Serge Nicaise 
  
Cristina Pignotti 
  
Stability results for second-order evolution equations with switching time-delay

Keywords: 2000 Mathematics Subject Classification: 35L05, 93D15 wave equation, delay feedbacks, stabilization

. In particular, under suitable conditions, we can consider unbounded damping operators. Some concrete examples are finally presented.

Introduction

Let H be a real Hilbert space and let A : D(A) → H be a positive self-adjoint operator with a compact inverse in H. Denote by V := D(A 1 2 ) the domain of A 1 2 . Moreover, for i = 1, 2, let U i be real Hilbert spaces with norm and inner product denoted respectively by • U i and

•, • U i and let B i (t) : U i → V ′ , be time-dependent linear operators satisfying

B 1 (t)B 2 (t) = 0, ∀t > 0.
Let us consider the problem u tt (t) + Au(t) + B 1 (t)B * 1 (t)u t (t) + B 2 (t)B * 2 (t)u t (tτ ) = 0 t > 0 (1.1)

u(0) = u 0 and u t (0) = u 1 (1.2)
where the constant τ > 0 is the time delay. We assume that the delay feedback operator B 2 is bounded, that is B 2 ∈ L(U 2 , H), while the standard one B 1 ∈ L(U 1 , V ′ ) may be unbounded.

Time delay effects appear in many applications and practical problems and it is by now well-known that even an arbitrarily small delay in the feedback may destabilize a system wich is uniformly exponentially stable in absence of delay. For some examples of this destabilizing effect of time delays we refer to [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF].

In [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] we considered the wave equation with both dampings acting simultaneously, that is B 1 (t) = µ 1 and B 2 (t) = µ 2 , with µ 1 , µ 2 ∈ IR + , and we proved that if µ 1 > µ 2 then the system is uniformly exponentially stable. Otherwise, if µ 2 ≥ µ 1 , that is the delay term prevails on the not delayed one, then there are instability phenomena, namely there are unstable solutions for arbitrarily small (large) delays.

In [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] we firstly considered second-order evolution equations with intermittent delay, this means that the standard damping and the delayed one act in different time intervals. This is clearly related to the stabilization problem of second-order evolution equations damped by positive/negative feedbacks. We refer for this subject to [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF]. See also [START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF] for the link between wave equation with time delay in the damping and wave equation with indefinite damping, namely damping which may change sign in different subsets of the domain.

Assuming that an observability inequality holds for the conservative model associated with (1.1)-(1.2) and, through the definition of a suitable energy (see (3.3)), we obtained in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] sufficient conditions ensuring asymptotic stability. Under more restrictive assumptions an exponential stability estimate was also obtained. Our abstract framework was then applied to some concrete examples, namely the wave equation, the elasticity system and the Petrovsky system.

We mention that a similar problem has been considered in [START_REF] Ammari | Stabilization by switching time-delay[END_REF] for 1-d models for the wave equation but with a different approach. Indeed, in [START_REF] Ammari | Stabilization by switching time-delay[END_REF] we obtain stability results for particular values of the time delays, related to the length of the domain, by using the D'Alembert formula.

Here we improve the results of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] removing a quite restrictive assumption on the size of the "bad" terms, that is the terms with time delay (cfr. assumption (3.3) of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]). Indeed, as we expect from [START_REF] Haraux | Asymptotic stability for intermittently controlled second-order evolution equations[END_REF] and considering the relation between delay problems and problems with anti-damping, the delay feedback operator B 2 may be also large but on small time intervals. Moreover, under an additional assumption on the size of the time intervals where only the delay feedback acts, we give stability results also for B 1 unbounded, while the method in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] is applicable only for bounded damping operators B 1 . Some new examples, not covered by the analysis of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], are illustrated. Furthermore, we point out the improvement for examples already considered there.

The paper is organized as follows. In section 2 a well-posedness result of the abstract system is proved. In section 3 we obtain, for B 1 bounded, asymptotic and exponential stability results for the abstract model under suitable conditions, improving the results of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]. In section 4, under an additional condition on the length of the delay intervals, we obtain stability results valid for B 1 non necessarily bounded. Finally, in section 5, we illustrate our abstract results by some concrete applications.

Well-posedness

In this section we will give well-posedness results for problem (1.1)-(1.2) using semigroup theory.

We assume that for all n ∈ IN, there exists t n > 0 with t n < t n+1 and such that

B 2 (t) = 0 ∀ t ∈ I 2n = [t 2n , t 2n+1 ), B 1 (t) = 0 ∀ t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), with B 2 ∈ C([t 2n+1 , t 2n+2 ]; L(U 2 , H
)); for the operators B 1 , we assume either

B 1 ∈ C 1 ([t 2n , t 2n+1 ]; L(U 1 , H)) or B 1 (t) = b 1 (t)C n , with C n ∈ L(U 1 , V ′ )) and b 1 ∈ W 2,∞ (t 2n , t 2n+1 ) such that b 1 (t) > 0, ∀ t ∈ I 2n .
We further assume that τ ≤ T 2n for all n ∈ IN, where T n denotes the lengt of the interval I n , that is

T n = t n+1 -t n , n ∈ IN . (2.1)
Under these assumptions, we obtain the following result Theorem 2.1 Under the above assumptions, for any u 0 ∈ V and u 1 ∈ H, the system (1.1)

- (1.2) has a unique solution u ∈ C([0, ∞); V ) ∩ C 1 ([0, ∞); H). Proof. The case B 1 ∈ C 1 ([t 2n , t 2n+1 ]; L(U 1 , H))
was treated in Theorem 2.1 of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], hence we concentrate on the case when B 1 is not bounded. In view of the proof of Theorem 2.1 of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] and the assumption on B 1 , we only need to prove existence in the interval (0, t 1 ) of the problem

u tt (t) + Au(t) + b 1 (t)C 1 C * 1 u t (t) = 0 t > 0 (2.2) u(0) = u 0 and u t (0) = u 1 . (2.3)
Here the difficulty is that a priori the domain of the operator

A(t)(u, v) ⊤ = (v, -Au -b 1 (t)C 1 C * 1 v) ⊤
will depend on t since it requires that Au+B 1 (t)B * 1 (t)v has to be in H. Hence we cannot directly use the theory developed by Kato, see [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF].

