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Exponential stability of abstract evolution equations with time delay

We consider abstract semilinear evolution equations with a time delay feedback. We show that, if the C 0 -semigroup describing the linear part of the model is exponentially stable, then the whole system retains this good property when a suitable smallness condition on the time delay feedback is satisfied. Some examples illustrating our abstract approach are also given.

Introduction

Let H be a fixed Hilbert space with norm • , and consider an operator A from H into itself that generates a C 0 -semigroup (S(t)) t≥0 that is exponentially stable, i.e., there exist two positive constants M and ω such that

S(t) L(H) ≤ Me -ωt , ∀t ≥ 0, (1.1) 
where, as usual, L(H) denotes the space of bounded linear operators from H into itself. For a fixed delay parameter τ , a fixed bounded operator B from H into itself and for a real parameter k, we consider the evolution equation U t (t) = AU(t) + F (U(t)) + kBU(t -τ ) in (0, +∞) U(0) = U 0 , BU(t -τ ) = f (t), ∀t ∈ (0, τ ), (1.2) where F : H → H satisfies some Lipschitz conditions, the initial datum U 0 belongs to H and f ∈ C([0, τ ]; H). Time delay effects often appear in many applications and physical problems. On the other hand, it is well-known (cfr. [START_REF] Bátkai | Semigroups for delay equations[END_REF][START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Xu | Stabilization of wave systems with input delay in the boundary control[END_REF]) that they can induce some instability. Hence we are interested in giving an exponential stability result for such a problem under a suitable condition between the constant k and the constants M, ω, τ, the norm of B and the nonlinear term F. For some particular examples (see e.g. [START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay Systems and[END_REF][START_REF] Bátkai | Semigroups for delay equations[END_REF][START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF][START_REF] Guesmia | Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay[END_REF][START_REF] Said-Houari | Stability result of the Timoshenko system with delay and boundary feedback[END_REF][START_REF] Alabau-Boussouira | Exponential stability of the wave equation with memory and time delay[END_REF]) we know that the above problem, under certain smallness conditions on the delay feedback kB, is exponentially stable, the proof being from time to time quite technical because some observability inequalities or perturbation methods are used. Hence our main goal is to furnish a direct proof of this stability result by using the so-called Duhamel's formula (or variation of parameters formula).

Observe that our proof is simpler with respect to the ones used so far for particular models. Moreover, we emphasize its generality. Indeed, it applies to every model in the form (1.2) when the operator A generates an exponentially stable semigroup.

In the same spirit, we want to prove existence and exponential stability results when the operator B is unbounded (and F = 0). In that case they are proved using Duhamel's formula but under some admissibility conditions.

Note also that previous papers deal with linear models and B bounded, while here we include a nonlinear term F or B unbounded.

The paper is organized as follows. In section 2 we study the case with bounded feedback operator B and nonlinear term F Lipschitz, giving a well-posedness result and an exponential decay estimate. The analysis is then extended to a more general linear term F in section 3, under more restrictive assumptions. In section 4, we consider, only for the linear model, unbounded delay feedback operators B and prove a well-posedness and an exponential stability result. Finally, in section 5, some illustrative examples with B unbounded are given.

The case F globally Lipschitz

In this section, we assume that F is globally Lipschitz continuous, namely

∃γ > 0 such that F (U 1 ) -F (U 2 ) H ≤ γ U 1 -U 2 H , ∀ U 1 , U 2 ∈ H . (2.1)
Moreover, we assume that F (0) = 0.

The following well-posedness result holds.

Proposition 2.1 For any initial datum U 0 ∈ H and f ∈ C([0, τ ]; H), there exists a unique (mild) solution U ∈ C([0, +∞), H) of problem (1.2). Moreover,

U(t) = S(t)U 0 + t 0 S(t -s)[F (U(s)) + kBU(s -τ )] ds. (2.2)
Proof. We use an iterative argument. Namely in the interval (0, τ ), problem (1.2) can be seen as an inhomogeneous evolution problem

U t (t) = AU(t) + F (U(t)) + g 0 (t) in (0, τ ) U(0) = U 0 , (2.3) 
where g 0 (t) = kf (t). This problem has a unique solution U ∈ C([0, τ ], H) (see Th. 1.2, Ch. 6 of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]) satisfying

U(t) = S(t)U 0 + t 0 S(t -s)[F (U(s)) + g 0 (s)] ds.
This yields U(t), for t ∈ [0, τ ]. Therefore on (τ, 2τ ), problem (1.2) can be seen as an inhomogeneous evolution problem

U t (t) = AU(t) + F (U(t)) + g 1 (t) in (τ, 2τ ) U(τ ) = U(τ -), (2.4) 
where g 1 (t) = kBU(t -τ ). Hence, this problem has a unique solution

U ∈ C([τ, 2τ ], H)
given by

U(t) = S(t -τ )U(τ -) + t τ S(t -s)[F (U(s)) + g 1 (s)] ds, ∀t ∈ [τ, 2τ ].
By iteration, we obtain a global solution U satisfying (2.2). Now we will prove the following exponential stability result.

Theorem 2.2 Let M, ω, γ as in (1.1) and (2.1). There is a positive constant k 0 such that for k satisfying

|k| < k 0 := e τ ω -1 τ B L(H) Me τ ω , (2.5) 
and for γ < γ(|k|), where γ(|k|) is a suitable constant depending on |k|, then there exist

ω ′ > 0 and M ′ > 0 such that the solution U ∈ C([0, +∞), H) of problem (1.2), with U 0 ∈ H and f ∈ C([0, τ ]; H), satisfies U(t) H ≤ M ′ e -ω ′ t ( U 0 H + τ 0 e ωs f (s) H ds), ∀t ≥ τ. (2.6)
From its definition the constant k 0 depends only on M, ω, τ and the norm of B.

