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It is well-known that Vrancken, Li and Simon classified locally strongly convex affine hyperspheres whose affine metric are of constant sectional curvatures. In this paper, four-dimensional affine hyperspheres with affine metric being Einstein are shown to have constant sectional curvatures, and therefore they are locally affinely equivalent to an open part of either one of the hyperquadrics or the hyperbolic affine hypersphere x 1 x 2 x 3 x 4 x 5 = 1.

Introduction

We denote by R n+1 the real unimodular-affine space equipped with its canonical flat connection D and a parallel volume form ω. Let M := M n be a differentiable, connected C ∞ -manifold of dimension n ≥ 2, and let F : M n → R n+1 be a nondegenerate hypersurface immersion with equiaffine (unimodular) normal ξ. We denote by h its affine Blaschke-Berwald metric which is semi-Riemannian, by S the affine shape operator and by ∇ its induced affine connection. Let ∇ be the Levi-Civita connection of the affine metric h. The difference tensor K is defined by K(X, Y ) := K X Y := ∇ X Y -∇X Y ; it is symmetric as both connections are torsion free.

Here in this paper, we will always assume that the hypersurface is locally strongly convex, i.e., the affine metric is definite. In this case, if necessary by changing the sign of the affine normal, we may always assume that the affine metric is positive definite.

The hypersurface is called an affine hypersphere if S = L 1 id. In that case, one easily proves the affine mean curvature 1 n trace S = L 1 = const. More precisely, F is called a proper affine hypersphere if L 1 = 0; if L 1 > 0 (resp. L 1 < 0), the proper affine hypersphere is called elliptic (resp. hyperbolic). If L 1 = 0, the affine hypersphere is called improper or parabolic. For a proper affine hypersphere the affine normal satisfies ξ(p) = L 1 (F (p) -c), where c is a constant vector, called the center of F (M n ); for simplicity, we choose c as origin. For an improper affine hypersphere the affine normal field is constant.

The affine hyperspheres form a very important class of affine hypersurfaces. From a global point of view locally strongly convex hyperbolic affine hyperspheres have been widely studied, see amongst others the works of [START_REF] Cheng | Complete affine hypersurfaces, I, The completeness of affine metrics[END_REF], [START_REF] Gigena | On a conjecture of E. Calabi[END_REF], [START_REF] Li | Some theorems in affine differential geometry[END_REF], [START_REF] Li | Calabi conjecture on hyperbolic affine hyperspheres[END_REF][START_REF] Li | Calabi conjecture on hyperbolic affine hyperspheres (2)[END_REF], [START_REF] Sasaki | Hyperbolic affine hyperspheres[END_REF] or the book of Li, Simon and Zhao [START_REF] Li | Global affine differential geometry of hypersurfaces[END_REF], also see the recent survey paper [START_REF] Loftin | Survey on affine spheres[END_REF]. Even assuming global conditions, the class of hyperbolic affine hyperspheres is surprisingly large. Even more, locally, in arbitrary dimensions one is still far away from a complete understanding of such hypersurfaces.

Worthwhile to mention from a local point of view are the classification of the affine hyperspheres with constant sectional curvature, see [START_REF] Li | Uniqueness theorems in affine differential geometry II[END_REF][START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF] for the locally strongly convex case, or [START_REF] Vrancken | The Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional curvature[END_REF] for the general non-degenerate case and the Calabi construction ( [START_REF] Calabi | Complete affine hyperspheres, I[END_REF], [START_REF] Dillen | Calabi-type composition of affine spheres[END_REF]) of hyperbolic affine hyperspheres which allows to associate with two hyperbolic affine hyperspheres