The solution is to set (for shorthness the index 1 is suppressed in the remainder of the proof)

U = (u, bu t ) ⊤ , that satisfies formally U t = A(t)U, U (0) = (u 0 , b(0)u 1 ) ∈ V × H, where A(t)(u, v) ⊤ = (b -1 v, b ′ b -1 v -bAu -bCC * v).
The main idea is that the domain of this new operator is independent of t, since it is given by

D(A(t)) = {(u, v) ⊤ ∈ V × V : Au + CC * v ∈ H}.
Now we introduce the time-depending inner product (on V × H)

((u, v) ⊤ , (ũ, ṽ) ⊤ ) t = b 2 (t)(A 1/2 u, A 1/2 ũ) H + (v, ṽ) H , ∀(u, v) ⊤ , (ũ, ṽ) ⊤ ∈ V × H,
and let U t = (U, U )

1/2 t its associated norm. It is easy to check that (see for instance Theorem 2.3 of [START_REF] Nicaise | Interior feedback stabilization of wave equations with time dependent delay[END_REF])

U t ≤ U s e κ|t-s| , ∀ t, s ∈ (0, t 1 ), where κ = max t∈[0,t 1 ] |b ′ (t)| b(t) . It is a simple exercise to check that Ã(t) = A(t) -κId generates a C 0 -semigroup of contraction on V × H (that is dissipative for inner product (•, •) t ).
By the assumption on b, we deduce that à = { Ã(t); t ∈ [0, t 1 ]} and Y = D(A(0)) forms a CD-system (or constant domain system) in the sense of Kato, see [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF]. In other words, for all

U 0 = (u 0 , b(0)u 1 ) ∈ V × H (resp. D(A(0))), there exists a unique mild (resp. strong) solution Ũ ∈ C([0, t 1 ]; V × H) (resp. Ũ ∈ C([0, t 1 ]; D(A(0))) ∩ C 1 ([0, t 1 ]; V × H)) of Ũt (t) = Ã(t) Ũ (t), t > 0, U (0) = U 0 . Setting U (t) = e κt Ũ (t),
we deduce that it is a mild (resp. strong) solution of

U t (t) = A(t) Ũ (t), t > 0, U (0) = U 0 .
Coming back to the definition of A(t), we find that u is a solution of (2.2)-(2.3).

Stability result: B 1 bounded

In this section we assume B 1 bounded. To get stability we assume that there exist Hilbert spaces W i , i = 1, 2, such that H is continuously embedded into W i , i.e.

u 2 W i ≤ C i u 2 H , ∀u ∈ H with C i > 0 independent of u. (3.1) 
Moreover, we assume that for all n ∈ IN, there exist three positive constants m 2n , M 2n and M 2n+1 with m 2n ≤ M 2n and such that for all u ∈ H we have i)

m 2n u 2 W 1 ≤ B * 1 (t)u 2 U 1 ≤ M 2n u 2 W 1 for t ∈ I 2n = [t 2n , t 2n+1 ), ∀ n ∈ IN; ii) B * 2 (t)u 2 U 2 ≤ M 2n+1 u 2 W 2 for t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), ∀ n ∈ IN.

Stability without restriction on the delay time intervals

In this section we assume W 1 = W 2 and we use the notation

W := W 1 = W 2 .
Moreover, we assume inf

n∈IN m 2n M 2n+1 > 0. (3.2)
Note that assumption (3.3) in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF] is instead equivalent to

m 2n M 2n+1 > 1 2 .
Let us introduce the energy of the system

E(t) = E(u; t) := 1 2 u(t) 2 V + u t (t) 2 H + ξ 2 t t-τ B * 2 (s + τ )u t (s) 2 U 2 ds , (3.3) 
where ξ is a positive number satisfying 

ξ < inf n∈IN m 2n M 2n+1 . ( 3 
E ′ (t) ≤ - m 2n 2 u t 2 W . (3.5)
Moreover, on the intervals

I 2n+1 , n ∈ IN, E ′ (t) ≤ M 2n+1 2 (ξ + 1 ξ ) u t 2 W . (3.6) 
Proof: Differentiating E(t) we get

E ′ (t) = (u t , u) V + (u tt , u t ) H + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 - ξ 2 B * 2 (t)u t (t -τ ) 2 U 2 .
Then, using the definition of A and (1.1) we obtain

E ′ (t) = u t , u tt + Au V -V ′ + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 - ξ 2 B * 2 (t)u t (t -τ ) 2 U 2 = -u t , B 1 (t)B * 1 (t)u t (t) + B 2 (t)B * 2 (t)u t (t -τ ) V -V ′ + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 - ξ 2 B * 2 (t)u t (t -τ ) 2 U 2 .
By the definition of the dual operators, we arrive at

E ′ (t) = -B * 1 (t)u t (t) 2 U 1 -(B * 2 (t)u t , B * 2 (t)u t (t -τ )) U 2 + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 - ξ 2 B * 2 (t)u t (t -τ ) 2 U 2 .
If t ∈ I 2n , then B 2 (t) = 0 and the previous identity gives

E ′ (t) = -B * 1 (t)u t (t) 2 U 1 + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 . Since T 2n = |I 2n | ≥ τ, it results that t + τ ∈ I 2n ∪ I 2n+1 ∪ I 2n+2 . Now, if t + τ ∈ I 2n ∪ I 2n+2 , then B 2 (t + τ ) = 0. Therefore, B 2 (t + τ ) = 0 only if t + τ ∈ I 2n+1 .
In both cases, by our assumptions i) and ii), we get (3.5).

For t ∈ I 2n+1 , as B 1 (t) = 0, the previous identity becomes

E ′ (t) = -(B * 2 (t)u t , B * 2 (t)u t (t -τ )) U 2 + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 - ξ 2 B * 2 (t)u t (t -τ ) 2 U 2 .
By Young's inequality we get

E ′ (t) ≤ 1 2ξ B * 2 (t)u t (t) 2 U 2 + ξ 2 B * 2 (t + τ )u t (t) 2 U 2 .
This proves (3.6) using assumption ii) because t + τ is either in I 2n+1 , or in I 2n+2 and in that last case B * 2 (t + τ ) = 0.