Proof. First assume F ≡ 0. We use again an iterative argument and Duhamel's formula but here on the whole R + , namely we can write

U(t) = S(t)U 0 + k t 0 S(t -s)BU(s -τ ) ds, ∀t > 0. (2.7)
Then,

U(t) H ≤ Me -ωt ( U 0 H + |k| t 0 e ωs BU(s -τ ) H ds), ∀t > 0.
Let us show that this implies that

e ωt U(t) H ≤ M( U 0 H + |k|α)(1 + |k|τ BMe ωτ ) n , t ∈ [0, (n + 1)τ ], n ∈ N, (2.8) 
where for shortness we have set α := τ 0 e ωs f (s) H ds and

B = B L(H) . Now if we set σ = τ -1 ln(1 + |k|τ BMe ωτ ), (2.9) 
then we see that (2.8) gives

U(t) H ≤ Me -(ω-σ)t ( U 0 H + |k|α), ∀t > 0.
Hence U(t) H will decay exponentially if σ -ω is negative or equivalently if

1 + |k|τ BMe ωτ < e τ ω ,
which is nothing else than (2.5).

Under this constraint, we deduce that the estimate (2.6) holds with ω ′ = ω -σ.

Hence we are reduced to prove (2.8). First in (0, τ ), (2.2) and the initial condition from (1.2) yield

U(t) H ≤ Me -ωt ( U 0 H + |k| t 0 e ωs f (s) H ds), ∀t ∈ (0, τ ).
Then, e ωt U(t) H ≤ M( U 0 H + |k|α), ∀t ∈ (0, τ ), which is nothing else than (2.8) for n = 0. Second for any m ∈ N * , we assume that (2.8) holds for all n ≤ m -1 and prove that it holds for m. Indeed by (2.2), we have for all t ∈ (mτ, (m + 1)τ )

U(t) H ≤ Me -ωt U 0 H + |k|α + |k| m-1 ℓ=0 (ℓ+2)τ (ℓ+1)τ
e ωs BU(s -τ ) H ds . Now for s ∈ ((ℓ + 1)τ, (ℓ + 2)τ ), with ℓ = 0, . . . , m -1, we notice that s -τ belongs to (ℓτ, (ℓ + 1)τ ), and using our iterative assumption, we get

U(t) H ≤ Me -ωt U 0 H + |k|α + |k| m-1 ℓ=0 (ℓ+2)τ (ℓ+1)τ e ωs BMe -ω(s-τ ) ( U 0 H + |k|α)(1 + |k|τ BMe ωτ ) ℓ ds ≤ Me -ωt U 0 H + |k|α + |k|τ BM( U 0 H + |k|α)e ωτ m-1 ℓ=0 (1 + |k|τ BMe ωτ ) ℓ
Hence we have obtained that

U(t) H ≤ Me -ωt ( U 0 H + |k|α) 1 + |k|τ BMe ωτ m-1 ℓ=0 (1 + |k|τ BMe ωτ ) ℓ .
Because one readily checks that

1 + |k|τ BMe ωτ m-1 ℓ=0 (1 + |k|τ BMe ωτ ) ℓ = (1 + |k|τ BMe ωτ ) m ,
we obtain

e ωt U(t) H ≤ M( U 0 H + |k|α)(1 + |k|τ BMe ωτ ) m , t ∈ [mτ, (m + 1)τ ].
This estimate and the recurrence assumption, as

(1 + |k|τ BMe ωτ ) n ≤ (1 + |k|τ BMe ωτ ) m for all n ≤ m -1,
imply that (2.8) holds for m. So the result is proved in the linear case.

In order to extend it to the nonlinear model, let us introduce (cfr. [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]) the new variable

Z(t, ρ) := BU(t -τ ρ), ρ ∈ (0, 1), t > 0 .
Then problem (1.2) may be rewritten as

       U t (t) = AU(t) + F (U(t)) + kZ(t, 1) in (0, +∞) Z t (t, ρ) = -τ -1 Z ρ (t, ρ) in (0, +∞) × (0, 1) Z(t, 0) = BU(t) U(0) = U 0 , Z(0, ρ) = f ((1 -ρ)τ ), ∀ρ ∈ (0, 1).
(2.10) Therefore, if we set V := (U, Z) T , the linear part of (2.10), namely

       U t (t) = AU(t) + kZ(t, 1) in (0, +∞) Z t (t, ρ) = -τ -1 Z ρ (t, ρ) in (0, +∞) × (0, 1) Z(t, 0) = BU(t) U(0) = U 0 , Z(0, ρ) = f ((1 -ρ)τ ), ∀ρ ∈ (0, 1), becomes V t = ÃV V (0) = (U(0), Z(0, •)) T .
It is easy to see that à generates a strongly continuous semigroup (T (t)) t≥0 in the Hilbert space H := H × L 2 (0, 1; H). Moreover, (T (t)) t≥0 is exponentially stable. Indeed, we clearly have

Z(t, ρ) 2 L 2 (0,1;H) = 1 0 BU(t -τ ρ) 2 H dρ ≤ B 2 1 0 U(t -τ ρ) 2 H dρ .
Then, the exponential estimate for U gives, for t ≥ 2τ,

Z(t, ρ) 2 L 2 (0,1;H) ≤ B 2 M ′ 2 h 2 e -2ω ′ t U 0 H + τ 0 e ωs f (s) H ds 2 with h 2 := 1 τ τ 0 e 2ω ′ s
ds. Thus, there exists a positive constant M , depending on M, ω, τ, |k| and the norm of B, such that

T (t) H ≤ M e -ω ′ t , t > 0.
(2.11)

Coming back to (2.10) and using Duhamel's formula, V := (U, Z) T can be written as

V (t) = T (t)V 0 + t 0 T (t -s) F (V (s))ds,
where F (V (s)) = (F (U(s)), 0) T . Therefore,

V (t) H ≤ M e -ω ′ t V 0 H + Me -ω ′ t t 0 e ωs γ V (s) Hds
and the exponential stability estimate follows from Gronwall's lemma if ω ′ -γ M < 0.

