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Università di L’Aquila

Via Vetoio, Loc. Coppito, 67010 L’Aquila Italy

Abstract

We consider second–order evolution equations in an abstract setting with intermittently
delayed/not–delayed damping. We give sufficient conditions for asymptotic and exponential
stability, improving and generalising our previous results from [19]. In particular, under
suitable conditions, we can consider unbounded damping operators. Some concrete examples
are finally presented.
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1 Introduction

Let H be a real Hilbert space and let A : D(A) → H be a positive self–adjoint operator

with a compact inverse in H. Denote by V := D(A
1

2 ) the domain of A
1

2 . Moreover, for i = 1, 2,
let Ui be real Hilbert spaces with norm and inner product denoted respectively by ‖ · ‖Ui

and
〈·, ·〉Ui

and let Bi(t) : Ui → V ′, be time–dependent linear operators satisfying

B1(t)B2(t) = 0, ∀t > 0.

Let us consider the problem

utt(t) +Au(t) +B1(t)B
∗
1(t)ut(t) +B2(t)B

∗
2(t)ut(t− τ) = 0 t > 0 (1.1)

u(0) = u0 and ut(0) = u1 (1.2)

where the constant τ > 0 is the time delay. We assume that the delay feedback operator B2 is
bounded, that is B2 ∈ L(U2,H), while the standard one B1 ∈ L(U1, V

′) may be unbounded.
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Time delay effects appear in many applications and practical problems and it is by now
well–known that even an arbitrarily small delay in the feedback may destabilize a system wich
is uniformly exponentially stable in absence of delay. For some examples of this destabilizing
effect of time delays we refer to [4, 5, 17, 22].

In [17] we considered the wave equation with both dampings acting simultaneously, that is
B1(t) = µ1 and B2(t) = µ2, with µ1, µ2 ∈ IR+, and we proved that if µ1 > µ2 then the system
is uniformly exponentially stable. Otherwise, if µ2 ≥ µ1, that is the delay term prevails on the
not delayed one, then there are instability phenomena, namely there are unstable solutions for
arbitrarily small (large) delays.

In [19] we firstly considered second–order evolution equations with intermittent delay, this
means that the standard damping and the delayed one act in different time intervals. This
is clearly related to the stabilization problem of second–order evolution equations damped by
positive/negative feedbacks. We refer for this subject to [7]. See also [20] for the link between
wave equation with time delay in the damping and wave equation with indefinite damping,
namely damping which may change sign in different subsets of the domain.

Assuming that an observability inequality holds for the conservative model associated with
(1.1)–(1.2) and, through the definition of a suitable energy (see (3.3)), we obtained in [19]
sufficient conditions ensuring asymptotic stability. Under more restrictive assumptions an expo-
nential stability estimate was also obtained. Our abstract framework was then applied to some
concrete examples, namely the wave equation, the elasticity system and the Petrovsky system.

We mention that a similar problem has been considered in [2] for 1-d models for the wave
equation but with a different approach. Indeed, in [2] we obtain stability results for particular
values of the time delays, related to the length of the domain, by using the D’Alembert formula.

Here we improve the results of [19] removing a quite restrictive assumption on the size
of the “bad” terms, that is the terms with time delay (cfr. assumption (3.3) of [19]). Indeed,
as we expect from [7] and considering the relation between delay problems and problems with
anti–damping, the delay feedback operator B2 may be also large but on small time intervals.
Moreover, under an additional assumption on the size of the time intervals where only the
delay feedback acts, we give stability results also for B1 unbounded, while the method in [19]
is applicable only for bounded damping operators B1. Some new examples, not covered by the
analysis of [19], are illustrated. Furthermore, we point out the improvement for examples already
considered there.

The paper is organized as follows. In section 2 a well–posedness result of the abstract system
is proved. In section 3 we obtain, for B1 bounded, asymptotic and exponential stability results
for the abstract model under suitable conditions, improving the results of [19]. In section 4,
under an additional condition on the length of the delay intervals, we obtain stability results
valid for B1 non necessarily bounded. Finally, in section 5, we illustrate our abstract results by
some concrete applications.

2 Well-posedness

In this section we will give well-posedness results for problem (1.1)–(1.2) using semigroup
theory.

We assume that for all n ∈ IN, there exists tn > 0 with tn < tn+1 and such that

B2(t) = 0 ∀ t ∈ I2n = [t2n, t2n+1),
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B1(t) = 0 ∀ t ∈ I2n+1 = [t2n+1, t2n+2),

with B2 ∈ C([t2n+1, t2n+2];L(U2,H)); for the operators B1, we assume either

B1 ∈ C1([t2n, t2n+1];L(U1,H))

or
B1(t) =

√

b1(t)Cn,

with Cn ∈ L(U1, V
′)) and b1 ∈ W 2,∞(t2n, t2n+1) such that

b1(t) > 0, ∀ t ∈ I2n.

We further assume that τ ≤ T2n for all n ∈ IN, where Tn denotes the lengt of the interval
In, that is

Tn = tn+1 − tn, n ∈ IN . (2.1)

Under these assumptions, we obtain the following result

Theorem 2.1 Under the above assumptions, for any u0 ∈ V and u1 ∈ H, the system (1.1) −
(1.2) has a unique solution u ∈ C([0,∞);V ) ∩ C1([0,∞);H).

Proof. The case B1 ∈ C1([t2n, t2n+1];L(U1,H)) was treated in Theorem 2.1 of [19], hence we
concentrate on the case when B1 is not bounded. In view of the proof of Theorem 2.1 of [19]
and the assumption on B1, we only need to prove existence in the interval (0, t1) of the problem

utt(t) +Au(t) + b1(t)C1C
∗
1ut(t) = 0 t > 0 (2.2)

u(0) = u0 and ut(0) = u1. (2.3)

Here the difficulty is that a priori the domain of the operator

A(t)(u, v)⊤ = (v,−Au − b1(t)C1C
∗
1v)

⊤

will depend on t since it requires that Au+B1(t)B
∗
1(t)v has to be in H. Hence we cannot directly

use the theory developed by Kato, see [8, 9].
The solution is to set (for shorthness the index 1 is suppressed in the remainder of the

proof)
U = (u, but)

⊤,

that satisfies formally
Ut = A(t)U, U(0) = (u0, b(0)u1) ∈ V ×H,

where
A(t)(u, v)⊤ = (b−1v, b′b−1v − bAu− bCC∗v).

The main idea is that the domain of this new operator is independent of t, since it is given by

D(A(t)) = {(u, v)⊤ ∈ V × V : Au+ CC∗v ∈ H}.