Consider now the conservative system associated with (1.1)-(1.2)

w tt (t) + Aw(t) = 0 t > 0 (3.7) w(0) = w 0 and w t (0) = w 1 (3.8)
with (w 0 , w 1 ) ∈ V × H. Denote by E S (•) the standard energy for wave type equations, that is

E S (t) = E S (w, t) := 1 2 ( w 2 V + w t 2 H ). (3.9)
For our stability result we need that a suitable observability inequality holds. Namely we assume that there exists a time T > 0 such that for every time T > T there is a constant c, depending on T but independent of the initial data, such that

E S (0) ≤ c T 0 w t (s) 2 W ds, (3.10) 
for every weak solution of problem (3.7) -(3.8) with initial data (w 0 , w 1 ) ∈ V × H. Proposition 3.2 Assume i), ii) and (3.2). Moreover, we assume that the observability inequality (3.10) holds for every time T > T and that, denoting

T * := inf n {T 2n }, it is T * > T , T * ≥ τ . (3.11) 
Then, for any solution of system (1.1) -(1.2) we have

E(t 2n+1 ) ≤ c n E(t 2n ), ∀ n ∈ IN, (3.12) 
where

c n = 4c(1 + 4C 2 T 2 2n M 2 2n ) m 2n + 4c(1 + 4C 2 T 2 2n M 2 2n ) , (3.13) 
c being the observability constant in (3.10) corresponding to the time T * and C the constant in the norm embedding (3.1) between W and H.

Proof. It is sufficient to prove the estimate (3.12) in the interval I 0 = [0, t 1 ). We can proceed analogously in the other intervals I 2n , n ∈ IN. We can decompose u = w + w where w is a solution of system (3.7) -(3.8) with w 0 = u 0 , w 1 = u 1 ; while w solves

wtt (t) + A w(t) = -B 1 (t)B * 1 (t)u t (t) t > 0 (3.14)
w(0) = 0 and wt (0) = 0 (3.15)

First we have

E(0) = E S (w, 0) + 1 2 0 -τ B * 2 (s + τ )u t (s) 2 U 2 ds = E S (w, 0),
because for s ∈ (-τ, 0), s + τ < τ < t 1 . Now using the observability inequality (3.10) we can estimate

E(0) = E S (w, 0) ≤ c T * 0 w t (s) 2 W ds. (3.16)
Using the splitting w = uw and the fact that T 0 = t 1 ≥ T * , we deduce that

E(0) ≤ 2c T 0 0 ( wt (s) 2 W + u t (s) 2 W )ds. (3.17)
Now, observe that from equation (3.14) we deduce

d dt 1 2 ( wt (t) 2 H + w(t) 2 V ) = ( wt , wtt + A w) H = -( wt , B 1 (t)B * 1 (t)u t (t)) H .
Integrating this identity in [0, t] with 0 < t < T 0 , recalling (3.15), and using the assumption i), we get 1 2 ( wt (t

) 2 H + w(t) 2 V ) = - t 0 (B * 1 (s) wt (s), B * 1 (s)u t (s)) H ds ≤ M 0 T 0 0 wt (s) W u t (s) W ds. (3.18) 
Integrating (3.18) on [0, t 1 ], we deduce

T 0 0 wt (t) 2 W dt ≤ C T 0 0 wt (t) 2 H dt ≤ 2CT 0 M 0 T 0 0 wt (s) W u t (s) W ds ≤ CT 0 M 0 T 0 0 (ǫ wt (t) 2 W + 1 ǫ u t (t) 2 W )dt,
for all ǫ > 0 and therefore choosing ǫ such that CT 0 M 0 ǫ = 1 2 , we arrive at

T 0 0 wt (t) 2 W dt ≤ 4C 2 T 2 0 M 2 0 T 0 0 u t (t) 2 W dt . (3.19)
From (3.17) and (3.19) we obtain

E(0) ≤ 2c(1 + 4C 2 T 2 0 M 2 0 ) T 0 0 u t (t) 2 W dt ≤ 4c(1 + 4C 2 T 2 0 M 2 0 ) m 0 m 0 2 T 0 0 u t (t) 2 W dt.
(3.20)

From (3.5) and (3.20) we deduce

E(t 1 ) ≤ E(0) ≤ 4c(1 + 4C 2 T 2 0 M 2 0 ) m 0 (E(0) -E(t 1 )),
where we used also the fact that E(•) is decreasing on the time interval [0, t 1 ]. This clearly implies E(t 1 ) ≤ c 0 E(0),

with c 0 = 4c(1 + 4C 2 T 2 0 M 2 0 ) m 0 + 4c(1 + 4C 2 T 2 0 M 2 0 )
.

Theorem 3.3 Under the assumptions of Proposition 3.2, if ∞ n=0 M 2n+1 T 2n+1 < +∞ and ∞ n=0 m 2n 1 + 4C 2 T 2 2n M 2 2n = +∞ , (3.21) 
then system (5.3) -(5.6) is asymptotically stable, that is any solution u of (5.3) -(5.6) satisfies E(u, t) → 0 for t → +∞ .

Proof. Note that (3.6) implies

E ′ (t) ≤ M 2n+1 (ξ + 1 ξ )CE(t), t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), n ∈ IN.
Then we have

E(t 2n+2 ) ≤ e C(ξ+ 1 ξ )M 2n+1 T 2n+1 E(t 2n+1 ), ∀ n ∈ IN. (3.22)
Combining Proposition 3.2 and (3.22) we obtain

E(t 2n+2 ) ≤ e C(ξ+ 1 ξ )M 2n+1 T 2n+1 c n E(t 2n ), n ∈ IN ,
and therefore

E(t 2n+2 ) ≤ Π n p=0 e C(ξ+ 1 ξ )M 2p+1 T 2p+1 c p E(0) . (3.23) 
Then, by (3.23), asymptotic stability occurs if

∞ p=0 [C(ξ + 1 ξ )M 2p+1 T 2p+1 + ln c p ] = -∞ . (3.24)
In particular (3.24) holds true if (3.21) is valid. Indeed, from (3.13),

c p = 1 m 2p 4c(1+4C 2 T 2 2p M 2 2p ) + 1
,

and then ln c p = -ln 1 + m 2p 4c(1 + 4C 2 T 2 2p M 2 2p ) . (3.25) So, if m 2p 1+4C 2 T 2 2p M 2 2p
tends to 0 as p → ∞, then

-ln c p ∼ m 2p 4c(1 + 4C 2 T 2 2p M 2 2p )
.

Consequently if (3.21) holds then ∞ p=0 ln c p = -∞.
Otherwise, if

m 2p 1+4C 2 T 2 2p M 2 2p
does not tend to 0, then, by (3.25), ∞ p=0 ln c p = -∞. Therefore, conditions (3.21) imply (3.24).