Remark 2.3 From our proof we see that for F ≡ 0 the explicit decay of U(t) H is

U(t) H ≤ Ce (σ-ω)t ( U 0 H + α), (2.12) 
for some C > 0.

Remark 2.4 Note that Theorem 2.2 is very general. Indeed, it gives stability results, when the delay feedback parameter k is sufficiently small, for every model in the form (1.2) if the semigroup (S(t)) t≥0 generated by the linear operator A is exponentially stable. For instance, it furnishes stability results for previously studied models for wave type equations (cfr. [START_REF] Ammari | Feedback boundary stabilization of wave equations with interior delay Systems and[END_REF][START_REF] Pignotti | A note on stabilization of locally damped wave equations with time delay[END_REF][START_REF] Nicaise | Stabilization of second-order evolution equations with time delay[END_REF]), Timoshenko models (cfr. [START_REF] Said-Houari | Stability result of the Timoshenko system with delay and boundary feedback[END_REF]). Also, it includes recent stability results for problems with viscoelastic damping and time delay (cfr. [START_REF] Guesmia | Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay[END_REF][START_REF] Alabau-Boussouira | Exponential stability of the wave equation with memory and time delay[END_REF]).

3 More general nonlinearities

Abstract existence and stability results

Here we consider a more general class of nonlinearities. More precisely, we assume that for every constant c there exists a positive constant L(c) such that

F (U 1 ) -F (U 2 ) H ≤ L(c) U 1 -U 2 H , (3.13) 
for all U 1 , U 2 ∈ H with U 1 H ≤ c, U 2 H ≤ c.
Moreover, we assume that there exists an increasing continuous function χ : [0, +∞) → [0, +∞), with χ(0) = 0, such that

F (U) H ≤ χ( U H ) U H , ∀ U ∈ H . (3.14)
Now, the nonlinear term introduces additional difficulties. We can give an exponential stability result under a well-posedness assumption for small initial data. Then, we will show that this assumption is satisfied for a quite large class of examples. Theorem 3.1 Let M, ω ′ be as in (2.11). Suppose that for |k| sufficiently small

∃ ρ 0 > 0 and C ρ 0 > 0 such that ∀ U 0 ∈ H, f ∈ C([0, τ ]; H) with ( U 0 2 H + τ 0 |k| f (s) 2
H ds) 1/2 < ρ 0 , there exists a unique global solution

U ∈ C([0, +∞, H) to (1.2) with U(t) H ≤ C ρ 0 < χ -1 ω ′ M , ∀ t > 0.
(3.15)

Then there exists k > 0 such that if |k| < k, for every U 0 ∈ H and f ∈ C([0, τ ]; H) satisfying the assumption from (3.15), the solution U of problem (1.2) satisfies the exponential decay estimate

U(t) H ≤ M * e -ωt ( U 0 H + τ 0 e ωs f (s) H ds), ∀t ≥ τ, (3.16) 
for suitable constants M * , ω.

Proof. We can simply repeat the previous proof of Theorem 2.2 with χ(C ρ 0 ) instead of γ.

Examples

We now give some examples for wich assumption (3.15) is satisfied.

Let H be a real Hilbert space, with norm • H , and let A 1 : D(A 1 ) → H, a positive self-adjoint operator with a compact inverse in H. Denote by V := D(A

1 2
1 ) the domain of A 1 2

1 . Further, for i=1,2, let W i be a real Hilbert space (which will be identified to its dual space) and let C ∈ L(W 1 , H), B ∈ L(W 2 , H). Assume that, for some constant µ > 0

B * u 2 W 2 ≤ µ C * u 2 W 1 , ∀ u ∈ V . (3.17)
Let be given a functional G : V → IR such that G is Gâteaux differentiable at any x ∈ V . We further assume (cfr. [START_REF] Alabau-Boussouira | Decay estimates for second order evolution equations with memory[END_REF]) that a) For any u ∈ V there exists a positive constant c(u) such that

|DG(u)(v)| ≤ c(u) v H , ∀v ∈ V,
where DG(u) is the Gâteaux derivative of G at u. Consequently DG(u) can be extended in the whole H and we will denote by ∇G(u) the unique element in H such that

(∇G(u), v) H = DG(u)(v), ∀v ∈ H.
b) For all c > 0, there exists L(c) > 0 such that

∇G(u) -∇G(v) H ≤ L(c) A 1 2 1 (u -v) H for all u, v ∈ V such that A 1 2 1 u H ≤ c and A 1 2
1 v H ≤ c. c) There exists a suitable increasing continuous function ψ satisfying ψ(0) = 0 such that

∇G(u) H ≤ ψ( A 1 2 1 u ) A 1 2 1 u 2 H , ∀u ∈ V.
In this setting let us consider the second order evolution equation

u tt + A 1 u + CC * u t = ∇G(u) + kBB * u t (t -τ ), t > 0, u(0) = u 0 , u t (0) = u 1 , B * u t (t -τ ) = g(t), t ∈ (0, τ ), (3.18) 
with (u 0 , u 1 ) ∈ V × H. Denoting v := u t and U := (u, v) T , this problem may be rewritten in the form (1.2) with

A := 0 1 -A 1 -CC * , F (U) := (0, ∇G(u)) T , BU := (0, BB * v) T .
The above assumptions on G imply that F satisfies (3.13) and (3.14) in H := V × H, with χ = ψ. We define the energy of solutions of problem (3.18) as

E(t) := E(t, u(•)) = 1 2 u t 2 H + 1 2 A 1 2 1 u 2 H -G(u) + 1 2 t t-τ |k| B * u t (s) 2 W 2 ds . (3.19)
We will show that for the above model Theorem 3.1 holds.