Now we introduce the time–depending inner product (on V ×H)

((u, v)⊤, (ũ, ṽ)⊤)t = b2(t)(A1/2u,A1/2ũ)H + (v, ṽ)H , ∀(u, v)⊤, (ũ, ṽ)⊤ ∈ V ×H,
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and let ‖U‖t = (U,U)
1/2
t its associated norm. It is easy to check that (see for instance Theorem

2.3 of [18])
‖U‖t ≤ ‖U‖se

κ|t−s|, ∀ t, s ∈ (0, t1),

where κ = maxt∈[0,t1]
|b′(t)|
b(t) .

It is a simple exercise to check that

Ã(t) = A(t)− κId

generates a C0–semigroup of contraction on V ×H (that is dissipative for inner product (·, ·)t).
By the assumption on b, we deduce that Ã = {Ã(t); t ∈ [0, t1]} and Y = D(A(0)) forms a
CD–system (or constant domain system) in the sense of Kato, see [8, 9]. In other words, for all
U0 = (u0, b(0)u1) ∈ V × H (resp. D(A(0))), there exists a unique mild (resp. strong) solution
Ũ ∈ C([0, t1];V ×H) (resp. Ũ ∈ C([0, t1];D(A(0))) ∩ C1([0, t1];V ×H)) of

Ũt(t) = Ã(t)Ũ (t), t > 0, U(0) = U0.

Setting
U(t) = eκtŨ(t),

we deduce that it is a mild (resp. strong) solution of

Ut(t) = A(t)Ũ(t), t > 0, U(0) = U0.

Coming back to the definition of A(t), we find that u is a solution of (2.2)–(2.3).

3 Stability result: B1 bounded

In this section we assume B1 bounded. To get stability we assume that there exist Hilbert
spaces Wi, i = 1, 2, such that H is continuously embedded into Wi, i.e.

‖u‖2Wi
≤ Ci‖u‖

2
H , ∀u ∈ H with Ci > 0 independent of u. (3.1)

Moreover, we assume that for all n ∈ IN, there exist three positive constants m2n, M2n and
M2n+1 with m2n ≤ M2n and such that for all u ∈ H we have

i) m2n‖u‖
2
W1

≤ ‖B∗
1(t)u‖

2
U1

≤ M2n‖u‖
2
W1

for t ∈ I2n = [t2n, t2n+1), ∀ n ∈ IN;

ii)‖B∗
2 (t)u‖

2
U2

≤ M2n+1‖u‖
2
W2

for t ∈ I2n+1 = [t2n+1, t2n+2), ∀ n ∈ IN.

3.1 Stability without restriction on the delay time intervals

In this section we assume W1 = W2 and we use the notation

W := W1 = W2.

Moreover, we assume

inf
n∈IN

m2n

M2n+1
> 0. (3.2)
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Note that assumption (3.3) in [19] is instead equivalent to

m2n

M2n+1
>

1

2
.

Let us introduce the energy of the system

E(t) = E(u; t) :=
1

2

(

‖u(t)‖2V + ‖ut(t)‖
2
H +

ξ

2

∫ t

t−τ
‖B∗

2(s+ τ)ut(s)‖
2
U2
ds
)

, (3.3)

where ξ is a positive number satisfying

ξ < inf
n∈IN

m2n

M2n+1
. (3.4)

Proposition 3.1 Assume i), ii) and (3.2). For any regular solution of problem (1.1)− (1.2) the
energy is decreasing on the intervals I2n, n ∈ IN, and

E′(t) ≤ −
m2n

2
‖ut‖

2
W . (3.5)

Moreover, on the intervals I2n+1, n ∈ IN,

E′(t) ≤
M2n+1

2
(ξ +

1

ξ
)‖ut‖

2
W . (3.6)

Proof: Differentiating E(t) we get

E′(t) = (ut, u)V + (utt, ut)H +
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2

−
ξ

2
‖B∗

2(t)ut(t− τ)‖2U2
.

Then, using the definition of A and (1.1) we obtain

E′(t) = 〈ut, utt +Au〉V−V ′ +
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2

−
ξ

2
‖B∗

2(t)ut(t− τ)‖2U2

= −〈ut, B1(t)B
∗
1(t)ut(t) +B2(t)B

∗
2(t)ut(t− τ)〉V−V ′

+
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2

−
ξ

2
‖B∗

2(t)ut(t− τ)‖2U2
.

By the definition of the dual operators, we arrive at

E′(t) = −‖B∗
1(t)ut(t)‖

2
U1

− (B∗
2(t)ut, B

∗
2(t)ut(t− τ))U2

+
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2

−
ξ

2
‖B∗

2(t)ut(t− τ)‖2U2
.

If t ∈ I2n, then B2(t) = 0 and the previous identity gives

E′(t) = −‖B∗
1(t)ut(t)‖

2
U1

+
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2
.

Since T2n = |I2n| ≥ τ, it results that t+ τ ∈ I2n ∪ I2n+1 ∪ I2n+2. Now, if t+ τ ∈ I2n ∪ I2n+2, then
B2(t+ τ) = 0. Therefore, B2(t+ τ) 6= 0 only if t+ τ ∈ I2n+1. In both cases, by our assumptions
i) and ii), we get (3.5).
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For t ∈ I2n+1, as B1(t) = 0, the previous identity becomes

E′(t) = −(B∗
2(t)ut, B

∗
2(t)ut(t− τ))U2

+
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2

−
ξ

2
‖B∗

2(t)ut(t− τ)‖2U2
.

By Young’s inequality we get

E′(t) ≤
1

2ξ
‖B∗

2(t)ut(t)‖
2
U2

+
ξ

2
‖B∗

2(t+ τ)ut(t)‖
2
U2
.

This proves (3.6) using assumption ii) because t+ τ is either in I2n+1, or in I2n+2 and in that
last case B∗

2(t+ τ) = 0.

Consider now the conservative system associated with (1.1)–(1.2)

wtt(t) +Aw(t) = 0 t > 0 (3.7)

w(0) = w0 and wt(0) = w1 (3.8)

with (w0, w1) ∈ V ×H. Denote by ES(·) the standard energy for wave type equations, that is

ES(t) = ES(w, t) :=
1

2
(‖w‖2V + ‖wt‖

2
H). (3.9)

For our stability result we need that a suitable observability inequality holds. Namely we
assume that there exists a time T > 0 such that for every time T > T there is a constant c,

depending on T but independent of the initial data, such that

ES(0) ≤ c

∫ T

0
‖wt(s)‖

2
W ds, (3.10)

for every weak solution of problem (3.7)− (3.8) with initial data (w0, w1) ∈ V ×H.