We now show that under additional assumptions on the coefficients T n , m n , M n an exponential stability result holds. Theorem 3.4 Assume i), ii) and (3.2). Assume also that the observability inequality (3.10) holds for every time T > T and that

T 2n = T * ∀ n ∈ IN, (3.26) 
with T * satisfying (3.11), and

T 2n+1 = T ∀ n ∈ IN. (3.27)
Moreover, assume that

sup n∈IN e (ξ+ 1 ξ )CM 2n+1 T c n = d < 1, (3.28) 
where c n is as in (3.13). Then, there exist two positive constants γ, µ such that Proof. From (3.28) and (3.23) we obtain

E(t) ≤ γe -µt E(0), t > 0, ( 3 
E(T * + T ) ≤ dE(0),
and also

E(n(T * + T )) ≤ d n E(0), ∀n ∈ IN.
Then, the energy satisfies an exponential estimate like (3.29) (see Lemma 1 of [START_REF] Gugat | Boundary feedback stabilization by time delay for one-dimensional wave equations[END_REF]).

Remark 3.5 In the assumptions of Theorem 3.4, from (3.23) we can see that exponential stability also holds if instead of (3.28) we assume

∃n ∈ IN such that Π k(n+1)+n p=k(n+1) e (ξ+ 1 ξ )CM 2p+1 T c p ≤ d < 1, ∀ k = 0, 1, 2, . . .

Remark 3.6

Our abstract results can be applied to the examples of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], that is damped or locally damped wave equations, elasticity system, Petrovsky system. Therefore, we can improve the stability results for these models.

Stability under the restriction T 2n+1 ≤ τ

We assume now that the length of the delay intervals is lower that the time delay, that is 

T 2n+1 ≤ τ, ∀n ∈ IN . ( 3 
E ′ S (t) ≤ -m 2n u t (t) 2 W 1 . (3.31)
Moreover, on the intervals

I 2n+1 , n ∈ IN, E ′ S (t) ≤ M 2n+1 2 u t (t) 2 W 2 + M 2n+1 2 u t (t -τ ) 2 W 2 .
(3.32)

Proof: Differentiating E S (t) we get

E ′ S (t) = (u t , u) V + (u tt , u t ) H
Hence using the definition of A and (1.1) we get successively

E ′ S (t) = u t , u tt + Au V -V ′ = -u t , B 1 (t)B * 1 (t)u t (t) + B 2 (t)B * 2 (t)u t (t -τ ) V -V ′ .
By the definition of the dual operators, we arrive at

E ′ S (t) = -B * 1 (t)u t (t) 2 U 1 -(B * 2 (t)u t , B * 2 (t)u t (t -τ )) U 2 .
If t ∈ I 2n , then B 2 (t) = 0 and the previous identity becomes

E ′ S (t) = -B * 1 (t)u t (t) 2 U 1 .
This gives, from i), (3.31).

For t ∈ I 2n+1 , as B 1 (t) = 0, the previous identity gives

E ′ S (t) = -(B * 2 (t)u t , B * 2 (t)u t (t -τ )) U 2 ≤ 1 2 B * 2 (t)u t (t) 2 U 2 + 1 2 B * 2 (t)u t (t -τ ) 2 U 2 .
This proves (3.32) using assumption ii).

Proposition 3.8 Assume i), ii) and (3.30). Moreover, we assume that the observability inequality (3.10) holds for every time T > T and that, denoting

T * := inf n {T 2n }, (3.11) is satisfied.
Then, for any solution of system (1.1) -(1.2) we have

E S (t 2n+1 ) ≤ ĉn E S (t 2n ), ∀ n ∈ IN, (3.33) 
where Then, using the observability inequality (3.10), we can estimate

ĉn = 2c(1 + 4C 2 1 T 2 2n M 2 2n ) m 2n + 2c(1 + 4C 2 1 T 2 2n M 2 2n ) , ( 3 
E S (0) = E S (w, 0) ≤ c T * 0 w t (s) 2 W 1 ds. (3.37)
Using the splitting w = uw and the fact that T 0 = t 1 ≥ T * , we deduce that

E S (0) ≤ 2c T 0 0 ( wt (s) 2 W 1 + u t (s) 2 W 1 )ds. (3.38)
Now, observe that from equation (3.14) we deduce

d dt 1 2 ( wt (t) 2 H + w(t) 2 V ) = ( wt , wtt + A w) H = -( wt , B 1 (t)B * 1 (t)u t (t)) H .
Integrating this identity in [0, t] with 0 < t < T 0 , recalling (3.15), and using the assumption i), we get 1 2 ( wt (t

) 2 H + w(t) 2 V ) = - t 0 (B * 1 (s) wt (s), B * 1 (s)u t (s)) H ds ≤ M 0 T 0 0 wt (s) W 1 u t (s) W 1 ds.
(3.39) Integrating (3.39) on [0, t 1 ], we deduce

T 0 0 wt (t) 2 W 1 dt ≤ C 1 T 0 0 wt (t) 2 H dt ≤ 2C 1 T 0 M 0 T 0 0 wt (s) W 1 u t (s) W 1 ds ≤ C 1 T 0 M 0 T 0 0 (ǫ wt (t) 2 W 1 + 1 ǫ u t (t) 2 W 1 )dt,
for all ǫ > 0 and therefore choosing ǫ such that C 1 T 0 M 0 ǫ = 1 2 , we arrive at 

T 0 0 wt (t) 2 W 1 dt ≤ 4C 2 1 T 2 0 M 2 0 T 0 0 u t (t) 2 W 1 dt . ( 3 
E S (0) ≤ 2c(1 + 4C 2 1 T 2 0 M 2 0 ) T 0 0 u t (t) 2 W 1 dt ≤ 2c(1 + 4C 2 1 T 2 0 M 2 0 ) m 0 m 0 T 0 0 u t (t) 2 W 1 dt.
(3.41) From (3.31) and (3.41) we deduce

E S (t 1 ) ≤ E S (0) ≤ 2c(1 + 4C 2 1 T 2 0 M 2 0 ) m 0 (E S (0) -E S (t 1 )),
where we used also the fact that E S (•) is decreasing on the time interval [0, t 1 ]. This clearly implies E S (t 1 ) ≤ ĉ0 E S (0),

with ĉ0 = 2c(1 + 4C 2 1 T 2 0 M 2 0 ) m 0 + 2c(1 + 4C 2 1 T 2 0 M 2 0 )
. Proof. Note that (3.32) implies

Theorem
E ′ S (t) ≤ M 2n+1 C 2 E S (t) + M 2n+1 C 2 E S (t -τ ) ≤ M 2n+1 C 2 E S (t) + M 2n+1 C 2 E S (t 2n+1 ), t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), n ∈ IN,
where we have used (3.30) and the fact that E S (•) is not increasing in the time intervals I 2n .

