (q, ~) there is a sort of the PBW theorem
ensuring that the associated graded algebra Gr(N (q, ~)) is isomorphic to N (q) (for a discussion
on the PBW property see the next section).

2. This algebra can be equipped with a braided bi-algebra structure (see [GPS2] for a
definition). This structure is determined by the usual counit and the coproduct such that for
~ = 1 it has the form

∆(nj
i ) = nj

i ⊗ 1 + 1⊗ nj
i − (q − q−1)

∑

k

nk
i ⊗ nj

k.

But similarly to super-algebras, the product of two such elements ∆(nj
i )∆(nl

k) contains an
operator transposing two middle factors in the product. The transposing operator depends on
a concrete Hecke symmetry, defining the algebraic structure of N (q, ~).

3. The representation of this algebra is similar to that of U(gl(m)) or U(gl(m|n)) (depending
on R), an analog of the adjoint representation included.

4. The structure of the center of N (q, ~) is similar to that of U(gl(m)) (or U(gl(m|n))).
5. If R comes from Uq(sl(m)), the algebra N (q, ~) is covariant with respect to the action of

this QG. In general, a similar property can be formulated via a coaction of the RTT algebra.
Note that if R is an involutive symmetry, the algebra N (q, ~) turns into the enveloping

algebra of a generalized Lie algebra, introduced by one of the authors in the 80’s.
The point is that a braided analog of the partial derivatives can be introduced on the algebra

N (q, ~) (first it was done in [GPS2]). This enable us to define a braided analog of the Weyl
algebra corresponding to the algebra N (q, ~).

8



Definition 2 The braided Weyl algebra W(N (q, ~)) is an associative unital algebra generated
by two subalgebras N (q, ~) and D provided that the following conditions are satisfied:

1. As a vector space the algebra W(N (q, ~)) is isomorphic to N (q, ~)⊗D.

2. The subalgebra D is generated by elements ∂j
i , 1 ≤ i, j ≤ m, subject to the following

relations
R−1D1R

−1D1 −D1R
−1D1R

−1 = 0, (4.6)

where D = ‖∂j
i ‖ and D1 = D ⊗ I.

3. The permutation relations between the generators nj
i , 1 ≤ i, j ≤ m, of the subalgebra

N (q, ~) and the generators ∂j
i of the subalgebra D are as follows

D1RN1R−RN1R
−1D1 = R+ ~D1R. (4.7)

In the limit q = 1 (provided that R is a deformation of the usual flip P ) the relations (4.6)
turn into the commutativity conditions for the generators ∂j

i and the equalities (4.7) turn into
the permutation relations (2.3). Note that the relations (4.6) and (4.7) have been introduced in
[GPS2].

Now, we have to give an operator meaning to the elements of the subalgebraD since we intend
to interpret the generators ∂j

i as analogs of partial derivatives. The permutation relations (4.7)
in the above Definition 2 allows one to define an action of the subalgebra D on the subalgebra
N (q, ~). On the level of generators this action is as follows:

∂j
i (n

p
k) = δpi B

j
k, (4.8)

where ‖Bj
i ‖ is the matrix of the operator B introduced in (4.3). On an arbitrary monomial

in generators nj
i the action is extended with the help of the permutation relations (4.7) or by

means of the same scheme as in the section 2 with the use of the counit defined on the algebra
D. Let us point out that this action gives a representation of the subalgebra D in the algebra
N (q, ~), that is the action (4.8), extended on the whole algebra N (q, ~) via (4.7), respects the
algebraic structure of N (q, ~). In the classical limit q = 1 the operator ∂j

i turns into the usual

partial derivative in ni
j: ∂

j
i = ∂/∂ni

j .
Our next aim is to define the space of differential forms on the algebra N (q, ~) and to

introduce an analog of the de Rham operator on it. First of all, we need a braided analog of the
external algebra generated by the differentials dnj

i . In the classical case it is identified with the
skew-symmetric algebra

∧

(gl(m)). In our current setting we define the corresponding analog
∧

q

as a quotient of the free tensor algebra generated by the linear space span(dnj
i ) over the ideal

generated by the matrix elements of the left hand side of the equality

R12Ω1Ψ̂12Ω1 +Ω1Ψ̂12Ω1R
−1
12 = 0. (4.9)

Here as usual Ω1 = Ω ⊗ I and the matrix elements Ωj
i of the m ×m matrix Ω = ‖Ωj

i‖ are the
linear combinations of the differentials:

Ωj
i = (B−1)ki dn

j
k, (4.10)

where the summation over the repeated index is understood. The symbol Ψ̂ stands for the
following operator

Ψ̂12 = Ψ21 + (q − q−1)q2mB1C2.

Using the definitions and properties (4.2)–(4.5) one can easily verify that

Tr1Ψ̂12R
−1
13 = P23 = Tr1Ψ̂21R

−1
31 . (4.11)
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Below, we give a motivation for the definition (4.9) of the algebra
∧

q.
Consider the product Dq =

∧

q ⊗N (q, ~) which is a right N (q, ~)-module. In order to convert
this module into an associative algebra, we have to introduce some permutation relations between
the algebras

∧

q and N (q, ~). However, we do not use this structure and shall consider the space
Dq as a one-sided N (q, ~)-module only. Elements of this module are called braided differentials.
Elements of the right N (q, ~)-module Dk

q =
∧k

q ⊗N (q, ~) are called braided k-differentials. Here,

as usual,
∧k

q stands for the k-th degree homogenous component of the quadratic algebra
∧

q.