First of all note that

E ′ (t) = -C * u t (t) 2 W 1 + k B * u t (t), B * u t (t -τ ) + |k| 2 B * u t (t) 2 W 2 - |k| 2 B * u t (t -τ ) 2 W 2 ≤ -C * u t (t) 2 W 1 + |k| B * u t (t) 2 W 2
Then, if |k| < 1 µ , the energy is not increasing. We can prove the following well-posedness result for sufficiently small data. Proof. Note that the condition |k| < 1/µ guarantees that the energy is not increasing.

First of all, on [0, τ ] the abstract system may be rewritten in the form (2.3) with g 0 (t) = (0, kBg(t)).

Then, from classical theory for nonlinear evolution equation (see Th. 1.4, Ch. 6 of [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), there exists a unique mild local solution U defined in a maximal time interval [0, σ) with 0 < σ ≤ τ. We will show that σ = τ .

We argue similarly to [START_REF] Alabau-Boussouira | Decay estimates for second order evolution equations with memory[END_REF]. Note that if ψ( A

1 2 1 u 0 H ) < 1 4 , then E(0) ≥ 1 2 u 1 2 H + 1 2 A 1 2 1 u 0 2 H -G(u 0 ) ≥ 1 2 u 1 2 H + 1 4 A 1 2 1 u 0 2 H ≥ 0 .
We first show that if

ψ( A 1 2 1 u 0 H ) < 1 4
and ψ(2(E(0))

1 2 ) < 1 4 , (3.20) 
then

E(t) ≥ 1 2 u t (t) 2 H + 1 4 A 1 2 1 u(t) 2 H , ∀t ∈ [0, σ). (3.21) 
Let r := sup{s ∈ [0, σ) such that (3.21) holds for every t ∈ [0, s]}. Suppose that r < σ, then,

E(r) ≥ 1 2 u t (r) 2 H + 1 4 A 1 2 1 u(r) 2 H ≥ 0 . (3.22)
Thus, from (3.22), we have

ψ( A 1 2 1 u(r) H ) ≤ ψ(2(E(r)) 1 2 ) < ψ(2(E(0)) 1 2 ) < 1 4 .
This gives

E(r) ≥ 1 2 u t (r) 2 H + 1 2 A 1 2 1 u(r) 2 H -G(u(r)) > 1 2 u t (r) 2 H + 1 4 A 1 2 1 u(r) 2 H ,
which contradicts the maximality of r. This implies r = σ. Now, let us set

ρ 0 = min 1 2 ψ -1 1 4 , 1 2 √ 2 ψ -1 ω ′ M > 0.
In a second step we show that (3.20) holds for all u 0 ∈ D(A

1 2 1 ), u 1 ∈ H, g ∈ C([0, τ ], W 2 ), satisfying A 1 2 1 u 0 2 H + u 1 2 H + τ 0 |k| g(s) 2 W 2 ds 1 2 < ρ 0 . (3.23)
Indeed, as this assumption implies that A 1 2

1 u 0 H < ρ 0 , then one has

ψ( A 1 2 1 u 0 H ) < ψ(ρ 0 ) = ψ( 1 2 ψ -1 ( 1 4 )) < 1 4 .
Hence by the assumption c) on G, we deduce that

E(0) ≤ 3 4 A 1 2 1 u 0 2 H + 1 2 u 1 2 H + 1 2 τ 0 |k| g(s) 2 W 2 ds < ρ 2 0 ,
and, by definition of ρ 0 , we conclude that

ψ(2(E(0)) 1 2 ) < ψ(ψ -1 ( 1 4 )) = 1 4 .
In conclusion under the assumption (3.23), the estimate (3.20) holds, implying in particular that

0 ≤ 1 2 u t (t) 2 H + 1 4 A 1 2 1 u(t) 2 H ≤ E(t) ≤ E(0) ≤ ρ 2 0 , ∀t ∈ [0, σ].
Then again by [11, Th. 1.4, Ch. 6]), σ = τ. Now we can consider the interval [τ, 2τ ) and we can rewrite the problem in the form (2.3) with g 1 (s) = (0, kBu t (t -τ )). As before, there exists a local solution and arguing as on [0, τ ] we obtain a solution on [0, 2τ ] under the assumption (3.23).

By repeating this argument we prove that, if (3.23) holds, then the solution exists on [0, +∞) and

u t (t) 2 H + A 1 2 1 u(t) 2 H < 4ρ 2 0 ≤ 1 2 ψ -1 ω ′ M 2 .
This proves (3.15).

If A generates an exponentially stable continuous semigroup on H, then the exponential estimate (3.16) holds for k small enough, for small initial data.

Remark 3.3

The abstract model (3.18) includes semilinear versions of previously analyzed concrete models for wave-type equations (cfr. [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]); see the example below. Of course, due to the presence of the nonlinearity we obtain the stability result (for small initial data) under a more restrictive assumption on the size of the delay feedback parameter k. Observe also that models with viscoelastic damping could be considered but with also an extra not-delayed damping necessary to avoid blow-up of solutions, at least for small data. 

Γ 0 = { x ∈ ∂Ω : m(x) • ν(x) > 0 }. (3.24)
Moreover, let ω 2 be any set satisfying ω 2 ⊆ ω 1 . Let us consider the initial boundary value problem

u tt (x, t) -∆u(x, t) + aχ ω 1 u t (x, t) + kχ ω 2 u t (x, t -τ ) = |u(x, t)| β u(x, t) in Ω × (0, +∞) (3.25) u(x, t) = 0 on ∂Ω × (0, +∞) (3.26) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in Ω (3.27) u t (x, t -τ ) = f (x, t), in ω 2 × (0, τ ), (3.28) with initial data (u 0 , u 1 , f ) ∈ H 1 0 (Ω) × L 2 (Ω) × L 2 (ω 2 × (0, τ ))
, and a, k real constants, a > |k|. The constant β > 0 satisfies a suitable restriction to be specified below.