Proposition 3.2 Assume i), ii) and (3.2). Moreover, we assume that the observability inequality
(3.10) holds for every time T > T and that, denoting T ∗ := infn{T2n}, it is

T ∗ > T, T ∗ ≥ τ . (3.11)

Then, for any solution of system (1.1)− (1.2) we have

E(t2n+1) ≤ cnE(t2n), ∀ n ∈ IN, (3.12)

where

cn =
4c(1 + 4C2T 2

2nM
2
2n)

m2n + 4c(1 + 4C2T 2
2nM

2
2n)

, (3.13)

c being the observability constant in (3.10) corresponding to the time T ∗ and C the constant in
the norm embedding (3.1) between W and H.

Proof. It is sufficient to prove the estimate (3.12) in the interval I0 = [0, t1). We can proceed
analogously in the other intervals I2n, n ∈ IN.

We can decompose
u = w + w̃
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where w is a solution of system (3.7)− (3.8) with w0 = u0, w1 = u1; while w̃ solves

w̃tt(t) +Aw̃(t) = −B1(t)B
∗
1(t)ut(t) t > 0 (3.14)

w̃(0) = 0 and w̃t(0) = 0 (3.15)

First we have

E(0) = ES(w, 0) +
1

2

∫ 0

−τ
‖B∗

2(s+ τ)ut(s)‖
2
U2
ds = ES(w, 0),

because for s ∈ (−τ, 0), s + τ < τ < t1. Now using the observability inequality (3.10) we can
estimate

E(0) = ES(w, 0) ≤ c

∫ T ∗

0
‖wt(s)‖

2
W ds. (3.16)

Using the splitting w = u− w̃ and the fact that T0 = t1 ≥ T ∗, we deduce that

E(0) ≤ 2c

∫ T0

0
(‖w̃t(s)‖

2
W + ‖ut(s)‖

2
W )ds. (3.17)

Now, observe that from equation (3.14) we deduce

d

dt

1

2
(‖w̃t(t)‖

2
H + ‖w̃(t)‖2V ) = (w̃t, w̃tt +Aw̃)H = −(w̃t, B1(t)B

∗
1(t)ut(t))H .

Integrating this identity in [0, t] with 0 < t < T0, recalling (3.15), and using the assumption i),
we get

1

2
(‖w̃t(t)‖

2
H + ‖w̃(t)‖2V ) = −

∫ t

0
(B∗

1(s)w̃t(s), B
∗
1(s)ut(s))Hds

≤ M0

∫ T0

0
‖w̃t(s)‖W ‖ut(s)‖W ds.

(3.18)

Integrating (3.18) on [0, t1], we deduce

∫ T0

0
‖w̃t(t)‖

2
W dt ≤ C

∫ T0

0
‖w̃t(t)‖

2
Hdt ≤ 2CT0M0

∫ T0

0
‖w̃t(s)‖W ‖ut(s)‖W ds

≤ CT0M0

∫ T0

0
(ǫ‖w̃t(t)‖

2
W +

1

ǫ
‖ut(t)‖

2
W )dt,

for all ǫ > 0 and therefore choosing ǫ such that CT0M0ǫ =
1
2 , we arrive at

∫ T0

0
‖w̃t(t)‖

2
W dt ≤ 4C2T 2

0M
2
0

∫ T0

0
‖ut(t)‖

2
W dt . (3.19)

From (3.17) and (3.19) we obtain

E(0) ≤ 2c(1 + 4C2T 2
0M

2
0 )

∫ T0

0
‖ut(t)‖

2
W dt

≤
4c(1 + 4C2T 2

0M
2
0 )

m0

m0

2

∫ T0

0
‖ut(t)‖

2
W dt.

(3.20)
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From (3.5) and (3.20) we deduce

E(t1) ≤ E(0) ≤
4c(1 + 4C2T 2

0M
2
0 )

m0
(E(0) − E(t1)),

where we used also the fact that E(·) is decreasing on the time interval [0, t1]. This clearly
implies

E(t1) ≤ c0E(0),

with

c0 =
4c(1 + 4C2T 2

0M
2
0 )

m0 + 4c(1 + 4C2T 2
0M

2
0 )

.

Theorem 3.3 Under the assumptions of Proposition 3.2, if

∞
∑

n=0

M2n+1T2n+1 < +∞ and
∞
∑

n=0

m2n

1 + 4C2T 2
2nM

2
2n

= +∞ , (3.21)

then system (5.3)− (5.6) is asymptotically stable, that is any solution u of (5.3)− (5.6) satisfies
E(u, t) → 0 for t → +∞ .

Proof. Note that (3.6) implies

E′(t) ≤ M2n+1(ξ +
1

ξ
)CE(t), t ∈ I2n+1 = [t2n+1, t2n+2), n ∈ IN.

Then we have
E(t2n+2) ≤ e

C(ξ+ 1

ξ
)M2n+1T2n+1E(t2n+1), ∀ n ∈ IN. (3.22)

Combining Proposition 3.2 and (3.22) we obtain

E(t2n+2) ≤ e
C(ξ+ 1

ξ
)M2n+1T2n+1cnE(t2n), n ∈ IN ,

and therefore
E(t2n+2) ≤

(

Πn
p=0e

C(ξ+ 1

ξ
)M2p+1T2p+1cp

)

E(0) . (3.23)

Then, by (3.23), asymptotic stability occurs if

∞
∑

p=0

[C(ξ +
1

ξ
)M2p+1T2p+1 + ln cp] = −∞ . (3.24)

In particular (3.24) holds true if (3.21) is valid. Indeed, from (3.13),

cp =
1

m2p

4c(1+4C2T 2
2pM

2
2p)

+ 1
,

and then
ln cp = − ln

(

1 +
m2p

4c(1 + 4C2T 2
2pM

2
2p)

)

. (3.25)
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So, if
m2p

1+4C2T 2
2pM

2
2p

tends to 0 as p → ∞, then

− ln cp ∼
m2p

4c(1 + 4C2T 2
2pM

2
2p)

.

Consequently if (3.21) holds then
∞
∑

p=0

ln cp = −∞.

Otherwise, if
m2p

1+4C2T 2
2pM

2
2p

does not tend to 0, then, by (3.25),
∑∞

p=0 ln cp = −∞. Therefore,

conditions (3.21) imply (3.24).