Now, define the braided analog of the de Rham operator d : Dk
q → Dk+1

q . Let

ω = ω0 ⊗ f, f ∈ N (q, ~), ω0 ∈
∧k

q

be a k-differential: ω ∈ Dk
q . Then we set by definition:

dω = ω0 ⊗
∑

i,j

Ωj
i ⊗ ∂i

j(f) ∈ D
k+1
q . (4.12)

In fact, the map d consists in inserting the element
∑

i,j Ω
j
i ⊗ ∂i

j inside of the k-form ω with
subsequent application of the partial derivatives to the element f ∈ N (q, ~). The following claim
is the main motivation of our definition (4.9) of the algebra

∧

q.

Proposition 3 The usual property d2 = 0 holds.

Proof. First, let us recall some facts from the theory of monoidal categories. Let A be a
monoidal rigid category of finite dimensional vector spaces and U be its object. Let U∗ be its
right dual (see [CP] for detail). This means that there exists an evaluation map U⊗U∗ → K and
a coevaluation map K → U∗ ⊗U which are in a sense coordinated. Let {ui} be a basis of U and
{uj} be its right dual, i.e. 〈ui, uj〉 = δji . Then as follows from the definition, the coevaluation
map is generated by 1 7→ ∑

k u
k ⊗ uk.

Now, consider a subspace I ⊂ U⊗2 and the quadratic algebra Sym(U) = T (U)/〈I〉 playing
the role of the symmetric algebra of the space U . Also, consider the subspace I⊥ ⊂ (U∗)⊗2

orthogonal to I with respect to the pairing

〈x⊗ y, z ⊗ v〉 = 〈x, v〉 〈y, z〉, x, y ∈ U, z, v ∈ U∗. (4.13)

The algebra
∧

(U∗) = T (U∗)/〈I⊥〉 plays the role of the skew-symmetric algebra of the space U∗.
Let us form a complex

δ :
∧k

(U∗)⊗ Syml(U) →
∧k+1

(U∗)⊗ Syml+1(U),

where the map δ is defined by

uj1 ⊗ . . .⊗ ujk ⊗ ui1 ⊗ . . .⊗ uil
δ7→ uj1 ⊗ . . .⊗ ujk ⊗

∑

m

(um ⊗ um)⊗ ui1 ⊗ . . . ⊗ uil .

Let us emphasize that the map δ consists in introducing the unit 1 inside of the product
∧k(U∗)⊗ Syml(U) with subsequent applying the coevaluation operator to the unit.

Lemma 4 The following property holds: δ2 = 0.

Proof. In order to prove the lemma, we have to show that the element

∑

m,n

um ⊗ un ⊗ un ⊗ um, (4.14)

10



which corresponds to the operator δ applied twice, vanishes in the product
∧2(U∗)⊗ Sym2(U).

Let {zi} be a basis of the subspace I ⊂ U⊗2 and {zj} be a basis of the subspace I⊥ ⊂ (U∗)⊗2.
Let us complete the former basis up to a basis {zi, zj} of the whole space U⊗2 and the latter

one up to a basis {zi, zj} of the space (U∗)⊗2 so that the basis {zi, zj} be the right dual of that
{zi, zj}. Then the element (4.14) can be presented as follows

∑

i

zi ⊗ zi +
∑

j

zj ⊗ zj .

It is clear that this element vanishes in the product
∧2(U∗)⊗ Sym2(U).

Now, go back to the proposition. We treat the space span(∂j
i ) as an object U from the above

lemma and the space span(dnj
i ) as its right dual U

∗. Besides, the basis {Ωj
i} (4.10) of the space

U∗ is the right dual to {∂l
k} with respect to the pairing

〈D1,Ω2〉 = P12 or 〈∂j
i ,Ω

p
k〉 = δpi δ

j
k. (4.15)

In fact, if we identify span(nl
k) and span(dnl

k) as linear spaces, this pairing is nothing but the
action of the partial derivatives on the generators of the RE algebra in the spirit of the classical
differential calculus.

The role of the subspace I ⊂ U⊗2 is played by the left hand side of (4.6), giving rise to the
RE algebra but with the braiding R−1 instead of R. The only claim has to be shown is that the
left hand side of (4.9) is just I⊥. In order to prove this, we fix the basis X12 = R−1D1R

−1D1 in
the space U and that X∗

12 = Ω1Ψ̂Ω1R in the space U∗.

Lemma 5 The basis X∗
12 is right dual to X12, that is 〈X12,X

∗
34〉 = P13P24.