ψ 1 : M n1 1 → R n1+1 and ψ 2 : M n2 2 → R n2+1 , two new immersions: ϕ and φ: for p ∈ M 1 , t ∈ R, ϕ(p, t) = (c 1 e t √ n1+1 ψ 1 (p), c 2 e - √ n1+1t ) ∈ R n1+2 , and, for p ∈ M n1 1 , q ∈ M n2 2 , t ∈ R, φ(p, q, t) = (c 1 e n2+1 n1+1 t ψ 1 (p), c 2 e - n1+1 n2+1 t ψ 2 (q)) ∈ R n1+n2+2 ,
which are both again hyperbolic affine hyperspheres. Here, ϕ and φ are respectively called the Calabi product of an affine hypersphere and a point, and the Calabi product of two hyperbolic affine hyperspheres. Note that characterizations of these Calabi products are established in [START_REF] Hu | Characterization of the Calabi product of hyperbolic affine hyperspheres[END_REF] which becomes a crucial step for the complete classification of locally strongly convex affine hypersurfaces with parallel difference tensor (i.e. cubic form) [START_REF] Hu | Locally strongly convex affine hypersurfaces with parallel cubic form[END_REF][START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF]. ¿From a local point of view on locally strongly convex affine hyperspheres, after having the classification of the affine hyperspheres with constant sectional curvature and the classification of the affine hypersphere with parallel cubic form, an obviously natural and interesting problem might be the classification of affine hyperspheres whose affine metric is Einstein and possesses non-constant sectional curvatures.

In this paper, we will deal with the case n = 4. When compared with higher dimensions, the 4-dimensional Einstein affine hyperspheres are spectacular (cf. Remark 7.1). The main result of this paper is the following Main Theorem. Let x : M 4 → R 5 be a locally strongly convex affine hypersphere with its affine metric being Einstein, then it is locally affine equivalent to the open part of either one of the hyperquadrics, or the hyperbolic affine hypersphere Q(4, 1) :

x 1 x 2 x 3 x 4 x 5 = 1, where (x 1 , • • • , x 5 ) are the coordinates of R 5 .
This paper is organized as follows. In Section 2, we briefly recall the theory of local affine hypersurfaces. In Section 3, we review the construction of a typical orthonormal basis at a fixed point, by which we need to consider three independent cases. In Sections 4-6, we settle each of the three cases. Then finally we complete the proof of Main Theorem in Section 7.
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Preliminaries

In this section, we briefly recall the theory of local equiaffine hypersurfaces in [START_REF] Li | Global affine differential geometry of hypersurfaces[END_REF][START_REF] Nomizu | Affine differential geometry. Geometry of affine immersions[END_REF]. Let R n+1 be the standard (n + 1)-dimensional real affine space, i.e. R n+1 endowed with the standard flat connection D and its parallel volume form w, given by the determinant. Let F : M → R n+1 be an oriented hypersurface, and ξ be any transversal vector field on M , i.e. T p R n+1 = T p M ⊕ span{ξ p }, ∀ p ∈ M . For any tangent vector fields X, Y, X 1 , . . . , X n , we write

D X F * (Y ) = F * (∇ X Y ) + h(X, Y )ξ, (2.1) θ(X 1 , . . . , X n ) = w(F * (X 1 ), . . . , F * (X n ), ξ), (2.2)
thus defining a torsion-free affine connection ∇, a symmetric bilinear form h, and a volume element θ on M . M is said to be non-degenerate if h is non-degenerate (this condition is independent of the choice of the transversal vector field). If M is non-degenerate, up to sign there exists a unique choice of transversal vector field such that ∇θ = 0 and θ = w h , where w h is the metric volume element induced by h (see [START_REF] Nomizu | On the geometry of affine immersions[END_REF]). This special transversal vector field ξ, called the affine normal, induces the affine connection ∇ and a pseudo-Riemannian metric h on M . We call h the affine metric, or Blaschke-Berwald metric and C := ∇h the cubic form.

The condition ∇θ = 0 shows that D X ξ is tangent to M for all X. Hence we can define a (1, 1)-type tensor S on M , called affine shape operator, by

(2.3) D X ξ = -F * (SX),
and L 1 = 1 n trace S is called the affine mean curvature. Here S has the property of self-adjoint relative to h. As have been stated in the introduction section, the hypersurface M is called an affine hypersphere if S = L 1 id.

The classical Pick-Berwald theorem states that the affine connection coincides with the Levi-Civita connection ∇ of affine metric h if and only if the hypersurface is a hyperquadric. For that reason, the difference tensor K X Y = ∇ X Y -∇X Y , which related to the cubic form by C(X, Y, Z) = -2h(K(X, Y ), Z), plays a fundamental role in affine differential geometry. Recall that the curvature tensor R of the affine metric, affine shape operator S and the difference tensor K are related by the Gauss and Codazzi equations:

(2.4) R(X, Y )Z = 1 2 h(Y, Z)SX -h(X, Z)SY + h(SY, Z)X -h(SX, Z)Y -[K X , K Y ]Z, (2.5) ( ∇X K)(Y, Z) -( ∇Y K)(X, Z) = 1 2 h(Y, Z)SX -h(X, Z)SY -h(SY, Z)X + h(SX, Z)Y , (2.6) ( ∇X S)Y -( ∇Y S)X = K SX Y -K SY X.
Moreover, h and C satisfy the apolarity condition

(2.7) trace h {(X, Y ) → C(Z, X, Y )} = 0,
or equivalently trace K Z = 0 for all Z.