We now show that under additional assumptions on the coefficients Tn,mn,Mn an expo-
nential stability result holds.

Theorem 3.4 Assume i), ii) and (3.2). Assume also that the observability inequality (3.10) holds
for every time T > T and that

T2n = T ∗ ∀ n ∈ IN, (3.26)

with T ∗ satisfying (3.11), and
T2n+1 = T̃ ∀ n ∈ IN. (3.27)

Moreover, assume that

sup
n∈IN

e
(ξ+ 1

ξ
)CM2n+1T̃ cn = d < 1, (3.28)

where cn is as in (3.13). Then, there exist two positive constants γ, µ such that

E(t) ≤ γe−µtE(0), t > 0, (3.29)

for any solution of problem (1.1)− (1.2).

Proof. From (3.28) and (3.23) we obtain

E(T ∗ + T̃ ) ≤ dE(0),

and also
E(n(T ∗ + T̃ )) ≤ dnE(0), ∀n ∈ IN.

Then, the energy satisfies an exponential estimate like (3.29) (see Lemma 1 of [6]).

Remark 3.5 In the assumptions of Theorem 3.4, from (3.23) we can see that exponential
stability also holds if instead of (3.28) we assume

∃n ∈ IN such that Π
k(n+1)+n
p=k(n+1)e

(ξ+ 1

ξ
)CM2p+1T̃ cp ≤ d < 1, ∀ k = 0, 1, 2, . . .

Remark 3.6 Our abstract results can be applied to the examples of [19], that is damped or
locally damped wave equations, elasticity system, Petrovsky system. Therefore, we can improve
the stability results for these models.
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3.2 Stability under the restriction T2n+1 ≤ τ

We assume now that the length of the delay intervals is lower that the time delay, that is

T2n+1 ≤ τ, ∀n ∈ IN . (3.30)

We look at the standard energy ES(·). We can give the following estimates on the time
intervals I2n, I2n+1, n ∈ IN.

Proposition 3.7 Assume i), ii) and (3.30). For any regular solution of problem (1.1) − (1.2)
the energy is decreasing on the intervals I2n, n ∈ IN, and

E′
S(t) ≤ −m2n‖ut(t)‖

2
W1

. (3.31)

Moreover, on the intervals I2n+1, n ∈ IN,

E′
S(t) ≤

M2n+1

2
‖ut(t)‖

2
W2

+
M2n+1

2
‖ut(t− τ)‖2W2

. (3.32)

Proof: Differentiating ES(t) we get

E′
S(t) = (ut, u)V + (utt, ut)H

Hence using the definition of A and (1.1) we get successively

E′
S(t) = 〈ut, utt +Au〉V −V ′

= −〈ut, B1(t)B
∗
1(t)ut(t) +B2(t)B

∗
2(t)ut(t− τ)〉V−V ′ .

By the definition of the dual operators, we arrive at

E′
S(t) = −‖B∗

1(t)ut(t)‖
2
U1

− (B∗
2(t)ut, B

∗
2(t)ut(t− τ))U2

.

If t ∈ I2n, then B2(t) = 0 and the previous identity becomes

E′
S(t) = −‖B∗

1(t)ut(t)‖
2
U1
.

This gives, from i), (3.31).
For t ∈ I2n+1, as B1(t) = 0, the previous identity gives

E′
S(t) = −(B∗

2(t)ut, B
∗
2(t)ut(t− τ))U2

≤
1

2
‖B∗

2(t)ut(t)‖
2
U2

+
1

2
‖B∗

2(t)ut(t− τ)‖2U2
.

This proves (3.32) using assumption ii).

Proposition 3.8 Assume i), ii) and (3.30). Moreover, we assume that the observability inequal-
ity (3.10) holds for every time T > T and that, denoting T ∗ := infn{T2n}, (3.11) is satisfied.
Then, for any solution of system (1.1)− (1.2) we have

ES(t2n+1) ≤ ĉnES(t2n), ∀ n ∈ IN, (3.33)

where

ĉn =
2c(1 + 4C2

1T
2
2nM

2
2n)

m2n + 2c(1 + 4C2
1T

2
2nM

2
2n)

, (3.34)

c being the observability constant in (3.10) corresponding to the time T ∗ and C1 the constant in
the norm embedding (3.1) between W1 and H.
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Proof. It is sufficient to prove the estimate (3.33) in the interval I0 = [0, t1). We can proceed
analogously in the other intervals I2n, n ∈ IN.

We can decompose
u = w + w̃

where w is a solution of system (3.7)− (3.8) with w0 = u0, w1 = u1; while w̃ solves

w̃tt(t) +Aw̃(t) = −B1(t)B
∗
1(t)ut(t) t > 0 (3.35)

w̃(0) = 0 and w̃t(0) = 0 (3.36)

First we have
ES(u, 0) = ES(w, 0).

Then, using the observability inequality (3.10), we can estimate

ES(0) = ES(w, 0) ≤ c

∫ T ∗

0
‖wt(s)‖

2
W1

ds. (3.37)

Using the splitting w = u− w̃ and the fact that T0 = t1 ≥ T ∗, we deduce that

ES(0) ≤ 2c

∫ T0

0
(‖w̃t(s)‖

2
W1

+ ‖ut(s)‖
2
W1

)ds. (3.38)

Now, observe that from equation (3.14) we deduce

d

dt

1

2
(‖w̃t(t)‖

2
H + ‖w̃(t)‖2V ) = (w̃t, w̃tt +Aw̃)H = −(w̃t, B1(t)B

∗
1(t)ut(t))H .

Integrating this identity in [0, t] with 0 < t < T0, recalling (3.15), and using the assumption i),
we get

1

2
(‖w̃t(t)‖

2
H + ‖w̃(t)‖2V ) = −

∫ t

0
(B∗

1(s)w̃t(s), B
∗
1(s)ut(s))Hds

≤ M0

∫ T0

0
‖w̃t(s)‖W1

‖ut(s)‖W1
ds.

(3.39)

Integrating (3.39) on [0, t1], we deduce

∫ T0

0
‖w̃t(t)‖

2
W1

dt ≤ C1

∫ T0

0
‖w̃t(t)‖

2
Hdt ≤ 2C1T0M0

∫ T0

0
‖w̃t(s)‖W1

‖ut(s)‖W1
ds

≤ C1T0M0

∫ T0

0
(ǫ‖w̃t(t)‖

2
W1

+
1

ǫ
‖ut(t)‖

2
W1

)dt,

for all ǫ > 0 and therefore choosing ǫ such that C1T0M0ǫ =
1
2 , we arrive at

∫ T0

0
‖w̃t(t)‖

2
W1

dt ≤ 4C2
1T

2
0M

2
0

∫ T0

0
‖ut(t)‖

2
W1

dt . (3.40)

From (3.38) and (3.40) we obtain

ES(0) ≤ 2c(1 + 4C2
1T

2
0M

2
0 )

∫ T0

0
‖ut(t)‖

2
W1

dt

≤
2c(1 + 4C2

1T
2
0M

2
0 )

m0
m0

∫ T0

0
‖ut(t)‖

2
W1

dt.