This problem enters into our previous framework, if we take H = L 2 (Ω) and the operator A 1 defined by

A 1 : D(A 1 ) → H : u → -∆u,
where D(A 1 ) = H 1 0 (Ω) ∩ H 2 (Ω). The operator A 1 is a self-adjoint and positive operator with a compact inverse in H and is such that V = D(A 1/2 ) = H 1 0 (Ω). We then define W i = L 2 (ω i ) and the operators B, C as

B : W 2 → H : v → √ kṽχ ω 2 , C : W 1 → H : v → √ aṽχ ω 1 ,
where ṽ ∈ L 2 (Ω) is the extension of v by zero outside ω i . It is easy to verify that

B * (ϕ) = √ kϕ |ω 2 for ϕ ∈ H,
and thus BB * (ϕ) = kϕχ ω 2 , for ϕ ∈ H. Analogously,

C * (ϕ) = √ aϕ |ω 1 for ϕ ∈ H,
and CC * (ϕ) = aϕχ ω 1 , for ϕ ∈ H. Moreover, since ω 2 ⊆ ω 1 and a > |k| the inequality (3.17) holds. Next, consider the functional

G(u) := 1 β + 2 Ω |u(x)| β+2 dx, u ∈ H 1 0 (Ω),
which, for 0 < β ≤ 4 n-2 , is well-defined by Sobolev's embedding theorem. Note that G is Gâteaux differentiable at any u ∈ H 1 0 (Ω) and its Gâteaux derivative is given by

DG(u)(v) = Ω |u(x)| β u(x)v(x)dx, v ∈ H 1 0 (Ω).
As proved in [START_REF] Alabau-Boussouira | Decay estimates for second order evolution equations with memory[END_REF], if we assume that 0 < β < 2 n-2 , then G satisfies the previous assumptions a), b), c). Therefore problem (3.25)-(3.28) enters in the abstract framework (3.18) and so the previous stability result holds for small initial data if the delay parameter |k| is sufficiently small.

The case B unbounded

In this case we need more assumptions on B, indeed we assume that B = CC * , with C * ∈ L(D(A), U) and hence C ∈ L(U, H -1 ), where U is a complex Hilbert space (which is identified with its dual space) and H -1 = D(A * ) ′ is the dual space of D(A * ) with respect to the pivot space H (see [15, section 2.10]). In such a setting, for all t ≥ 0 we can define Φ t ∈ L(L 2 (0, τ ; U), H -1 ) by

Φ t v = t 0 S t-σ Cv(σ) dσ, for all v ∈ L 2 (0, τ ; U).
We further need the following assumptions that are satisfied by different examples (see below). (H1) For all v ∈ L 2 (0, τ ; U), one has Φ t v ∈ C([0, τ ], H) and there exists C 1 > 0 such that

Φ τ v H ≤ C 1 v L 2 (0,τ ;U ) . (4.1)
By Remark 4.2.3 of [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] we see that this property (H1) implies that C is an admissible control operator for the semigroup generated by A in the sense of Definition 4.2.1 of [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]. Note further that the estimate (4.2.5) of [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] implies that

Φ t v H ≤ C 1 v L 2 (0,τ ;U ) , ∀t ∈ [0, τ ]. (4.2) 
(H2) For all v ∈ L 2 (0, τ ; U), one has C * Φ t v ∈ L 2 (0, τ ; U) and there exists

C 3 > 0 such that C * Φ t v L 2 (0,τ ;U ) ≤ C 3 v L 2 (0,τ ;U ) . (4.3) 
(H3) For all z 0 ∈ H, C * S(•)z 0 ∈ L 2 (0, τ ; U) and C * S(•)z 0 L 2 (0,τ ;U ) ≤ C 2 z 0 H . (4.4) 
Note that this last condition directly implies that for all ℓ ∈ N,

C * S(•)z 0 L 2 (ℓτ,(ℓ+1)τ ;U ) ≤ C 2 Me -ℓτ ω z 0 H . (4.5) 
Indeed for any t ∈ (ℓτ, (ℓ + 1)τ ), we can write S(t)z 0 = S(t -ℓτ )S(ℓτ )z 0 , and therefore by (4.4)

C * S(•)z 0 L 2 (ℓτ,(ℓ+1)τ ;U ) ≤ C 2 S(ℓτ )z 0 H ,
which leads to (4.5) owing to our assumption (1.1).

We are first able to prove the next well-posedness result.

Proposition 4.1 Under the previous assumptions on C, then for any initial datum U 0 ∈ H and f ∈ L 2 (0, τ ; U), there exists a unique (mild

) solution U ∈ C([0, +∞), H) of problem U t (t) = AU(t) + kCC * U(t -τ ) in (0, +∞) U(0) = U 0 , C * U(t -τ ) = f (t), ∀t ∈ (0, τ ). (4.6) 
Proof. We use an iterative argument. Namely in the interval (0, τ ), problem (4.6) can be seen as an inhomogeneous evolution problem

U t (t) = AU(t) + kCf (t) in (0, τ ) U(0) = U 0 . (4.7) 
Hence by the hypothesis (H1), this problem has a unique solution U ∈ C([0, τ ], H) given by

U(t) = S(t)U 0 + k t 0 S(t -s)Cf (s) ds. (4.8) 
This yields U on (0, τ ) and therefore on (τ, 2τ ), problem (4.6) can be seen as an inhomogeneous evolution problem

U t (t) = AU(t) + kCv(t) in (τ, 2τ ) U(τ ) = U(τ -), (4.9) 
where

v(t) = C * U(t -τ ) = C * S(t -τ )U 0 + kC * Φ t-τ f
. But owing to the hypotheses ((H2) and (H3), v belongs to L 2 (τ, 2τ ; U). Hence by the hypothesis (H1), this problem has a unique solution U ∈ C([τ, 2τ ], H) given by

U(t) = S(t -τ )U(τ -) + k t τ S(t -s)Cv(s) ds, ∀t ∈ [τ, 2τ ]. (4.10) 
By iteration, we obtain a global solution.