Remark that the constant C 2 is the one from the norm embedding (3.1) between W 2 and H. Then we have 

E S (t) ≤ e M 2n+1 C 2 (t-t 2n+1 ) E S (t 2n+1 ) + e M 2n+1 C
E S (t 2n+2 ) ≤ e M 2n+1 T 2n+1 C 2 ĉn + e M 2n+1 T 2n+1 C 2 -1 E S (t 2n ), n ∈ IN ,
and therefore

E S (t 2n+2 ) ≤ Π n p=0 e M 2p+1 T 2p+1 C 2 ĉp + e M 2p+1 T 2p+1 C 2 -1 E S (0) . (3.43) 
Then, by (3.43), asymptotic stability occurs if 

∞ p=0 C 2 M 2p+1 T 2p+1 + ln ĉp + 1 -e -M 2p+1 C 2 T 2p+1 = -∞ . ( 3 
m 2p 2c(1+4C 2 1 T 2 2p M 2 2p ) + 1 , it results ln ĉp + 1 -e -M 2p+1 C 2 T 2p+1 ∼ ln ĉp = -ln 1 + m 2p 2c(1 + 4C 2 1 T 2 2p M 2 2p ) . (3.45) So, if m 2p 1+4C 2 1 T 2 2p M 2 2p
tends to 0 as p → ∞, then

-ln ĉp ∼ m 2p 2c(1 + 4C 2 1 T 2 2p M 2 2p )
.

Otherwise, if Also in this case, under additional assumptions on the coefficients T n , m n , M n , an exponential stability result holds. Theorem 3.10 Assume i), ii) and (3.30). Assume also that the observability inequality (3.10) holds for every time T > T and that

m 2p 1+4C 2 1 T 2 2p M 2
T 2n = T * ∀ n ∈ IN, (3.46) 
with T * satisfying (3.11), and

T 2n+1 = T ∀ n ∈ IN, (3.47) 
with T ≤ τ. Moreover, assume that

sup n∈IN e C 2 M 2n+1 T (ĉ n + 1) -1 = d < 1, (3.48) 
where ĉn is as in (3.34). Then, there exist two positive constants γ, μ such that

E S (t) ≤ γe -μt E S (0), t > 0, (3.49) 
for any solution of problem (1.1) -(1.2).

Remark 3.11

In the assumptions of Theorem 3.10, from (3.43) we can see that exponential stability also holds if instead of (3.48) we assume

∃n ∈ IN such that Π k(n+1)+n p=k(n+1) e C 2 M 2p+1 T (ĉ p + 1) -1 ≤ d < 1, ∀ k = 0, 1, 2, . . . Remark 3.
12 Our abstract results can be applied to the examples of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF], that is damped or locally damped wave equations, elasticity system, Petrovsky system when T 2n+1 ≤ τ, ∀ n ∈ IN.

Stability result: B 1 unbounded

In this section B 1 may be unbounded. We assume that there exists a Hilbert space W such that H is continuously embedded into W, i.e.,

u 2 W ≤ C u 2 H , ∀u ∈ H with C > 0 independent of u. (4.1)
Moreover, we assume that V is embedded into U 1 and that for all n ∈ IN, there exist three positive constants m 2n , M 2n and M 2n+1 with m 2n ≤ M 2n such that i)

m 2n u 2 U 1 ≤ B * 1 (t)u 2 U 1 ≤ M 2n u 2 U 1 for t ∈ I 2n = [t 2n , t 2n+1 ), ∀u ∈ V, ∀ n ∈ IN; ii) B * 2 (t)u 2 U 2 ≤ M 2n+1 u 2 W for t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), ∀u ∈ H, ∀ n ∈ IN.
In order to deal with unbounded feedback we will work with the standard energy E S (•). Then, as before, we assume (3.30).

As before we can give the following estimates on the time intervals I 2n , I 2n+1 , n ∈ IN. 

E ′ S (t) ≤ -B * 1 (t)u t (t) 2 U 1 . (4.2)
Moreover, on the intervals I 2n+1 , n ∈ IN, the estimate (3.32) holds (with W instead of W 2 .)

Consider now the damped system with (w n 0 , w n 1 ) ∈ V ×H. For our stability result we need that the next observability type inequality holds. Namely we assume that, for every n there exists a time T n , such that

w tt (t) + Aw(t) + B 1 (t)B * 1 (t)w t = 0, t ∈ (t 2n , t 2n+1 ), n ∈ IN, (4.3 
T 2n > T n , (4.5) 
and for every n and every time T, with T 2n ≥ T > T n , there is a constant d n , depending on T but independent of (w n 0 , w n 1 ), such that 

E S (t 2n + T ) ≤ d n t 2n +T t 2n B * 1 (t)w t (t) 2 U 1 dt, ( 4 
∞ n=0 ln dn = -∞
is automatically satisfied. On the other hand, the first condition in (4.9) depends only on the length of the intervals I 2n+1 and on the boundedness constant of B * 2 on the same intervals, hence (4.9) can be easily checked. Also in this case, under additional assumptions on the coefficients T n , m n , M n , an exponential stability result holds. where dn is as in (4.8), then, there exist two positive constants γ, μ such that

E S (t) ≤ γe -μt E S (0), t > 0, (4.11) 
for any solution of problem (1.1) -(1.2). Hence (4.10) is verified if sup n∈IN M 2n+1 is small enough. This is a quite realistic assumption because then the influence of the delay term is small and the action of the standard dissipation sufficiently compensates it to guarantee an exponential decay.

Examples

Here we apply our abstract results to some concrete models. Note that the following examples are not included in the setting of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF].

The wave equation with internal and boundary dampings

Our first application concerns the wave equation with boundary feedback and internal delay term. Let Ω ⊂ IR n be an open bounded domain with a boundary ∂Ω of class C 2 . We assume that ∂Ω is composed of two closed sets ∂Ω = Γ 0 ∪ Γ 1 , with Γ 0 ∩ Γ 1 = ∅ and meas Γ 1 > 0.