(3.41)
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From (3.31) and (3.41) we deduce

ES(t1) ≤ ES(0) ≤
2c(1 + 4C2

1T
2
0M

2
0 )

m0
(ES(0)− ES(t1)),

where we used also the fact that ES(·) is decreasing on the time interval [0, t1]. This clearly
implies

ES(t1) ≤ ĉ0ES(0),

with

ĉ0 =
2c(1 + 4C2

1T
2
0M

2
0 )

m0 + 2c(1 + 4C2
1T

2
0M

2
0 )

.

Theorem 3.9 Under the assumptions of Proposition 3.8, if (3.21) holds, then system (1.1) −
(1.2) is asymptotically stable, that is any solution u of (1.1) − (1.2) satisfies ES(u, t) → 0 for
t → +∞ .

Proof. Note that (3.32) implies

E′
S(t) ≤ M2n+1C2ES(t) +M2n+1C2ES(t− τ)

≤ M2n+1C2ES(t) +M2n+1C2ES(t2n+1), t ∈ I2n+1 = [t2n+1, t2n+2), n ∈ IN,

where we have used (3.30) and the fact that ES(·) is not increasing in the time intervals I2n.

Remark that the constant C2 is the one from the norm embedding (3.1) between W2 and H.

Then we have

ES(t) ≤ eM2n+1C2(t−t2n+1)ES(t2n+1) +
[

eM2n+1C2(t−t2n+1) − 1
]

ES(t2n), (3.42)

for t ∈ I2n+1 = [t2n+1, t2n+2), n ∈ IN. Combining Proposition 3.8 and (3.42) we obtain

ES(t2n+2) ≤
[

eM2n+1T2n+1C2 ĉn + eM2n+1T2n+1C2 − 1
]

ES(t2n), n ∈ IN ,

and therefore

ES(t2n+2) ≤
(

Πn
p=0

[

eM2p+1T2p+1C2 ĉp + eM2p+1T2p+1C2 − 1
]

)

ES(0) . (3.43)

Then, by (3.43), asymptotic stability occurs if

∞
∑

p=0

[

C2M2p+1T2p+1 + ln
(

ĉp + 1− e−M2p+1C2T2p+1
)]

= −∞ . (3.44)

In particular (3.44) holds true if (3.21) is valid. Indeed, if (3.21) holds, then

lim
n→∞

M2n+1T2n+1 = 0,

and therefore, being from (3.34),

ĉp =
1

m2p

2c(1+4C2
1
T 2
2pM

2
2p)

+ 1
,

12



it results

ln
(

ĉp + 1− e−M2p+1C2T2p+1
)

∼ ln ĉp = − ln
(

1 +
m2p

2c(1 + 4C2
1T

2
2pM

2
2p)

)

. (3.45)

So, if
m2p

1+4C2
1
T 2
2pM

2
2p

tends to 0 as p → ∞, then

− ln ĉp ∼
m2p

2c(1 + 4C2
1T

2
2pM

2
2p)

.

Otherwise, if
m2p

1+4C2
1
T 2
2pM

2
2p

does not tend to 0, then, by (3.45),
∑∞

p=0 ln ĉp = −∞. Therefore,

conditions (3.21) imply
∞
∑

p=0

ln ĉp = −∞

and then (3.44).

Also in this case, under additional assumptions on the coefficients Tn,mn,Mn, an exponen-
tial stability result holds.

Theorem 3.10 Assume i), ii) and (3.30). Assume also that the observability inequality (3.10)
holds for every time T > T and that

T2n = T ∗ ∀ n ∈ IN, (3.46)

with T ∗ satisfying (3.11), and
T2n+1 = T̃ ∀ n ∈ IN, (3.47)

with T̃ ≤ τ.

Moreover, assume that

sup
n∈IN

[

eC2M2n+1T̃ (ĉn + 1)− 1
]

= d̂ < 1, (3.48)

where ĉn is as in (3.34). Then, there exist two positive constants γ̂, µ̂ such that

ES(t) ≤ γ̂e−µ̂tES(0), t > 0, (3.49)

for any solution of problem (1.1)− (1.2).

Remark 3.11 In the assumptions of Theorem 3.10, from (3.43) we can see that exponential
stability also holds if instead of (3.48) we assume

∃n ∈ IN such that Π
k(n+1)+n
p=k(n+1)

[

eC2M2p+1T̃ (ĉp + 1)− 1
]

≤ d̂ < 1, ∀ k = 0, 1, 2, . . .

Remark 3.12 Our abstract results can be applied to the examples of [19], that is damped or
locally damped wave equations, elasticity system, Petrovsky system when T2n+1 ≤ τ, ∀ n ∈ IN.
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4 Stability result: B1 unbounded

In this section B1 may be unbounded. We assume that there exists a Hilbert space W such
that H is continuously embedded into W, i.e.,

‖u‖2W ≤ C‖u‖2H , ∀u ∈ H with C > 0 independent of u. (4.1)

Moreover, we assume that V is embedded into U1 and that for all n ∈ IN, there exist three
positive constants m2n, M2n and M2n+1 with m2n ≤ M2n such that

i) m2n‖u‖
2
U1

≤ ‖B∗
1(t)u‖

2
U1

≤ M2n‖u‖
2
U1

for t ∈ I2n = [t2n, t2n+1), ∀u ∈ V, ∀ n ∈ IN;

ii) ‖B∗
2(t)u‖

2
U2

≤ M2n+1‖u‖
2
W for t ∈ I2n+1 = [t2n+1, t2n+2), ∀u ∈ H, ∀ n ∈ IN.

In order to deal with unbounded feedback we will work with the standard energy ES(·).
Then, as before, we assume (3.30).

As before we can give the following estimates on the time intervals I2n, I2n+1, n ∈ IN.

Proposition 4.1 Assume i), ii) and (3.30). For any regular solution of problem (1.1) − (1.2)
the energy is decreasing on the intervals I2n, n ∈ IN, and

E′
S(t) ≤ −‖B∗

1(t)ut(t)‖
2
U1
. (4.2)

Moreover, on the intervals I2n+1, n ∈ IN, the estimate (3.32) holds (with W instead of W2.)