Proof. The claim of the lemma is verified by a direct calculation on the base of (4.11), (4.13)
and (4.15):

〈X12,X
∗
34〉 = 〈R−1

12 D1R
−1
12 〈D1 , Ω3〉Ψ̂34Ω3R34〉 = 〈R−1

12 D1R
−1
12 , Ψ̂14Ω1R14〉P13

= R−1
12 Tr0

(

P01R
−1
12 Ψ̂14〈D0 , Ω1〉

)

R14P13 = R−1
12 Tr0

(

P01R
−1
12 Ψ̂14P01

)

R14P13

= R−1
12 Tr0

(

R−1
02 Ψ̂04

)

R14P13 = R−1
12 P24R14P13 = P24P13.

Introduce now two operators Q : U⊗2 → U⊗2 and Q′ : U⊗2 → U⊗2 defined as follows

Q(R−1D1R
−1D1) = D1R

−1D1R
−1, Q′(R−1D1R

−1D1) = D1R
−1D1R.

Similar operators were considered in [GS2]. They were also used in the construction of a dif-
ferential calculus on a q-Minkowski space algebra in [M1, M2]. It is easy to see that Q and Q′

commute with each other and satisfy the following relation

(I −Q)(I +Q′) = 0.

Also, the subspace I ⊂ U⊗2 defined by (4.6) can be written as follows

(I −Q)(R−1D1R
−1D1) = 0.

Whereas, the equation
(I +Q′)(R−1D1R

−1D1) = 0

defines the subspace of U⊗2 which is complementary to I. In fact, the subspace I⊥ is just
(I +Q′∗)(U∗)⊗2 where Q′∗ stands for the conjugate operator to Q′.
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This shows that the spaces defined respectively by the left hand side of (4.6) and (4.9) are
orthogonal to each other5. The fact that they are maximal (i.e. the latter space include all
elements orthogonal to the former space) can be shown from considering the dimensions of these
spaces (first, for a generic q with subsequent passage to all q).

This completes constructing an analog of the de Rham complex corresponding to the modified
RE algebra.

Remark 6 Note that we precise no way of completing either the basis of the subspace I or that
of the space I⊥. Nevertheless, there exists the ”most natural” choice to do so or, equivalently,
to fix a complimentary subspace to I in the space U⊗2. If the space I ⊂ U⊗2 is defined by the
left hand side of (4.1) then we define its complementary subspace as

RN1RN1 +N1RN1R
−1. (4.16)

The quotient of the tensor algebra of U over the ideal generated by this subspace is often treated
to be a braided analog of the skew-symmetric algebra of U (see [GS2]).

5 q-Witt algebra: deformation property

In this section we deal with the so-called q-Witt algebra (q is assumed to be generic). This
algebra is usually defined in the same way as the classical Witt algebra is but with the q-
derivative (1.1) instead of the usual one. Let us precise that ∂q(x

k) = kqx
k−1, k ∈ Z. Hereafter,

we use the notation mq =
qm−1
q−1 .

Note that the Leibniz rule for the q-derivative reads

∂q(f(x)g(x)) = (∂qf(x))g(x) + f(qx)∂qg(x), (5.1)

whereas its permutation relation with the generator x is:

∂q x− q x ∂q = 1. (5.2)

Below, we do not use the Leibniz rule (5.1) (see remark in the end of the section).
Now, similarly to the usual Witt algebra, consider the operators

ek = xk+1 ∂q, k ∈ Z

acting on the algebra K[x, x−1]. These operators act on the elements xl as follows

ek(x
l) = lq x

k+l, l ∈ Z

and are subject to the relations

qm+1emen − qn+1enem − ((n + 1)q − (m+ 1)q)em+n = 0. (5.3)

These relations are usually considered (see [H] and the references therein) as a motivation
for introducing the following ”q-Lie bracket”

U ⊗ U → U : em ⊗ en 7→ [em, en] = ((n+ 1)q − (m+ 1)q)em+n, (5.4)

where U = span(ek) is the space of all finite linear combinations of the elements ek. Then by
q-Witt algebra one means the space U endowed with the q-Lie bracket (5.4), which is assumed,
of course to be a bilinear operator. We denote this q-Witt algebra Wq. Its enveloping algebra
U(Wq) is defined to be the quotient of the free tensor algebra of the space U over the ideal
generated by the left hand side of (5.3).

Emphasize that the bracket (5.4) is well-defined on the whole space U⊗2. This bracket has
the following properties:

5This can be also verified by a direct calculation, similar to that in the proof of Lemma 5.
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1. The ”q-skew-symmetry”:
[em, en] = −[en, em];

2. The ”q-Jacobi relation”:

(1 + qk)[ek, [el, em]] + (1 + ql)[el, [em, ek]] + (1 + qm)[em, [ek, el]] = 0.

The first relation entails that the element em⊗en+en⊗em is killed by the bracket. Consequently,
we have two subspaces in the space U⊗2

I+ = span(em ⊗ en + en ⊗ em), I = I− = span(qm+1emen − qn+1enem), (5.5)

which are analogs of symmetric and skew-symmetric subspaces (in fact, the symmetric one is
classical).