Similarly we will prove the following exponential stability result.

Theorem 4.2 Let the assumptions (H1) to (H3) be satisfied. Set

k 0 := e τ ω -1 M ′2 C 1 C 4 e 2ωτ ,
where

M ′ = max{M, 1}, C 4 = max{C 2 , C 3 M ′ C 1 }. Then for any k satisfying |k| < k 0 , (4.11) 
there exist ω ′ > 0 and M ′′ > 0 such that the solution

U ∈ C([0, +∞), H) of problem (4.6) with U 0 ∈ H and f ∈ L 2 (0, τ ; U) satisfies U(t) H ≤ M ′′ e -ω ′ t ( U 0 H + |k|M ′ C 1 e 2ωτ f L 2 (0,τ,U ) ), ∀t > 0. (4.12)
From its definition the constant k 0 depends only on M, ω, τ and the constants appearing in the assumptions (H1) to (H3).

Proof. We use again an iterative argument and the estimates (4.1) to (4.4). First on (0, τ ) using (4.8), the assumptions (1.1) and (4.1), we see that

U(t) H ≤ Me -ωt U 0 H + |k|C 1 f L 2 (0,τ,U ) , ∀t ∈ (0, τ ),
that directly leads to

U(t) H ≤ e -ωt (M U 0 H + |k|C 1 f L 2 (0,τ,U ) e ωτ ), ∀t ∈ (0, τ ). (4.13)
Now coming back to (4.8) and using (4.3) and (4.4), we get

C * U L 2 (0,τ,U ) ≤ C 2 U 0 H + |k|C 3 f L 2 (0,τ,U ) . (4.14) 
Let us now prove by iteration that for all ℓ ∈ N, we have

U(t) H ≤ K 1 (ℓ)e -ωt , ∀t ∈ (ℓτ, (ℓ + 1)τ ), (4.15) 
as well as

C * U L 2 (ℓτ,(ℓ+1)τ ;U ) ≤ K 2 (ℓ)e -ℓτ ω , (4.16) 
where

K 1 (ℓ) ≤ M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) ℓ , (4.17) 
and

K 2 (ℓ) ≤ C 4 M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) ℓ , (4.18) 
with δ = |k|C 1 M ′ e 2ωτ and α = f L 2 (0,τ,U ) . Note that (4.15) and (4.16) hold for ℓ = 0 due to (4.13) and (4.14) since simple calculations yield

M U 0 H + |k|C 1 f L 2 (0,τ,U ) e ωτ ≤ K 1 (0), C 2 U 0 H + |k|C 3 f L 2 (0,τ,U ) ≤ K 2 (0).
Let us now prove that if (4.15)-(4.18) hold up to ℓ then they hold for ℓ + 1. Indeed for t ∈ ((ℓ + 1)τ, (ℓ + 2)τ ), we have This identity can be equivalently written

U(t) = S(t)U 0 + k ℓ j=1 ( 
U(t) = S(t)U 0 + k ℓ j=1 S(t -(j + 1)τ )Φ τ C * U((j -1)τ + •) (4.19) + kΦ t-(ℓ+1)τ C * U(ℓτ + •) + kS(t -τ )Φ τ f.
Hence by our assumptions (1.1) and (4.1), we deduce that

U(t) H ≤ Me -ωt U 0 H + |k|MC 1 ℓ j=1 e -(t-(j+1)τ )ω C * U((j -1)τ + •) L 2 (0,τ,U ) + |k|C 1 C * U(ℓτ + •) L 2 (0,τ,U ) + |k|Me -(t-τ )ω C 1 α.
Hence by our iterative assumption, the estimate (4.16) for all j ≤ ℓ yields

U(t) H ≤ M ′ e -ωt U 0 H + |k|C 1 e 2τ ω ℓ+1 j=1 K 2 (j -1) + |k|e τ ω C 1 α .
By setting K 2 (-1) = α, we have found that

U(t) H ≤ M ′ e -ωt U 0 H + |k|C 1 e 2τ ω ℓ+1 j=0 K 2 (j -1) .
This proves (4.15) for ℓ + 1 with

K 1 (ℓ + 1) = M ′ U 0 H + |k|C 1 e 2τ ω ℓ+1 j=0 K 2 (j -1) . (4.20)
Now we come back to (4.19) and applying C * to this identity (meaningful due to our assumptions (H2) and (H3)), we get

C * U L 2 ((ℓ+1)τ,(ℓ+2)τ,U ) ≤ C 2 Me -(ℓ+1)τ )ω U 0 H + |k|C 2 C 1 M ℓ j=1 e -(ℓ-j)τ ω C * U((j -1)τ + •) L 2 (0,τ,U ) + |k|C 3 C * U L 2 (ℓτ,(τ +1)τ,U ) + |k|C 2 C 1 e -ℓτ ω α.
As our iterative assumption means that (4.16) holds for all j ≤ ℓ, we get

C * U L 2 ((ℓ+1)τ,(ℓ+2)τ,U ) ≤ C 2 Me -(ℓ+1)τ ω U 0 H + |k|C 2 C 1 M ′ e -ℓτ ω e τ ω ℓ j=0 K 2 (j -1) + |k|C 3 e -ℓτ ω K 2 (ℓ). As C 2 ≤ C 4 and C 3 ≤ C 1 M ′ C 4 , we deduce that C * U L 2 ((ℓ+1)τ,(ℓ+2)τ,U ) ≤ C 4 M ′ e -(ℓ+1)τ ω U 0 H + δ ℓ j=-1 K 2 (j) .
This proves (4.16) for ℓ + 1 with