Consider now the damped system

wtt(t) +Aw(t) +B1(t)B
∗
1(t)wt = 0, t ∈ (t2n, t2n+1), n ∈ IN, (4.3)

w(t2n) = wn
0 and wt(t2n) = wn

1 (4.4)

with (wn
0 , w

n
1 ) ∈ V×H. For our stability result we need that the next observability type inequality

holds. Namely we assume that, for every n there exists a time Tn, such that

T2n > T n, (4.5)

and for every n and every time T, with T2n ≥ T > T n, there is a constant dn, depending on T

but independent of (wn
0 , w

n
1 ), such that

ES(t2n + T ) ≤ dn

∫ t2n+T

t2n

‖B∗
1(t)wt(t)‖

2
U1
dt, (4.6)

for every weak solution of problem (1.1), (1.2) with initial data (wn
0 , w

n
1 ) ∈ V ×H.

Proposition 4.2 Assume i), ii),(3.30) and T2n ≥ τ, ∀ n ∈ IN. Moreover, we assume that there
is a sequence {T n}n, such that (4.5) is satisfied and the inequality (4.6) holds for every T ∈
(T n, T2n], ∀ n ∈ IN. Then, for any solution of system (1.1)− (1.2) we have

ES(t2n+1) ≤ d̂nES(t2n), ∀ n ∈ IN, (4.7)

where

d̂n =
dn

dn + 1
, (4.8)

dn being the observability constant in (4.6) corresponding to the time T2n.
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Proof. To prove (4.7) is sufficient to use the estimate (4.2) in (4.6), reminding that B2(t) = 0
on (t2n, t2n+1).

Theorem 4.3 Under the assumptions and with the same notations of Proposition 4.2, if

∞
∑

n=0

M2n+1T2n+1 < +∞ and

∞
∑

n=0

ln d̂n = −∞, (4.9)

then system (1.1)− (1.2) is asymptotically stable, that is any solution u of (1.1)− (1.2) satisfies
ES(u, t) → 0 for t → +∞ .

Remark 4.4 In fact dn depends on n because by hypothesis B1 may depend on the time
variable. However, if B1 does not depend on t, then by a translation of t2n the constant dn
becomes independent of n. But if dn = d > 0 for all n, then the condition

∞
∑

n=0

ln d̂n = −∞

is automatically satisfied. On the other hand, the first condition in (4.9) depends only on the
length of the intervals I2n+1 and on the boundedness constant of B∗

2 on the same intervals, hence
(4.9) can be easily checked.

Also in this case, under additional assumptions on the coefficients Tn,mn,Mn, an exponen-
tial stability result holds.

Theorem 4.5 Assume i), ii) and (3.30). Assume also that (3.46) holds with T ∗ satisfying T ∗ ≥ τ

and that inequality (4.6) holds, ∀ n ∈ IN, for every time T with T ∗ ≥ T > T . Moreover, assume
T2n+1 = T̃ , for all n ∈ IN, with T̃ ≤ τ. If

sup
n∈IN

[

eCM2n+1T̃ (d̂n + 1)− 1
]

< 1, (4.10)

where d̂n is as in (4.8), then, there exist two positive constants γ̂, µ̂ such that

ES(t) ≤ γ̂e−µ̂tES(0), t > 0, (4.11)

for any solution of problem (1.1)− (1.2).

Remark 4.6 If d̂n ≤ d̂ < 1 (see Remark 4.4), then (4.10) holds if

(1 + d̂) sup
n∈IN

[

eCM2n+1T̃ −
1

1 + d̂

]

< 1,

or equivalently

sup
n∈IN

[

eCM2n+1T̃
]

<
2

d̂+ 1
.

Hence (4.10) is verified if supn∈IN M2n+1 is small enough. This is a quite realistic assumption
because then the influence of the delay term is small and the action of the standard dissipation
sufficiently compensates it to guarantee an exponential decay.
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5 Examples

Here we apply our abstract results to some concrete models. Note that the following exam-
ples are not included in the setting of [19].

5.1 The wave equation with internal and boundary dampings

Our first application concerns the wave equation with boundary feedback and internal delay
term. Let Ω ⊂ IRn be an open bounded domain with a boundary ∂Ω of class C2. We assume
that ∂Ω is composed of two closed sets ∂Ω = Γ0 ∪ Γ1, with Γ0 ∩ Γ1 = ∅ and meas Γ1 > 0.

Denoting by m the standard multiplier m(x) = x− x0, x0 ∈ IRn, we assume that the

m(x) · ν(x) ≤ 0, for x ∈ Γ1, (5.1)

and, for some δ > 0,
m(x) · ν(x) ≥ δ, for x ∈ Γ0, (5.2)

where ν(x) is the outer unit normal vector at x ∈ ∂Ω. Given ω ⊆ Ω, let us consider the initial
boundary value problem

utt(x, t)−∆u(x, t) + b2(t)χωut(x, t− τ) = 0 in Ω× (0,+∞) (5.3)

u(x, t) = 0 on Γ1 × (0,+∞) (5.4)

∂u

∂ν
(x, t) = −b1(t)ut(x, t) on Γ0 × (0,+∞) (5.5)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (5.6)

with initial data (u0, u1) ∈ H1
Γ1
(Ω)× L2(Ω), where as usual

H1
Γ1
(Ω) := { u ∈ H1(Ω) : u = 0 on Γ1 },

and b1, b2 in L∞(0,+∞).
On the feedback functions b1(·), b2(·), we assume

b1(t)b2(t) = 0, ∀ t > 0,

in order to have an intermittent delay problem. We refer to [1] for the analysis of this problem
when b1, b2 are constant in time, in other words the delayed damping and the standard boundary
one are acting simultaneously for every time t > 0.