Below, we deal with the PBW theorem in the form suggested in [PP]. Namely, let U be
a finite dimensional vector space over the field K and I ⊂ U⊗2 be a subspace. Consider an
operator [ , ] : I → U satisfying two conditions

1. [ , ]12 ⊗ id3 − id1 ⊗ [ , ]23 : I ⊗ U
⋂

U ⊗ I → I;

2. [ , ] ◦ ([ , ]12 ⊗ id3 − id1 ⊗ [ , ]23) : I ⊗ U
⋂

U ⊗ I → 0,

where in the second line the symbol ◦ means the composition of the maps. (Below, we omit this
symbol as well as the identical operators.)

If, in addition, the quadratic algebra A = T (U)/〈I〉 is Koszul then the associated graded
algebra GrA[ , ] where A[ , ] = T (U)/〈I− [ , ]I〉 is canonically isomorphic to A. Here 〈I〉 stands for
the ideal generated by a set I and by I − [ , ]I we mean the family of elements u− [ , ]u, u ∈ I.

This is just the PBW theorem under the form of [PP]. Below, the call the both conditions
listed above the Jacobi-PP condition.

Emphasize that the subspace I ⊗U
⋂

U ⊗ I ⊂ U⊗3 is an analog of the space of third degree
skew-symmetric elements. Note, that the bracket is defined only on the subspace I. Thus, the
first of the above conditions (which means that the bracket maps I ⊗U

⋂

U ⊗ I into I), ensures
a possibility to apply the bracket once more.

Let us also show that the first condition above (without assuming the algebra T (U)/〈I〉 to
be Koszul) is necessary for the canonical isomorphism. Consider the element

([ , ]12 − [ , ]23)Z, (5.6)

where Z is an arbitrary element belonging to I ⊗U
⋂

U ⊗ I. Since the element Z −Z equals to
0 in the algebra A[ , ], its image under replacing factors from I ⊗ U (resp., U ⊗ I) by the terms
[ , ]12Z (resp., [ , ]23Z) is also trivial in the algebra A[ , ]. If nevertheless, the term (5.6) does not
belong to I, we have that there is an element which is trivial in GrA[ , ] and is nontrivial in A.
Consequently, the canonical isomorphism of the algebras GrA[ , ] and A does not exists.

Remark 7 Note that to describe the space I(3) = I⊗U
⋂

U ⊗ I ⊂ U⊗3 explicitly is not an easy
deal in general. However, if the subspace I ⊂ U⊗2 is generated by elements of the form

eiej − c(i, j)ejei, c(i, j) 6= 0 ∀ i, j (5.7)

the space I(3) is easy to describe. First, consider the case dim U = 3. Let {x, y, z} be a basis of
the space U . We set

I = span(xy − ayx, yz − bzy, zx− cxz), a b c 6= 0.

13



Then the space I(3) is one-dimensional and is generated by the following element

Z(x, y, z) = c(xy − ayx)z + a(yz − bzy)x+ b(zx− cxz)y

= bz(xy − ayx) + cx(yz − bzy) + ay(zx− cxz). (5.8)

If dim U > 3, the space I(3) is generated by all elements Z(ek, el, em), each of them being
associated with a triple ek, el, em.

Now, go back to the q-Witt algebra. This algebra is infinite dimensional. However, if by
U we mean all finite linear combinations of the generators {ei}, and by U⊗k we also mean the
finite linear combinations of ei1 ⊗ ei2 ⊗ . . .⊗ eik , then we can extend our reasoning to this case.

Namely, denote the vector space of finite linear combinations of elements qk+1ek el−ql+1el ek
by I and consider an element belonging to the space I ⊗ U

⋂

U ⊗ I

Z = ql+1qm+1(ql+1elem − qm+1emel)ek + qm+1qk+1(qm+1emek − qk+1ekem)el+

qk+1ql+1(qk+1ekel − ql+1elek)em = q2(m+1)em(qk+1ekel − ql+1elek)+

q2(k+1)ek(q
l+1elem − qm+1emel) + q2(l+1)el(q

m+1emek − qk+1ekem).

Compute the images of this element under the maps [ , ]12 and [ , ]23 correspondingly. We
have

[ , ]12Z = ql+1qm+1((m+ 1)q − (l + 1)q)el+mek + qm+1qk+1((k + 1)q − (m+ 1)q)em+kel+

qk+1ql+1((l + 1)q − (k + 1)q)ek+lem,

[ , ]23Z = q2(m+1)((l + 1)q − (k + 1)q)emek+l + q2(k+1)((m+ 1)q − (l + 1)q)ekel+m+

q2(l+1)(((k + 1)q − (m+ 1)q)elem+k.