Denoting by m the standard multiplier m(x) = xx 0 , x 0 ∈ IR n , we assume that the

m(x) • ν(x) ≤ 0, for x ∈ Γ 1 , (5.1) 
and, for some δ > 0,

m(x) • ν(x) ≥ δ, for x ∈ Γ 0 , (5.2) 
where ν(x) is the outer unit normal vector at x ∈ ∂Ω. Given ω ⊆ Ω, let us consider the initial boundary value problem

u tt (x, t) -∆u(x, t) + b 2 (t)χ ω u t (x, t -τ ) = 0 in Ω × (0, +∞) (5.3) u(x, t) 
= 0 on Γ 1 × (0, +∞) (5.4) ∂u ∂ν (x, t) = -b 1 (t)u t (x, t) on Γ 0 × (0, +∞) (5.5) 
u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω (

with initial data (u 0 , u 1 ) ∈ H 1 Γ 1 (Ω) × L 2 (Ω), where as usual

H 1 Γ 1 (Ω) := { u ∈ H 1 (Ω) : u = 0 on Γ 1 }, and b 1 , b 2 in L ∞ (0, +∞). On the feedback functions b 1 (•), b 2 (•), we assume b 1 (t)b 2 (t) = 0, ∀ t > 0,
in order to have an intermittent delay problem. We refer to [START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay[END_REF] for the analysis of this problem when b 1 , b 2 are constant in time, in other words the delayed damping and the standard boundary one are acting simultaneously for every time t > 0. Moreover, we assume

b 1 ∈ W 2,∞ (I 2n ), ∀ n ∈ IN, and i w ) 0 < m 2n ≤ b 1 (t) ≤ M 2n , b 2 (t) = 0, for all t ∈ I 2n = [t 2n , t 2n+1 ), and b 1 ∈ C 1 ( Ī2n ), for all n ∈ IN; ii w ) |b 2 (t)| ≤ M 2n+1 , b 1 (t) = 0, for all t ∈ I 2n+1 = [t 2n+1 , t 2n+2 ), and b 2 ∈ C( Ī2n+1 ), for all n ∈ IN.
This problem enters into our previous framework, if we take H = L 2 (Ω) and the operator A defined by

A : D(A) → H : u → -∆u, where D(A) =: { u ∈ H 1 Γ 1 (Ω) : ∆u ∈ L 2 (Ω) and ∂u ∂ν = 0 on Γ 0 }.
We then define U 1 := L 2 (Γ 0 ), U 2 := L 2 (ω) and the operators B 1 (t), B 2 (t) as

B 2 ∈ L(U 2 ; H), B 2 u = b 2 ũ, ∀ u ∈ L 2 (ω),
and

B 1 ∈ L(U 1 ; V ′ ), B 1 u = b 1 A -1 N u, ∀ u ∈ L 2 (Γ 0 ), B * 1 w = b 1 w |Γ 0 , ∀ w ∈ V := D(A 1/2 ),
where A -1 is the extension of A to H, namely for all h ∈ H and ϕ ∈ D(A), A -1 h is the unique element in (D(A)) ′ (the duality is in the sense of H), such that (see for instance [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF])

A -1 h; ϕ (D(A)) ′ ,D(A) = Ω hAϕ dx.
Here and below N ∈ L(L 2 (Γ 0 ); L 2 (Ω)) is defined as follows: for all v ∈ L 2 (Γ 0 ), N v is the unique solution (transposition solution) of

∆N v = 0, N v |Γ 1 = 0, ∂N v ∂ν |Γ 0 = v.
With these definitions, we can show that problem (5.3)-(5.6) enters in the abstract framework (1.1)-(1.2) and that the assumptions i) and ii) of section 4 hold with W = L 2 (ω).

As B 1 is not bounded, we need to consider the non delayed system

w tt (x, t) -∆w(x, t) = 0 in Ω × (0, +∞) (5.7) 
w(x, t) = 0 on Γ 1 × (0, +∞) (5.8) ∂w ∂ν (x, t) = -f (t)w t (x, t), x ∈ Γ 0 , t > 0 (5.9)

w(x, 0) = w 0 (x) and w t (x, 0) = w 1 (x) in Ω (5.10) with (w 0 , w 1 ) ∈ H 1 Γ 1 (Ω) × L 2 (Ω) and f ∈ L ∞ (0, +∞), f (t) ≥ 0 a.e. t > 0.

Proposition 5.1 There exists a time T > 0 such that for every T > T , there are constants α i , i = 1, 2, 3, for which

(T -T )E S (T ) ≤ α 1 T 0 Γ 0 ∂w ∂ν 2 (x, t)dΓdt+α 2 T 0 Γ 0 f (t)w 2 t (x, t)dΓdt+α 3 T 0 Γ 0 w 2 t (x, t)dΓdt, (5.11 
) for any weak solution of (5.7)-(5.10). The constants α i , i = 1, 2, 3, are independent of the initial data and of the function f (•), but they depend on T and on Ω.

Proof. The estimate (5.11) can be easily obtained from a standard multiplier argument (cfr. (3.11)-(3.16) of [START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF]).

Then, from Proposition 5.1, we deduce that there exists a time T > 0 such that, assuming T 2n > T , ∀ n ∈ IN, then for every n and every time T with T 2n ≥ T > T , there is a constant d n for which (4.6) holds for any weak solution of (5.7) -(5.10).

From (5.11) Proof. We have only to show that the second condition of (5.14) implies the second condition of (4.9), namely in this case

∞ n=0 ln α 1 M 2n m 2n + α 2 m 2n + α 3 α 1 M 2n m 2n + α 2 m 2n + α 3 + m 2n (T 2n -T ) = -∞. Now, observe that ln α 1 M 2n m 2n + α 2 m 2n + α 3 α 1 M 2n m 2n + α 2 m 2n + α 3 + m 2n (T 2n -T ) = -ln 1 + m 2n (T 2n -T ) α 1 M 2n m 2n + α 2 m 2n + α 3 ,
then we can conclude arguing as in the proof of Theorem 3.9. 

where dn = α 1 M 2n m 2n + α 2 m 2n + α 3 α 1 M 2n m 2n + α 2 m 2n + α 3 + m 2n (T 2n -T ) ,
then there exist two positive constants γ, μ such that E S (t) ≤ γe -μt E S (0), t > 0, (5.16) for any solution of problem (5.3) -(5.6).

As in the abstract setting (see Remarks 4.4 and 4.6), explicit conditions on b 1 , b 2 and T 2n can be found in order to get exponential decay.