Moreover, we assume b1 ∈ W 2,∞(I2n), ∀ n ∈ IN, and
iw) 0 < m2n ≤ b1(t) ≤ M2n, b2(t) = 0, for all t ∈ I2n = [t2n, t2n+1), and b1 ∈ C1(Ī2n), for

all n ∈ IN;
iiw) |b2(t)| ≤ M2n+1, b1(t) = 0, for all t ∈ I2n+1 = [t2n+1, t2n+2), and b2 ∈ C(Ī2n+1), for all

n ∈ IN.
This problem enters into our previous framework, if we take H = L2(Ω) and the operator

A defined by
A : D(A) → H : u → −∆u,

where

D(A) =: { u ∈ H1
Γ1
(Ω) : ∆u ∈ L2(Ω) and

∂u

∂ν
= 0 on Γ0 }.
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We then define U1 := L2(Γ0), U2 := L2(ω) and the operators B1(t), B2(t) as

B2 ∈ L(U2;H), B2u =
√

b2 ũ, ∀u ∈ L2(ω),

and

B1 ∈ L(U1;V
′), B1u =

√

b1A−1Nu, ∀u ∈ L2(Γ0), B
∗
1w =

√

b1w|Γ0
, ∀w ∈ V := D(A1/2),

where A−1 is the extension of A to H, namely for all h ∈ H and ϕ ∈ D(A), A−1h is the unique
element in (D(A))′ (the duality is in the sense of H), such that (see for instance [21])

〈A−1h;ϕ〉(D(A))′ ,D(A) =

∫

Ω
hAϕdx.

Here and below N ∈ L(L2(Γ0);L
2(Ω)) is defined as follows: for all v ∈ L2(Γ0), Nv is the

unique solution (transposition solution) of

∆Nv = 0, Nv|Γ1
= 0,

∂Nv

∂ν |Γ0

= v.

With these definitions, we can show that problem (5.3)–(5.6) enters in the abstract frame-
work (1.1)–(1.2) and that the assumptions i) and ii) of section 4 hold with W = L2(ω).

As B1 is not bounded, we need to consider the non delayed system

wtt(x, t)−∆w(x, t) = 0 in Ω× (0,+∞) (5.7)

w(x, t) = 0 on Γ1 × (0,+∞) (5.8)

∂w

∂ν
(x, t) = −f(t)wt(x, t), x ∈ Γ0, t > 0 (5.9)

w(x, 0) = w0(x) and wt(x, 0) = w1(x) in Ω (5.10)

with (w0, w1) ∈ H1
Γ1
(Ω)× L2(Ω) and f ∈ L∞(0,+∞), f(t) ≥ 0 a.e. t > 0.

Proposition 5.1 There exists a time T > 0 such that for every T > T , there are constants
αi, i = 1, 2, 3, for which

(T−T )ES(T ) ≤ α1

∫ T

0

∫

Γ0

(

∂w

∂ν

)2

(x, t)dΓdt+α2

∫ T

0

∫

Γ0

f(t)w2
t (x, t)dΓdt+α3

∫ T

0

∫

Γ0

w2
t (x, t)dΓdt,

(5.11)
for any weak solution of (5.7)−(5.10). The constants αi, i = 1, 2, 3, are independent of the initial
data and of the function f(·), but they depend on T and on Ω.

Proof. The estimate (5.11) can be easily obtained from a standard multiplier argument (cfr.
(3.11)–(3.16) of [12]).

Then, from Proposition 5.1, we deduce that there exists a time T > 0 such that, assuming
T2n > T, ∀ n ∈ IN, then for every n and every time T with T2n ≥ T > T , there is a constant dn
for which (4.6) holds for any weak solution of (5.7)− (5.10).

From (5.11) with f(t) = b1(t− t2n) and the boundary condition (5.5) we deduce the explicit
dependence of dn from the feedback function b1, that is
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ES(t2n+1) ≤ dn

∫ t2n+1

t2n

∫

Γ0

b1(t)u
2
t (x, t)dtdΓ, ∀ n ∈ IN, (5.12)

with

dn :=
α1M2nm2n + α2m2n + α3

m2n(T2n − T )
, ∀ n ∈ IN. (5.13)

Therefore, we can restate Theorem 4.3 under more explicit conditions.

Theorem 5.2 Under the assumptions iw), iiw) and (3.30), if T ∗ := infn T2n satisfies (3.11) and

∞
∑

n=0

M2n+1T2n+1 < +∞ and

∞
∑

n=0

m2n(T2n − T )

α1M2nm2n + α2m2n + α3
= +∞, (5.14)

then system (5.3)− (5.6) is asymptotically stable, that is any solution u of (5.3)− (5.6) satisfies
ES(u, t) → 0 for t → +∞ .

Proof. We have only to show that the second condition of (5.14) implies the second condition
of (4.9), namely in this case

∞
∑

n=0

ln
α1M2nm2n + α2m2n + α3

α1M2nm2n + α2m2n + α3 +m2n(T2n − T )
= −∞.

Now, observe that

ln
α1M2nm2n + α2m2n + α3

α1M2nm2n + α2m2n + α3 +m2n(T2n − T )
= − ln

(

1 +
m2n(T2n − T )

α1M2nm2n + α2m2n + α3

)

,

then we can conclude arguing as in the proof of Theorem 3.9.

Remark 5.3 If T2n = T ∗ and M2n = M∗ as well as m2n = m∗, then (5.14) holds if the easily
checked condition

∞
∑

n=0

M2n+1T2n+1 < +∞

holds (since the second condition of (5.14) automatically holds).

Similarly using Theorem 4.5, we directly can state the

Theorem 5.4 Assume that iw), iiw) and (3.30) hold, that T2n = T ∗, for all n ∈ IN, with T ∗

satisfying T ∗ ≥ τ and T ∗ > T̄ with T̄ from Proposition 5.1. Moreover, assume T2n+1 = T̃ , for
all n ∈ IN with T̃ ≤ τ. If

sup
n∈IN

[

eCM2n+1T̃ (d̂n + 1)− 1
]

< 1, (5.15)

where

d̂n =
α1M2nm2n + α2m2n + α3

α1M2nm2n + α2m2n + α3 +m2n(T2n − T )
,

then there exist two positive constants γ̂, µ̂ such that

ES(t) ≤ γ̂e−µ̂tES(0), t > 0, (5.16)

for any solution of problem (5.3)− (5.6).

As in the abstract setting (see Remarks 4.4 and 4.6), explicit conditions on b1, b2 and T2n

can be found in order to get exponential decay.
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5.2 The wave equation with internal delayed/undelayed feedbacks

Here we consider the wave equation with local internal damping and internal delay. More pre-
cisely, let Ω ⊂ IRn be an open bounded domain with a boundary ∂Ω of class C2. Denoting by
m, as before, the standard multiplier m(x) = x− x0, x0 ∈ IRn, let ω1 be the intersection of Ω
with an open neighborhood of the subset of ∂Ω

Γ0 = {x ∈ ∂Ω : m(x) · ν(x) > 0 }. (5.17)

Let us consider the initial boundary value problem

utt(x, t)−∆u(x, t) + b1(t)χω1
ut(x, t) + b2(t)χω2

ut(x, t− τ) = 0 in Ω× (0,+∞) (5.18)

u(x, t) = 0 on ∂Ω× (0,+∞) (5.19)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (5.20)

with initial data (u0, u1) ∈ H1
0 (Ω)× L2(Ω) and b1, b2 in L∞(0,+∞) such that

b1(t)b2(t) = 0, ∀ t > 0.