Let us assume that the numbers k, l, m, k+ l, k +m and l+m are pairwise distinct. Then
the difference [ , ]12Z − [ , ]23Z belongs to I iff it is so for the element

ql+1qm+1((m+ 1)q − (l + 1)q)el+mek − q2(k+1)((m+ 1)q − (l + 1)q)ekel+m (5.9)

and for two similar elements obtained by cyclic permutations k → l → m. However, it is evident
that for a generic q the element (5.9) does not belong to I since the vector

(ql+1qm+1((m+ 1)q − (l + 1)q), −q2(k+1)((m+ 1)q − (l + 1)q))

composed of the coefficients of this element is not collinear to (ql+m+1, −qk+1).
Thus, the first of the above conditions is not satisfied the algebra Gr(U(Wq)) is not isomor-

phic to T (U)/〈qk+1ekel − ql+1elek〉.
Remark 8 If we introduce a parameter ~ as a multiplier in the right hand side of the bracket
(5.4) of the q-Witt algebra we get a two parametric analog of the usual Witt algebra. On putting
~ = 0 we get a quadratic algebra T (U)/〈qk+1ekel−ql+1elek〉 which possesses a good deformation
property. Since this quadratic algebra is infinite dimensional, we should precise the meaning of
this property. The ordered monomials

ek11 ek22 . . . ekll , k1 + k2 + . . . + kl = k

form a basis of its k-th degree homogeneous component. It can be considered as a quantization
of the corresponding Poisson structure (the proof is left for the reader). Nevertheless, the q-Witt
algebra is not a two-parameter quantization of a Poisson pencil. This is due to the fact that the
passage from the mentioned quadratic algebra to its filtered (quadratic-linear) analog is not a
deformation.
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In a similar way we can introduce another analog of the Witt algebra, called below ~-Witt
one. In its construction the usual derivative is replaced by its difference analog (1.2). The
permutation relation with x reads

∂~x− x∂~ = 1 + ~∂~.

Note that the algebra generated by x and ∂~ is a Weyl algebra but it is not so for the algebra
generated by x and ∂q. (However, it is a Weyl algebra in the sense of a more general definition
exhibited in the next section.)

Now, consider operators ek = exp(ikx)∂~, k ∈ Z acting onto the space of real continuous
functions. By using the permutation relation

∂~ exp(ikx) − exp(ik~) exp(ikx) ∂~ =
exp(ik~) − 1

~
exp(ikx),

we get the following relations between these operators

exp(ik~) ek el − exp(il~) el ek =
exp(il~)− exp(ik~)

~
ek+l.

So, denoting q = exp(i~), we can see that the difference of this structure from that described
above is unessential.

Also, it is tempting to introduce an ~-analog of the Lie bracket by putting

[ek, el] =
exp(il~)− exp(ik~)

~
ek+l.

Finally, for the reason presented above, the PBW theorem in the enveloping algebra of this
”generalized Lie algebra” fails. The detail is left to the reader.

Two above analogs of the usual derivatives being put together give rise to a (q, ~)-counterpart
of the derivatives. This (q, ~)-derivative have the following permutation relation with x:

∂q,~ x− qx ∂q,~ = 1 + ~∂q,~.

This permutation relation can be deduced from that for the q-derivative via the change of the
generator x → x + ~

q−1 . It is easy to see that the derivative ∂q,~ acts on a polynomial f(x) as
follows

∂q,~(f(x)) =
f(qx+ ~)− f(x)

(q − 1)x+ ~
.

Also, note that besides the above analogs of the usual derivative, there are their slight
modifications

∂̃q(f(x)) =
f(qx)− f(q−1x)

(q − q−1)x
, ∂̃~(f(x)) =

f(x+ ~)− f(x− ~)

2~
.

These operators do not give rise to any Weyl algebra on the function space in one variable.
Nevertheless, the operator ∂̃~) appears in the frameworks of the Weyl algebra W(U(u(2)~)) and
its commutative subalgebra considered in section 3.

We complete this section by the following observation. The q-Witt algebra contains a sub-
algebra looking like the enveloping algebra of the Lie algebra sl(2). Namely, consider the sub-
algebra generated by three elements e−1 = ∂q, e0 = x∂q and e1 = x2∂q. They are subject to the
following relations

e−1e0 − qe0e−1 = e−1, e−1e1 − q2e1e−1 = (1 + q)e0, e0e1 − qe1e0 = e1. (5.10)
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This quadratic-linear algebra was considered in [LS] in the frameworks of the so-called Hom-
Lie algebras This notion is based on the modified Leibniz rule (5.1). In a similar manner the
notions of Hom-associative algebras, Hom-Poisson algebras etc., were introduced. Emphasize
that the enveloping algebra of a Hom-Lie algebra is not associative one but Hom-associative
one. By contrast, our approach is based only on the permutation relations between derivative(s)
and generator(s) of a given algebra. Thus, the algebra defined by the relations (5.10) is a
usual associative algebra. We claim that this algebra has the good deformation property. This
property will be proven in the next section for a larger family of quadratic-linear algebras.

6 Other roles and forms of Jacobi condition for quadratic-linear

algebras

In the previous section we presented a form of the Jacobi condition, which is useful for proving or
denying the PBW property of a given quadratic-linear(-constant) algebra. Nevertheless, in the
classical case (i.e. the enveloping algebra of a usual Lie algebra is considered as such an algebra)
and in some other cases, mentioned at the end of the paper, the Jacobi condition enables one
to construct the adjoint representation of a given Lie algebra. Besides, the construction of the
Chevalley-Eilenberg complex associated with this algebra is mainly based on the Jacobi identity.