K 2 (ℓ + 1) = C 4 M ′ ( U 0 H + δ ℓ j=-1 K 2 (j)). ( 4 

.21)

Let us now show that K 2 (ℓ) given by (4.21) satisfies (4.18). Indeed it holds for ℓ = 0 and then we again prove (4.18) by induction. If it holds up ℓ then by (4.21) we will have

K 2 (ℓ + 1) ≤ C 4 M ′ U 0 H + δα + δ ℓ j=0 C 4 M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) j ≤ C 4 M ′ ( U 0 H + δα) 1 + δC 4 M ′ ℓ j=0 (1 + δC 4 M ′ ) j ≤ C 4 M ′ ( U 0 H + δα) 1 + δC 4 M ′ (1 + δC 4 M ′ ) ℓ+1 -1 δC 4 M ′ ≤ C 4 M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) ℓ+1 .
This proves (4.18) for ℓ + 1.

Once (4.18) holds for all ℓ, we come back to (4.20) and get

K 1 (ℓ + 1) ≤ M ′ ( U 0 H + |k|C 1 e 2τ ω (α + ℓ j=1 C 4 M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) j ) ≤ M ′ ( U 0 H + δ(α + δ -1 ( U 0 H + δα)((1 + δC 4 M ′ ) ℓ+1 -1) ≤ M ′ ( U 0 H + (αδ + ( U 0 H + δα)((1 + δC 4 M ′ ) ℓ+1 -1) ≤ M ′ U 0 H + ( U 0 H + δα)(1 + δC 4 M ′ ) ℓ+1 -U 0 H ≤ M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) ℓ+1 .
This proves (4.18) for all ℓ + 1.

We end up the proof by combining (4.15) and (4.17) to get

U(t) H ≤ M ′ ( U 0 H + δα)(1 + δC 4 M ′ ) ℓ e -ωt , ∀t ∈ (ℓτ, (ℓ + 1)τ ).
Hence setting

σ = τ -1 ln(1 + δC 4 M ′ ) = τ -1 ln(1 + |k|C 4 M ′2 C 1 e 2ωτ ), (4.22) 
we conclude as in Theorem 2.2 that

U(t) H ≤ M ′ ( U 0 H + δα)e (σ-ω)t , ∀t > 0. (4.23)
Therefore U(t) H will decay exponentially if σ -ω is negative or equivalently if

1 + |k|C 4 M ′2 C 1 e 2ωτ < e τ ω ,
which is nothing else than (4.11).

Consider an extension ṽ of v by taking an odd extension of v to (τ, 2τ ) and by taking ṽ = 0 outside (0, 2τ ). Then such an extension satisfies IR ṽ(t) dt = 0, and

IR |ṽ(t)| 2 dt ≤ 2 τ 0 |v(t)| 2 dt.
(5.31)

Then we can consider the solution w of

w tt (x, t) -w xx (x, t) = 0 in Ω × (0, ∞), w x (1, t) = -w t (1, t) -aw(1, t
) on (0, +∞), w x (0, t) = -ṽ(t) on (0, +∞), w(x, 0) = 0 and w t (x, 0) = 0 in Ω.

But since the corresponding operator A generates a strongly continuous semigroup, this solution w coincides with u in (0, τ ). Furthermore we can extend w by zero in (0, 1) × (-∞, 0) that then satisfies w tt (x, t) -w xx (x, t) = 0 in Ω × IR, w x (1, t) = -w t (1, t) -aw(1, t) on IR, w x (0, t) = -ṽ(t) on IR.

Taking Fourier transform in time, we deduce that for all ξ ∈ IR, ŵ(•, ξ) satisfies Recalling that w coincides with u in (0, τ ) and using the estimate (5.31), we have proved that As before it suffices to check the assumption (H1) for v ∈ D(0, τ ). For such a v consider the (strong) solution u = Φ t v, 0 < t < τ of (5.30). Then we consider its energy

E(t) = 1 2 ( 1 0 (|u t | 2 + |u x | 2 ) dx + a|u(1, t)| 2 ).
Differentiating and integrating by parts we have

E ′ (t) = -|u t (1, t)| 2 + v(t)u t (0, t).
Integrating this identity between 0 and t ∈ (0, τ ] and using Cauchy-Schwarz's inequality we find that E(t) ≤ v L 2 (0,τ ) u t (0, t) L 2 (0,τ ) .

Hence using the estimate (5.32) we arrive at (4.1). The continuous property is proved similarly by integrating between t ∈ (0, τ ] and t ′ ∈ (0, τ ].

In conclusion, as the system (5.26)-(5.29) with k = 0 is exponentially stable and the assumptions (H1) to (H3) hold, system (5.26)-(5.29) remains exponentially stable if k is small enough. Remark 5.1 Our approach cannot be used for the wave equation in IR d , with d ≥ 2 since according to the results from [START_REF] Tataru | On the regularity of boundary traces for the wave equation[END_REF] (see for instance Theorem 3 in [START_REF] Tataru | On the regularity of boundary traces for the wave equation[END_REF] and the comments before), the assumption (H2) is wrong once d ≥ 2.