Moreover, we assume iw) and iiw).
This problem enters into our previous framework, if we take H = L2(Ω) and the operator

A defined by
A : D(A) → H : u → −∆u,

where D(A) = H1
0 (Ω) ∩H2(Ω).

The operator A is a self–adjoint and positive operator with a compact inverse in H and is
such that V = D(A1/2) = H1

0 (Ω). We then define Ui = L2(ωi) and the operators Bi, i = 1, 2, as

Bi : Ui → H : v →
√

biṽχωi
, (5.21)

where ṽ ∈ L2(Ω) is the extension of v by zero outside ωi. It is easy to verify that

B∗
i (ϕ) =

√

biϕ|ωi
for ϕ ∈ H,

and thus (3.1) holds with Wi = L2(ωi), while BiB
∗
i (ϕ) = biϕχωi

, for ϕ ∈ H and i = 1, 2. This
shows that problem (5.18)–(5.20) enters in the abstract framework (1.1)–(1.2). Moreover, iw)
and iiw) easily imply i) and ii) of sect. 3. Therefore we can restate Proposition 3.1. Now, the
energy functional is

E(t) =
1

2

∫

Ω
{u2t (x, t) + |∇u(x, t)|2}dx+

ξ

2

∫ t

t−τ
|b2(s+ τ)|

∫

ω
u2t (x, s)dxds. (5.22)

Consider now the conservative system

wtt(x, t)−∆w(x, t) = 0 in Ω× (0,+∞) (5.23)

w(x, t) = 0 on ∂Ω× (0,+∞) (5.24)

w(x, 0) = w0(x) and wt(x, 0) = w1(x) in Ω (5.25)
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with (w0, w1) ∈ H1
0 (Ω)×L2(Ω). It is well–known that an observability inequality holds (see e.g.

[3, 10, 11, 13, 14, 15, 16, 23]): There exists a time T > 0 such that for every time T > T there
is a constant c, depending on T but independent of the initial data, such that

ES(0) ≤ c

∫ T

0

∫

ω1

w2
t (x, s)dxds, (5.26)

for every weak solution of problem (5.23)− (5.25).
In the case ω1 = ω2 we can apply the results of section 3.1. Therefore we can restate

Proposition 3.2 and Theorems 3.3 and 3.4.

Proposition 5.5 Assume ω1 = ω2, iw), iiw) and (3.2) are satisfied. Moreover, we assume that
the observability inequality (5.26) holds for every time T > T and that, denoting T ∗ := infn{T2n},
the assumption (3.11) holds. Then, for any solution of system (5.18)− (5.20) we have

E(t2n+1) ≤ cnE(t2n), ∀ n ∈ IN, (5.27)

where

cn =
4c(1 + 4T 2

2nM
2
2n)

m2n + 4c(1 + 4T 2
2nM

2
2n)

, (5.28)

c being the observability constant in (5.26) corresponding to the time T ∗ and C the constant in
the norm embedding (3.1) between W and H.

Theorem 5.6 Under the assumptions of Proposition 5.5, if

∞
∑

n=0

M2n+1T2n+1 < +∞ and

∞
∑

n=0

m2n

1 + 4T 2
2nM

2
2n

= +∞ , (5.29)

then system (5.18) − (5.20) is asymptotically stable, that is any solution u of (5.18) − (5.20)
satisfies E(u, t) → 0 for t → +∞ .

Theorem 5.7 Assume ω1 = ω2, iw), iiw) and (3.2) are satisfied. Assume also that the observ-
ability inequality (5.26) holds for every time T > T and that

T2n = T ∗ ∀ n ∈ IN,

with T ∗ satisfying (3.11), and
T2n+1 = T̃ ∀ n ∈ IN.

Moreover, assume that

sup
n∈IN

e
(ξ+ 1

ξ
)M2n+1T̃ cn = d < 1, (5.30)

where cn is as in (5.28). Then, there exist two positive constants γ, µ such that

E(t) ≤ γe−µtE(0), t > 0, (5.31)

for any solution of problem (5.18)− (5.20).

Remark 5.8 The case ω1 = ω2 was already considered in [19]. Note that we significantly
improve previous stability results (cfr. Theorems 4.3 and 4.4 in [19]).
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Under the restriction (3.30) we can obtain stability results also in the case ω1 6= ω2. Note
that the sets ω1 and ω2 may also have empty intersection.

Indeed, we can restate Proposition 3.8 and Theorem 3.9 for our concrete model.

Proposition 5.9 Assume iw), iiw) and (3.30). Moreover, we assume that the observability in-
equality (5.26) holds for every time T > T and that, denoting T ∗ := infn{T2n}, (3.11) is satisfied.
Then, for any solution of system (5.18)− (5.20) we have

ES(t2n+1) ≤ ĉnES(t2n), ∀ n ∈ IN, (5.32)

where

ĉn =
2c(1 + 4T 2

2nM
2
2n)

m2n + 2c(1 + 4T 2
2nM

2
2n)

, (5.33)

c being the observability constant in (5.26) corresponding to the time T ∗.

Theorem 5.10 Under the assumptions of Proposition 5.9, if (3.21) holds, then system (5.18)−
(5.20) is asymptotically stable, that is any solution u of (5.18)− (5.20) satisfies ES(u, t) → 0 for
t → +∞ .

Under more restrictive assumption also an exponential stability estimate holds.

Theorem 5.11 Assume iw), iiw) and (3.30). Assume also that the observability inequality (5.26)
holds for every time T > T and that

T2n = T ∗ ∀ n ∈ IN,

with T ∗ satisfying (3.11), and
T2n+1 = T̃ ∀ n ∈ IN,

with T̃ ≤ τ.

Moreover, assume that

sup
n∈IN

[

eM2n+1T̃ (ĉn + 1)− 1
]

= d̂ < 1, (5.34)

where ĉn is as in (5.33). Then, there exist two positive constants γ̂, µ̂ such that

ES(t) ≤ γ̂e−µ̂tES(0), t > 0, (5.35)

for any solution of problem (5.18)− (5.20).

Remark 5.12 Note that the case ω1 6= ω2 is not covered from the abstract setting of [19].
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