In this section we discuss other forms the Jacobi condition which are useful for generalizing
the notion of the adjoint representation and constructing an analog of the Chevalley-Eilenberg
complex on certain quadratic-linear algebras.

Let again U be a three dimensional space and {x, y, z} be its basis. Consider the quadratic-
linear algebra generated by these generators subject to the relations

xy − ayx− l1 = 0, yz − bzy − l2 = 0, zx− cxz − l3 = 0,

where a, b, c ∈ K are nontrivial constant and l1, l2, l3 are some elements of U . As usual, we also
consider the corresponding quadratic algebra which is obtained by setting l1 = l2 = l3 = 0.

It would be interesting to classify all families (a, b, c, l1, l2, l3) such that the Jacobi-PP con-
dition for the corresponding quadratic-linear algebras is valid. We restrict ourselves to two
examples.

The first example is sl(2) like. We assume that

l1 = kx, l2 = lz, l3 = my, k, l,m ∈ K, klm 6= 0.

It is easy to see that the Jacobi-PP condition is valid iff b = a and l = k. Thus, the relations on
the generators of the corresponding algebra become

xy − ayx = kx, yz − azy = kz, zx− cxz = my. (6.1)

This algebra can be treated as a multiparameter deformation of the commutative algebra
Sym(sl(2)). It can be easily seen that the algebra defined by (5.10) is a particular case of
the associative algebra defined by (6.1). Indeed, by identifying e−1 = x, e0 = y, e1 = z we get
(5.10) if in (6.1) we put a = q, c = q−2, m = −(q−1 + q−2).

Since the quadratic algebra corresponding to the quadratic-linear algebra defined by (6.1) is
Koszul, the latter algebra mets the PBW property. Note that by using the triangular structure
of the quadratic-linear algebra, it is possible to define analogs of the Verma modules over it.

The second example is su(2) like. We assume that

l1 = kz, l2 = lx, l3 = my, k, l,m ∈ K, klm 6= 0.
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The Jacobi-PP condition is fulfilled iff a = b = c. Also, by a change of a basis (over the field
K = C) we can get that k = l = m = 1. Thus, we assume that the generators are bound by the
following relations

xy − ayx = z, yz − azy = x, zx− axz = y. (6.2)

Since the corresponding quadratic algebra is Koszul, we conclude that the algebra defined by
(6.2) has the good deformation property. Thus, by introducing a parameter ~ in front of the
right hand side, we get a two parameter deformation of the algebra Sym(V ) where V is three-
dimensional vector space.

Note that similar quadratic-linear-constant algebras (but with different right hand side of the
relations) appear in quantization of the Poisson structures on Painlevé monodromy manifolds
(see [MR]).

Now, we pass to considering the other forms of the Jacobi condition. Consider a quadratic
algebra A = T (U)/〈I〉, I ⊂ U⊗2 and a quadratic-linear one A[ , ] (we use the notations of the
previous section). Assume that the Jacobi-PP condition for the bracket [ , ] : I → U is valid.
However, this condition cannot be written in the form

[ , ] ◦ [ , ]12 = [ , ] ◦ [ , ]23 on I(3) = I ⊗ U
⋂

U ⊗ I, (6.3)

because the images of the operators [ , ]12 and [ , ]23 acting on I(3)do not belong in general to I
(but their difference does by assumption). Thus, the sides of (6.3) are not well defined separately.

In order to make this object more similar to a usual Lie algebra we assume that in the space
U⊗2 there is a complementary subspace I+ (playing the role of the symmetric subspace) where
the bracket acts trivially. Consequently, the bracket becomes well-defined on the whole space
U⊗2. Thus, we have the following data (U, I, I+, [ , ] : U

⊗2 → U) with complementary subspaces
I ⊕ I+ = U⊗2 and such that the image of the subspace I+ under the map [ , ] is trivial. Thus,
the both sides of (6.3) are well defined.

Definition 9 We say that the data (U, I, I+, [ , ] : U
⊗2 → U) satisfy the strong Jacobi condition

if the Jacobi-PP condition is valid for the corresponding quadratic-linear algebra, and the both
sides of (6.3) are trivial.

Note that the strong Jacobi identity enables us to define an analog of the Chevalley-Eilenberg
complex composed of the terms

I(k) = I ⊗ U⊗(k−2)
⋂

U ⊗ I ⊗ U⊗(k−3)
⋂

. . .
⋂

U⊗(k−3) ⊗ I ⊗ U
⋂

U⊗(k−2) ⊗ I

with the differential d = [ , ]12. The relation d2 = 0 follows immediately from the fact that
[ , ][ , ]12 = 0. Observe that elements of the subspaces I(k) ⊂ U⊗k are analogs of the space of
totaly skew-symmetric elements. For this reason, even in the classical case, it suffices to apply
the bracket only to two first terms instead of employing the usual formula; the results of applying
this operator d and the usual Chevalley-Eilenberg operator differ by a nontrivial factor.