The construction of an appropriate orthonormal basis

In this section, we consider an n-dimensional, locally strongly convex affine hypersphere M n in R n+1 with affine shape operator S = L 1 • id.

Then the Gauss and Codazzi equations become:

(3.1) R(X, Y )Z = L 1 h(Y, Z)X -h(X, Z)Y -[K X , K Y ]Z, (3.2) ( ∇X K)(Y, Z) -( ∇Y K)(X, Z) = 0.
Now we will review the construction of a typical orthonormal basis with respect to the affine metric h for T p M n , which was introduced by Ejiri and has been widely applied, and proved to be very useful for various purposes, see e.g. [START_REF] Dillen | Affine hypersurfaces with parallel cubic form[END_REF][START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF]. The idea is to construct from the (1,2) tensor K a self adjoint operator at a point; then one extends the eigenbasis to a local field.

Let p ∈ M n and

U p M = {u ∈ T p M n | h(u, u) = 1}. Since M n is locally strongly convex, U p M is compact. We define a function f on U p M by f (u) = h(K u u, u).
Let e 1 be an element of U p M at which the function f attains an absolute maximum. Since K = 0, we easily see that f (e 1 ) > 0.

Let u ∈ U p M such that h(u, e 1 ) = 0, and define by g(t) := f cos t e 1 + sin t u a function g. Then we have

(3.3) g (0) = 3 h(K e1 e 1 , u), g (0) = 6 h(K e1 u, u) -3 f (e 1 ), g (0) = 6 f (u) -21 h(K e1 e 1 , u).
Since g attains an absolute maximum at t = 0, we have g (0) = 0, i.e.

h(K e1 e 1 , u) = 0.
So e 1 is an eigenvector of K e1 , say associated to the eigenvalue λ 1 . Let e 2 , e 3 , • • • , e n be orthonormal vectors, orthogonal to e 1 , which are the remaining eigenvectors of the operator K e1 , associated to the eigenvalues λ 2 , λ 3 , • • • , λ n . Further, since e 1 is an absolute maximum of f , we know that g (0) ≤ 0, and if g (0) = 0, then g (0) = 0. This implies that for every i ≥ 2, we have λ 1 -2λ i ≥ 0 and if λ i = 1 2 λ 1 for some i, then f (e i ) = h(K ei e i , e i ) = 0. ¿From now on, if not stated otherwise, we restrict to n = 4. For later's convenience we will change the previous notations {λ i } and summarize the above result in the following lemma. Lemma 3.1. For K = 0, given the existence of an orthonormal basis {e i } 4 i=1 of T p M 4 as above, by changing the notations and taking into account the apolarity condition we may assume that K e1 takes the following form:

(3.4) K e1 e 1 = (λ 1 + λ 2 + λ 3 )e 1 , λ 1 + λ 2 + λ 3 > 0, K e1 e 2 = -λ 1 e 2 , K e1 e 3 = -λ 2 e 3 , K e1 e 4 = -λ 3 e 4 ,
where {λ i } 4 i=1 satisfy where the coefficients are numbers to be determined by the context.

(3.5) λ 1 + λ 2 + λ 3 ≥ -2λ i , i = 1, 2, 3; if λ 1 + λ 2 + λ 3 = -2λ i f or some i, then h(K ei e i , e i ) =
Without loss of generality, we are sufficient to deal with the following three possibilities:

Case (I).

λ 1 > λ 2 > λ 3 . Case (II). λ 1 = λ 2 = λ 3 . Case (III). λ 1 = λ 2 = λ 3 .
In later sections, we will assume that as a Riemannian manifold, (M 4 , h) is Einstein.