The wave equation with internal delayed/undelayed feedbacks

Here we consider the wave equation with local internal damping and internal delay. More precisely, let Ω ⊂ IR n be an open bounded domain with a boundary ∂Ω of class C 2 . Denoting by m, as before, the standard multiplier m(x) = xx 0 , x 0 ∈ IR n , let ω 1 be the intersection of Ω with an open neighborhood of the subset of ∂Ω

Γ 0 = { x ∈ ∂Ω : m(x) • ν(x) > 0 }.
(5.17)

Let us consider the initial boundary value problem

u tt (x, t) -∆u(x, t) + b 1 (t)χ ω 1 u t (x, t) + b 2 (t)χ ω 2 u t (x, t -τ ) = 0 in Ω × (0, +∞) (5.18) u(x, t) = 0 on ∂Ω × (0, +∞) (5.19) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω (5.20) with initial data (u 0 , u 1 ) ∈ H 1 0 (Ω) × L 2 (Ω) and b 1 , b 2 in L ∞ (0, +∞) such that b 1 (t)b 2 (t) = 0, ∀ t > 0.
Moreover, we assume i w ) and ii w ). This problem enters into our previous framework, if we take H = L 2 (Ω) and the operator A defined by

A : D(A) → H : u → -∆u, where D(A) = H 1 0 (Ω) ∩ H 2 (Ω)
. The operator A is a self-adjoint and positive operator with a compact inverse in H and is such that V = D(A 1/2 ) = H 1 0 (Ω). We then define U i = L 2 (ω i ) and the operators B i , i = 1, 2, as

B i : U i → H : v → b i ṽχ ω i , (5.21) 
where ṽ ∈ L 2 (Ω) is the extension of v by zero outside ω i . It is easy to verify that

B * i (ϕ) = b i ϕ |ω i for ϕ ∈ H,
and thus (3.1) holds with W i = L 2 (ω i ), while B i B * i (ϕ) = b i ϕχ ω i , for ϕ ∈ H and i = 1, 2. This shows that problem (5.18)-(5.20) enters in the abstract framework (1.1)-(1.2). Moreover, i w ) and ii w ) easily imply i) and ii) of sect. 3. Therefore we can restate Proposition 3.1. Now, the energy functional is

E(t) = 1 2 Ω {u 2 t (x, t) + |∇u(x, t)| 2 }dx + ξ 2 t t-τ |b 2 (s + τ )| ω u 2 t (x, s)dxds. ( 5 

.22)

Consider now the conservative system w tt (x, t) -∆w(x, t) = 0 in Ω × (0, +∞) (5.23)

w(x, t) = 0 on ∂Ω × (0, +∞) (5.24) w(x, 0) = w 0 (x) and w t (x, 0) = w 1 (x) in Ω (5.25) with (w 0 , w 1 ) ∈ H 1 0 (Ω) × L 2 (Ω). It is well-known that an observability inequality holds (see e.g. [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF][START_REF] Komornik | Exact controllability and stabilization, the multiplier method[END_REF][START_REF] Komornik | Fourier series in control theory[END_REF][START_REF] Lagnese | Control of wave processes with distributed control supported on a subregion[END_REF][START_REF] Lasiecka | Uniform exponential decay in a bounded region with L 2 (0, T ; L 2 (Σ))-feedback control in the Dirichlet boundary conditions[END_REF][START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués[END_REF][START_REF] Liu | Locally distributed control and damping for the conservative systems[END_REF][START_REF] Zuazua | Exponential decay for the semi-linear wave equation with locally distributed damping[END_REF]): There exists a time T > 0 such that for every time T > T there is a constant c, depending on T but independent of the initial data, such that

E S (0) ≤ c T 0 ω 1 w 2 t (x, s)dxds, (5.26) 
for every weak solution of problem (5.23) -(5.25).

In the case ω 1 = ω 2 we can apply the results of section 3.1. Therefore we can restate Proposition 3. where c n is as in (5.28). Then, there exist two positive constants γ, µ such that E(t) ≤ γe -µt E(0), t > 0, (5.31) for any solution of problem (5.18) -(5.20).

Remark 5.8 The case ω 1 = ω 2 was already considered in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]. Note that we significantly improve previous stability results (cfr. Theorems 4.3 and 4.4 in [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF]).

Under the restriction (3.30) we can obtain stability results also in the case ω 1 = ω 2 . Note that the sets ω 1 and ω 2 may also have empty intersection.

Indeed, we can restate Proposition 3.8 and Theorem 3.9 for our concrete model. Proposition 5.9 Assume i w ), ii w ) and (3.30). Moreover, we assume that the observability inequality (5.26) holds for every time T > T and that, denoting T * := inf n {T 2n }, (3.11) is satisfied. Then, for any solution of system (5. Under more restrictive assumption also an exponential stability estimate holds. where ĉn is as in (5.33). Then, there exist two positive constants γ, μ such that E S (t) ≤ γe -μt E S (0), t > 0, (5.35) for any solution of problem (5.18) -(5.20).

Remark 5.12 Note that the case ω 1 = ω 2 is not covered from the abstract setting of [START_REF] Nicaise | Asymptotic stability of second-order evolution equations with intermittent delay[END_REF].

  .29) for any solution of problem (1.1) -(1.2).

  .30) We look at the standard energy E S (•). We can give the following estimates on the time intervals I 2n , I 2n+1 , n ∈ IN. Proposition 3.7 Assume i), ii) and (3.30). For any regular solution of problem (1.1) -(1.2) the energy is decreasing on the intervals I 2n , n ∈ IN, and

  .34) c being the observability constant in (3.10) corresponding to the time T * and C 1 the constant in the norm embedding (3.1) between W 1 and H.

Proof.

  It is sufficient to prove the estimate (3.33) in the interval I 0 = [0, t 1 ). We can proceed analogously in the other intervals I 2n , n ∈ IN.We can decompose u = w + w where w is a solution of system (3.7) -(3.8) with w 0 = u 0 , w 1 = u 1 ; while w solves wtt (t) + A w(t) = -B 1 (t)B * 1 (t)u t (t) E S (u, 0) = E S (w, 0).

2p

  does not tend to 0, then, by(3.45), ∞ p=0 ln ĉp = -∞. Therefore, conditions (3.21) imply ∞ p=0 ln ĉp = -∞ and then (3.44).