Now, we go back to the above examples and examine the problem whether a given quadratic-
linear algebra can be completed with convenient subspaces I+ ⊂ U⊗2 such that the new data
(U, I, I+, [ , ] : U

⊗2 → U) meets the strong Jacobi condition.
First, consider the sl(2) like algebra. By a straightforward computation it is possible to

check that the strong Jacobi condition is met if I+ contains the elements y2 and cxz + azx.
As for the su(2) like example, we have that the strong Jacobi identity is valid for the extended

data iff the subspace I+ contains the term x2 + y2 + z2. In particular, we can put

I+ = span(x2, y2, z2, xy + αyx, yz + αzy, zx+ αxz), α ∈ K, α 6= 0. (6.4)

Let us discuss now a form of the Jacobi condition for quadratic-linear algebras enabling one
to construct an analog of the adjoint representation.
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Definition 10 We say that the data (U, I, I+, [ , ] : U
⊗2 → U) with complementary I and I+,

such that [ , ]I+ = 0, is an almost Lie algebra, if there exists a nontrivial number p ∈ K such
that the map p [ , ] defines left and right representations of the quadratic-linear algebra defined
by

T (U)/〈I − [ , ]I〉. (6.5)

Emphasize that in the classical case the normalizing factor p equals 2 since the quadratic-linear
algebra (6.5) differs from the usual enveloping algebra (see remark at the end of the section).
In general, it has to be found.

Let us turn to the above examples and examine the following problem: for what values
of parameters entering the defining relations of these algebras they acquire almost Lie algebra
structures.

First, consider the su(2) like example. Let us assume that the subspace I+ is given by (6.4).
Then we get a bracket defined on the whole space U⊗2 and having the following multiplication
table

[x, x] = 0, [x, y] =
αz

γ
, [y, x] =

−z

γ
, c.p.

where γ = a+ α.
Now, we are able to define the left action (denoted ⊲) of the space U onto itself which is

multiple (with the factor p) of the above bracket action. We have

x ⊲ x = 0, x ⊲ y =
pαz

γ
, x ⊲ z =

−py

γ

and so on.
Thus, we can represent x, y and z as operators acting in the space U = span(x, y, z). We

have to check that the defining relations of the quadratic-linear algebra in question are preserved
by this representation. This implies the following relations on the parameters a, α and p:

p = α γ, aα2p = γ, γ = a+ α.

Treating α as an independent parameter we can express other parameters in terms of α as follows

a = α−3, γ = α+ α−3, p = α2 + α−2.

It is somewhat straightforward checking that the same parameters are convenient for defining
the right adjoint action of the quadratic-linear algebra in question. In conclusion, we get a
family of almost Lie algebra structures, parameterized by α.

Note that the family of the data satisfying the strong Jacobi condition is larger since the
parameters a entering (6.2) and α entering (6.4) are not related.

Now, pass to the sl(2) type example. We assume that the subspace I+ has the following
form

I+ = span(x2, y2, z2, xy + αyx, yz + βzy, zx+ βxy).

By a change of the basis we can get that k = 1, l = 2 (see (6.1)). By tedious but straightforward
computations it can be shown that the data (U, I, I+, [ , ] : U

⊗2 → U) determines an almost Lie
structure iff a = b = α = β = 1, p = 2, i.e. when it corresponds to the usual sl(2) Lie structure.

Other examples interesting from the viewpoint of the different forms of the Jacobi condition
arise from braidings. In the early 80’s one of the authors (D.G.) introduced the notion of a
generalized Lie algebra associated with involutive symmetries (see [G1, G2]). A gl(m) type
example can be constructed as follows. Let R : V ⊗2 → V ⊗2 be a skew-invertible (see section 4)
involutive symmetry. Then it can be extended up to an involutive symmetry

REnd : End(V )⊗2 → End(V )⊗2.
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Besides, in the space End(V ) there is the usual product (composition) of endomorphisms

End(V ) ∋ X,Y 7→ X ◦ Y ∈ End(V ).

Introduce the following bracket

[ , ] : End(V )⊗2 → End(V ), [X,Y ] = X ◦ Y − ◦REnd(X,Y ).

Consider the quadratic-linear algebra defined by the relations

Xi Xj −REnd(Xi,Xj) = [Xi,Xj ] (6.6)

where {Xi} is a basis of the space End(V ). We claim that for this filtered algebra the Jacobi-PP
condition is valid. Moreover, the corresponding quadratic algebra

T (End(V ))/〈I〉,

where I = span(Xi Xj − REnd(Xi,Xj)) is Koszul. This ensures the PBW property for the
algebra defined by (6.6).

In contrast with the above examples where the bracket was only defined on a subspace
I ⊂ U⊗2, now we have defined this bracket on the whole space U⊗2, U = End(V ). Consequently,
we have no choice for the subspace I+, we put

I+ = span(Xi Xj +REnd(Xi,Xj)).

It is not difficult to see that the bracket above acts on this space trivially. We claim that for
the data (U, I, I+, [ , ] : U

⊗2 → U) the strong Jacobi identity is also valid. Moreover, this data
defines an almost Lie algebra structure with p = 1.

Remark 11 Here p = 1 since [ , ](Xi ⊗Xj −REnd(Xi,Xj)) = 2[Xi,Xj ]. Also note that for the
Jacobi-PP condition, as well as for the strong Jacobi condition, the normalizing factor p does
not matter.