The nonexistence of case (I)

In this section, we prove Proposition 4.1. Let x : M 4 → R 5 be a locally strongly convex affine hypersphere whose affine metric is Einstein, then for any p ∈ M 4 and with respect to the orthonormal basis {e i } 4 i=1 of T p M 4 as stated in Lemma 3.1, Case (I) does not occur.

Proof. The assertion is derived from the Gauss equation (3.1). As for the details, we write (4.1)

R jk = i h( R(e i , e j )e k , e i ) = 3L 1 δ jk + i h K ej K e k e i -K ei K ej e k , e i .
Using (3.4), (3.6) and (4.1), the Einstein condition R 12 = R 13 = R 14 = 0 gives

(4.2) (λ 2 -λ 1 )µ 4 + (λ 3 -λ 1 )µ 6 = 0, (4.3) (λ 1 -λ 2 )µ 2 + (λ 3 -λ 2 )µ 1 = 0, (4.4) (λ 1 -λ 3 )µ 3 + (λ 2 -λ 3 )µ 7 = 0.
Hence we can write (4.5)

µ 4 = (λ 1 -λ 3 )σ 1 , µ 1 = (λ 2 -λ 1 )σ 2 , µ 3 = (λ 3 -λ 2 )σ 3 ; µ 6 = (λ 2 -λ 1 )σ 1 , µ 2 = (λ 3 -λ 2 )σ 2 , µ 7 = (λ 1 -λ 3 )σ 3 .
Putting (4.5) into (3.6), again the Einstein condition gives

0 = R 23 = 2(λ 1 -λ 2 ) (λ 1 -λ 2 )σ 1 σ 2 -µ 5 σ 3 , 0 = R 24 = 2(λ 1 -λ 3 ) (λ 1 -λ 3 )σ 1 σ 3 + µ 5 σ 2 , 0 = R 34 = 2(λ 2 -λ 3 ) (λ 2 -λ 3 )σ 2 σ 3 -µ 5 σ 1 .
It follows that We first consider Case (I)-(i). Direct calculation gives

(λ 1 -λ 2 )σ 1 σ 2 -µ 5 σ 3 = 0, (4.6) (λ 1 -λ 3 )σ 1 σ 3 + µ 5 σ 2 = 0, (4.7) (λ 2 -λ 3 )σ 2 σ 3 -µ 5 σ 1 = 0. (4.8) From (4.7) × (λ 1 -λ 2 )σ 2 -(4.6) × (λ 1 -λ 3 )σ 3 , we obtain (4.9) µ 5 (λ 1 -λ 2 )(σ 2 ) 2 + (λ 1 -λ 3 )(σ 3 ) 2 = 0.
R 11 = 3L 1 + 2 (λ 1 ) 2 + (λ 2 ) 2 + λ 2 λ 3 + (λ 3 ) 2 + λ 1 (λ 2 + λ 3 ) , (4.10) R 22 = 3L 1 + 2 (λ 1 ) 2 + (λ 2 -λ 3 ) 2 (σ 3 ) 2 , (4.11) R 33 = 3L 1 + 2 (λ 2 ) 2 + (λ 1 -λ 3 ) 2 (σ 3 ) 2 , (4.12) R 44 = 3L 1 + 2 (λ 3 ) 2 + (λ 1 ) 2 + (λ 2 ) 2 -λ 2 λ 3 (4.13) +(λ 3 ) 2 -λ 1 (λ 2 + λ 3 ) (σ 3 ) 2 .
¿From the Einstein condition R 22 = R 33 and (4.11), (4.12), we get (4.14)

λ 1 + λ 2 = (λ 1 + λ 2 -2λ 3 )(σ 3 ) 2 .
Similarly, from the condition R 22 = R 44 and (4.11), (4.13), we get (4.15)

λ 1 + λ 3 = (λ 1 -λ 2 )(σ 3 ) 2 .
¿From (4.14) and (4.15) we eliminate σ 3 to obtain

0 = (λ 1 + λ 3 )(λ 1 + λ 2 -2λ 3 ) -(λ 1 -λ 2 )(λ 1 + λ 2 ),
which implies that (4. [START_REF] Nomizu | On the geometry of affine immersions[END_REF])

λ 1 + λ 2 + 2λ 3 = 0.
On the other hand, (3.4) and (3.5) imply that (4.17)

λ 1 + λ 2 + λ 3 > 0, λ 1 + λ 2 + λ 3 ≥ -2λ 3 .
We get a contradiction. Therefore, Case (I)-(i) does not occur.