The wave equation with boundary and internal unbounded feedbacks in 1d

Here we want to consider the following problem: For a fixed a ∈ (0, 1) consider the solution of u tt (x, t) -u xx (x, t) = 0 in (0, a) ∪ (a, 1) × (0, +∞) (5.33) 

Proposition 3 . 2

 32 The assumption (3.15) is satisfied for |k| < 1/µ.

Example 3 . 4

 34 As an explicit example of system (3.18) let us consider the wave equation with local internal damping and internal delay. More precisely, let Ω ⊂ IR n , n ≥ 3, be an open bounded domain with a boundary ∂Ω of class C 2 . Denoting by m the standard multiplier m(x) = x-x 0 , x 0 ∈ IR n , let ω 1 be the intersection of Ω with an open neighborhood of the subset of ∂Ω

k τ 0 S

 0 j+1)τ jτ S(t -s)CC * U(s -τ ) ds + k t (ℓ+1)τ S(t -s)CC * U(s -τ ) ds + (t -s)Cf (s) ds.

ξ 2 ŵ

 2 + ŵxx = 0 in Ω, ŵx (1) = -(a + iξ) ŵ(1), ŵx (0) = -ṽ(ξ).Hence easy calculations showthat ŵ(x, ξ) = ṽ(ξ) iξ (e -iξx + c(ξ) cos(ξx)), ∀x ∈ (0, 1), with c(ξ) = ae -iξ ξ sin ξ -(a + iξ) cos ξ .This identity implies thatiξ ŵ(0, ξ) = ṽ(ξ)(1 + c(ξ))and since one can show that there exists a positive constant C depending on a such that|c(ξ)| ≤ C, ∀ξ ∈ IR,we deduce that |iξ ŵ(0, ξ)| ≤ (1 + C)| ṽ(ξ)|, ∀ξ ∈ IR. By Parseval's identity we find that IR |w t (0, t)| 2 dt ≤ (1 + C) IR |ṽ(t)| 2 dt.

  (H2) holds reminding thatC * (u, u t ) = B * 2 u t = u t (0, •).

Examples in the case B unbounded

Most of our examples are second order evolution equations with damping. Namely they are in the following form. Let H be a complex Hilbert space and let A : D(A) → H be a positive self-adjoint operator with a compact inverse in H. Denote by V := D(A 1 2 ) the domain of A 1 2 . Moreover, for i = 1, 2, let U i be complex Hilbert spaces with norm and inner product denoted respectively by • U i and •, • U i and let B i : U i → V ′ be linear operators. In this setting we consider the problem

where the constant τ > 0 is the time delay and k is a real parameter.

We transform this problem into a first order system by using the standard reduction of order: setting

it satisfies formally

In such a setting, we easily check that the adjoint A * of A is given by

In other words, if we introduce the unitary mapping

Consequently the semigroup (S * (t)) t≥0 generated by A * will be given by

To apply our stability results from section 4 to our system (5.24)-( 5.25) we need to check the assumptions (H1) to (H3) for the operators A and B = CC * . But in this case, (H1) implies (H3) since by Remark 4.2.4 of [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF], (H1) implies that C is an admissible control for the semigroup S(t) and by Theorem 4.4.3 of [15] this is equivalent to the fact that C * is an admissible operator for the semigroup S * . As C * S * = OC * SO, we deduce that (H3) holds owing to Proposition 4.4.1 of [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF].

The wave equation with boundary feedbacks in 1d

Our first application concerns the wave equation with boundary feedbacks in dimension 1. More precisely let Ω = (0, 1) ⊂ IR be the unit interval.

Given a positive constant a, let us consider the initial boundary value problem

with initial data (u 0 , u 1 ) ∈ H 1 (Ω) ×L 2 (Ω). This problem enters in the abstract framework (5.24)-( 5.25) if we take H = L 2 (Ω) with its standard norm and V = H 1 (Ω) with the norm

The operator A is defined by

where D(A) := {u ∈ H 2 (Ω) ∩ H 1 (Ω) : u x (0) = 0 and u x (1) + au(1) = 0}.

We then define U 1 = U 2 := IR and for i = 1 or 2, the operator

Finally we need to take

Hence in such a situation it remains to check the hypotheses (H1) and (H2).

To check the assumption (H2), as D(0, τ ) is dense in L 2 (0, τ ), it suffices to check it for v ∈ D(0, τ ). For such a v consider u = Φ t v, 0 < t < τ , that is the (strong) solution of

on (0, τ ), u(x, 0) = 0 and u t (x, 0) = 0 in Ω.

(5.30) u(0, t) = 0 on (0, +∞)

(5.36) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in (0, 1)

(5.37) with initial data (u 0 , u 1 ) ∈ {w ∈ H 1 (0, 1) : w(0) = 0} × L 2 (0, 1), and [u](a) means the jump of u at the point a, i.e., [u](a) = u(a+) -u(a-). This problem corresponds to the case where a standard dissipative law (cfr. [START_REF] Komornik | Exact controllability and stabilization, the multiplier method[END_REF]) is acting at 1, while a dissipation with delay appears at the interior point a.

As in subsection 5.1, we only need to check the assumption (H2) (since as before one can show that (H2) implies (H1)), that is proved exactly as before by using an extension method and Fourier transform in time to get the system ξ 2 ŵ -ŵxx = 0 in (0, a) ∪ (a, 1), ŵ(0) = 0, ŵx (1) = -iξ ŵ( 1 In conclusion, for k small enough, system (5.33)-(5.37) is exponentially stable since it is for k = 0.

The wave equation with a bounded internal feedback and a boundary unbounded feedback in 1d

Arguing as before we can consider the following problem

(5.40) u(x, 0) = u 0 (x) and u t (x, 0) = u 1 (x) in (0, 1)

(5.41) with α > 0 and initial data (u 0 , u 1 ) ∈ {w ∈ H 1 (0, 1) : w(0) = 0} × L 2 (0, 1). This problem corresponds to the case where a standard dissipative law is acting on the whole domain, while a dissipation with delay appear at the boundary point 1. As this system with k = 0 is exponentially stable and the assumptions (H1) to (H3) are valid, system (5.38)-(5.41) remains exponentially stable if k is small enough (cfr. [START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF]).