Note that the algebra defined by (6.6) can be written in the form of the modified RE algebra
with an involutive R. So, as was noticed in section 4, this algebra has a representation theory
similar to that of the Lie algebra gl(m) (or to that of gl(m|n) depending on the initial symmetry

R). Also, the spaces I
(k)
+ (resp., I(k)) of totaly symmetric (resp., skew-symmetric) elements

can be introduced via the projectors of symmetrization (resp., skew-symmetrization) naturally
associated with the operator REnd.

Besides, considering the subspace of End(V ) consisting of the traceless elements where the
trace is associated with R — the so-called braided trace, we can get a sl-type data with similar
properties.

If R is a skew-invertible Hecke symmetry, a similar construction mutatis mutandis can be
also defined. But the role of the operator REnd is played by another operator Q : End(V )⊗2 →
End(V )⊗2 which coincides with REnd as q → 1 (i.e. as the symmetry becomes involutive). It
equals to the operator Q from section 4 (up to a change of R by R−1). Explicitly, the space I is
just the left hand side of (4.1) whereas I+ is defined by (4.16). As for the corresponding filtered
quadratic-linear algebra, it is defined by (4.1). As usual, we can define a bracket by assuming
that it kills I+ and maps the left hand side of (4.1) to its right hand side. Alternatively the
bracket can be introduced via the product ◦. These two approaches lead to brackets which differ
by a factor.

The point is that for this quadratic-linear algebra the Jacobi-PP condition is valid (see
[G3]). Since the quadratic algebra T (End(V ))/〈I〉 is Koszul (at least if R is a deformation of an
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involutive symmetry and q is generic) the modified RE algebra meets the PBW property. Also,
the corresponding data (U, I, I+, [ , ] : U

⊗2 → U), U = End(V ), defines an almost Lie algebra
structure. However, we do not know whether the strong Jacobi condition is valid for it.

Let us sum up. In section 3 we introduced the notion of the Weyl algebra related to an
enveloping algebra of a Lie algebra. In section 4 we generalized this notion to the case when
the role of the enveloping algebra is played by a modified RE algebra. Whether it is possible to
generalize this notion to the case when the enveloping algebra is replaced by a quadratic-linear
algebra? Here we suggest a version of such a generalization.

Let U be a finite-dimensional vector space with a basis {xi}. As usual, consider a quadratic
algebra A = T (U)/〈I〉, where I is a subspace of U⊗2, and introduce its quadratic-linear de-
formation A[ , ] = T (U)/〈I − [ , ]I〉, where [ , ] : I → U is a linear map (called bracket). Also,
consider the quadratic algebra B = T (U∗)/〈J〉 where J ⊂ (U∗)⊗2. Let ∂i be the basis of the
space U∗, dual to the basis {xi}: 〈∂i, xj〉 = δji . Let some permutation relations of the form

∂ixj − αi,k
j,l xk∂

l = bij,k∂
k + δij (6.7)

be given. The space spanned by the left hand side of these elements will be denoted K. Assume
that these permutation relations are compatible with the algebras A[ , ] and B, i.e. modulo these
permutation relations any element of the product B ⊗A[ , ] can be converted into an element of
A[ , ] ⊗ B.

Definition 12 The algebraW(A[ , ]) generated by the algebra A[ , ] and the algebra B whose gen-
erators are subject to the permutation relations (6.7), is called the Weyl algebra corresponding
to the algebra A[ , ] if

1. On converting the generators ∂j (called the partial derivatives) of the algebra B into
operators on A[ , ] by the same method as above (namely, with the help of the counit ε),
we get a representation of the algebra B.

2. The subspace
I ⊕ J ⊕K ⊂ (U ⊕ U∗)⊗2

endowed with the bracket, which equals [ , ] on I, trivial on J and defined by (6.7) on K,
satisfies the Jacobi condition in the form of [BG].

The form of the Jacobi condition presented in [BG] is a generalization of the Jacobi-PP
condition covering the case of quadratic-linear-constant algebras. As was shown in [BG], if for a
given quadratic-linear-constant algebra the corresponding quadratic algebra is Koszul, then in
the former algebra the PBW property is valid.

We point out that the Weyl algebras defined in section 3 and the braided Weyl algebra
corresponding to a modified RE algebra are covered by this definition. It also covers the algebra
defined by (5.2). In this case the subspaces I and J are trivial and K is generated by the left
hand side of (5.2). However, we do not know whether it is possible to define the Weyl algebras
either on the Jackson algebra (5.10) or on sl(2) and su(2) like algebras considered in this section.

Nevertheless, before constructing a Weyl algebra on a given quadratic-linear algebra it is
reasonable to construct such an algebra on the corresponding quadratic algebra. The notion of
a Weyl algebra corresponding to a quadratic algebra can be obtained from the definition above
by assuming the initial bracket to be trivial. There are known numerous attempts to define
partial derivatives on quadratic algebras related to the Quantum Groups. We refer the reader
to the paper [GS2] where some references are given.
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