Proposition 4 . 1

 41 Assume i), ii) and (3.30). For any regular solution of problem (1.1) -(1.2) the energy is decreasing on the intervals I 2n , n ∈ IN, and

) w(t 2n ) = w n 0 and w t (t 2n ) = w n 1 ( 4

 014 

Theorem 4 . 5

 45 Assume i), ii) and (3.30). Assume also that (3.46) holds with T * satisfying T * ≥ τ and that inequality (4.6) holds, ∀ n ∈ IN, for every time T with T * ≥ T > T . Moreover, assume T 2n+1 = T , for all n ∈ IN, with T ≤ τ. If sup n∈IN e CM 2n+1 T ( dn + 1) -1 < 1, (4.10)

Remark 4 . 6

 46 If dn ≤ d < 1 (see Remark 4.4), then (4

Remark 5 . 3

 53 If T 2n = T * and M 2n = M * as well as m 2n = m * , then (5.14) holds if the easily checked condition ∞ n=0 M 2n+1 T 2n+1 < +∞ holds (since the second condition of (5.14) automatically holds). Similarly using Theorem 4.5, we directly can state the Theorem 5.4 Assume that i w ), ii w ) and (3.30) hold, that T 2n = T * , for all n ∈ IN, with T * satisfying T * ≥ τ and T * > T with T from Proposition 5.1. Moreover, assume T 2n+1 = T , for all n ∈ IN with T ≤ τ. If sup n∈IN e CM 2n+1 T ( dn + 1) -1 < 1, (5.15)

4 . 5 . 5 Theorem 5 . 6 Theorem 5 . 7 Moreover, assume that sup n∈IN e (ξ+ 1 ξ

 45556571 2 and Theorems 3.3 and 3.Proposition Assume ω 1 = ω 2 , i w ), ii w ) and (3.2) are satisfied. Moreover, we assume that the observability inequality (5.26) holds for every time T > T and that, denoting T * := inf n {T 2n }, the assumption (3.11) holds. Then, for any solution of system (5.18) -(5.20) we haveE(t 2n+1 ) ≤ c n E(t 2n ), ∀ n ∈ IN,(5.27)wherec n = 4c(1 + 4T 2 2n M 2 2n ) m 2n + 4c(1 + 4T 2 2n M 2 2n ) , (5.28) c being the observability constant in (5.26) corresponding to the time T * and C the constant in the norm embedding (3.1) between W and H. Under the assumptions of Proposition 5.5, if ∞ n=0 M 2n+1 T 2n+1 < +∞ and then system (5.18) -(5.20) is asymptotically stable, that is any solution u of (5.18) -(5.20) satisfies E(u, t) → 0 for t → +∞ . Assume ω 1 = ω 2 , i w ), ii w ) and (3.2) are satisfied. Assume also that the observability inequality (5.26) holds for every time T > T and that T 2n = T * ∀ n ∈ IN, with T * satisfying (3.11), and T 2n+1 = T ∀ n ∈ IN. )M 2n+1 T c n = d < 1, (5.30)

Theorem 5 . 11

 511 Assume i w ), ii w ) and(3.30). Assume also that the observability inequality (5.26) holds for every time T > T and thatT 2n = T * ∀ n ∈ IN,with T * satisfying (3.11), and T 2n+1 = T ∀ n ∈ IN, with T ≤ τ. Moreover, assume that sup n∈IN e M 2n+1 T (ĉ n + 1) -1 = d < 1, (5.34)

  3.9 Under the assumptions of Proposition 3.8, if (3.21) holds, then system (1.1) -(1.2) is asymptotically stable, that is any solution u of (1.1) -(1.2) satisfies E

S (u, t) → 0 for t → +∞ .

  Assume i), ii),(3.30) and T 2n ≥ τ, ∀ n ∈ IN. Moreover, we assume that there is a sequence {T n } n , such that (4.5) is satisfied and the inequality (4.6) holds for every T ∈ (T n , T 2n ], ∀ n ∈ IN. Then, for any solution of system (1.1) -(1.2) we have To prove (4.7) is sufficient to use the estimate (4.2) in (4.6), reminding that B 2 (t) = 0 on (t 2n , t 2n+1 ). Under the assumptions and with the same notations of Proposition 4.2, if In fact d n depends on n because by hypothesis B 1 may depend on the time variable. However, if B 1 does not depend on t, then by a translation of t 2n the constant d n becomes independent of n. But if d n = d > 0 for all n, then the condition

	Theorem 4.3 ∞			∞	
		M 2n+1 T 2n+1 < +∞ and	ln dn = -∞,	(4.9)
	n=0			n=0	
	then system (1.1) -(1.2) is asymptotically stable, that is any solution u of (1.1) -(1.2) satisfies
	E S (u, t) → 0 for t → +∞ .				
	Remark 4.4				
					.6)
	for every weak solution of problem (1.1), (1.2) with initial data (w n 0 , w n 1 ) ∈ V × H.	
	Proposition 4.2 E S (t 2n+1 ) ≤ dn E S (t 2n ), ∀ n ∈ IN,	(4.7)
	where	dn =	d n d n + 1	,	(4.8)

d n being the observability constant in (4.6) corresponding to the time T 2n .

Proof.

  with f (t) = b 1 (tt 2n ) and the boundary condition (5.5) we deduce the explicit dependence of d n from the feedback function b 1 , that is E S (t 2n+1 ) ≤ d n Under the assumptions i w ), ii w ) and (3.30), if T * := inf n T 2n satisfies (3.11) and -(5.6) is asymptotically stable, that is any solution u of (5.3) -(5.6) satisfies E S (u, t) → 0 for t → +∞ .

			t 2n+1 t 2n	Γ 0	b 1 (t)u 2 t (x, t)dtdΓ, ∀ n ∈ IN,	(5.12)
	with	d n :=	α 1 M 2n m 2n + α 2 m 2n + α 3 m 2n (T 2n -T )	, ∀ n ∈ IN.	(5.13)
	Therefore, we can restate Theorem 4.3 under more explicit conditions.
	Theorem 5.2 ∞ n=0	M 2n+1 T 2n+1 < +∞ and	∞ n=0	m 2n (T 2n -T ) α 1 M 2n m 2n + α 2 m 2n + α 3	= +∞,	(5.14)
	then system (5.3)				

  18) -(5.20) we have E S (t 2n+1 ) ≤ ĉn E S (t 2n ), ∀ n ∈ IN, (5.32) c being the observability constant in (5.26) corresponding to the time T * . Theorem 5.10 Under the assumptions of Proposition 5.9, if (3.21) holds, then system (5.18) -(5.20) is asymptotically stable, that is any solution u of (5.18) -(5.20) satisfies E S (u, t) → 0 for t → +∞ .

	where	ĉn =	2c(1 + 4T 2 2n M 2 2n ) m 2n + 2c(1 + 4T 2 2n M 2 2n )	,	(5.33)