Next, we consider Case (I)-(ii). In fact, now we have

R 22 = 3L 1 + 2(λ 1 ) 2 , R 33 = 3L 1 + 2(λ 2 ) 2 , R 44 = 3L 1 + 2(λ 3 ) 2 ,
this contradicts the Einstein condition R 22 = R 33 = R 44 for λ 1 > λ 2 > λ 3 . Thus, Case (I)-(ii) does not occur.

Finally, Case (I)-(iii) does not occur either. This follows from the following calculation:

R 22 = 3L 1 + 2(λ 1 ) 2 + 2(µ 5 ) 2 , R 33 = 3L 1 + 2(λ 2 ) 2 + 2(µ 5 ) 2 , R 44 = 3L 1 + 2(λ 3 ) 2 + 2(µ 5 ) 2 .
We have completed the proof of Proposition 4.1.

The nonexistence of case (II)

In this section, to deal with Case (II) we will prove Proposition 5.1. Let x : M 4 → R 5 be a locally strongly convex affine hypersphere whose affine metric is Einstein, then for any p ∈ M 4 and with respect to the orthonormal basis {e i } 4 i=1 of T p M 4 as stated in Lemma 3.1, Case (II) does not occur.

First of all, we notice that in Case (II) we can choose {e 2 , e 3 } in Lemma 3.1 such that h(K e2 e 2 , e 3 ) = 0, i.e., µ 2 = 0 in (3.6). Then direct calculation gives (5.1)

R 12 = (λ 3 -λ 1 )µ 6 , R 13 = (λ 3 -λ 1 )µ 1 , R 14 = (λ 1 -λ 3 )(µ 3 + µ 7 ),
so we get (5.2)

µ 6 = µ 1 = 0, µ 7 = -µ 3 ,
and then we further get

(5.3) R 24 = -2µ 3 µ 4 , R 34 = -2µ 4 µ 5 .
Since R 24 = R 34 = 0, we have two subcases:

Case (II)-(i): µ 4 = 0.
Case (II)-(ii): µ 4 = 0 and µ 3 = µ 5 = 0.

If µ 4 = 0, then direct calculation gives

R 22 = R 33 = 3L 1 + 2 (λ 1 ) 2 + (µ 3 ) 2 + (µ 5 ) 2 , R 44 = 3L 1 + 2 (λ 3 ) 2 + (µ 3 ) 2 + (µ 5 ) 2 ,
and the Einstein condition implies that (λ 3 ) 2 = (λ 1 ) 2 , so λ 3 = -λ 1 . By (4.17) we get a contradiction. This shows that Case (II)-(i) does not occur.

Next, we consider Case (II)-(ii). By direct calculation, we get

R 11 = 3L 1 + 6(λ 1 ) 2 + 4λ 1 λ 3 + 2(λ 3 ) 2 R 22 = 3L 1 + 2 (λ 1 ) 2 + (µ 4 ) 2 = R 33 , R 44 = 3L 1 + 2(λ 3 ) 2 .
¿From the Einstein condition, we have R 11 = R 44 and therefore (5.4) λ 1 (3λ 1 + 2λ 3 ) = 0.

If 3λ 1 + 2λ 3 = 0, i.e., λ 3 = -3 2 λ 1 , then by (4.17) we get a contradiction. So Case (II)-(ii) reduces to satisfy

(5.5) (µ 4 ) 2 = (λ 3 ) 2 = 0 and λ 1 = λ 2 = 0 = µ i , i = 1, 2, 3, 5, 6, 7.
Replacing e 2 by -e 2 if necessary, we may assume µ 4 = λ 3 > 0. Then the Ricci curvature R ij satisfies (5.6)

R ij = 3L 1 + 2(λ 3 ) 2 δ ij , 1 ≤ i, j ≤ 4,
and the difference tensor is given as follows:

(5. We notice from (5.6) that λ 3 is independent of the point p, it is in fact determined by the Einstein constant κ:

If R ij = κδ ij , then λ 3 = (κ -3L 1 )/2.
¿From the above expression of the difference tensor, we can use (3.1) to calculate the curvature tensor at p ∈ M 4 as follows:

(5.8) R(e i , e j )e k = 0, if i, j, k are distinct.

                               R(
It follows that (M 4 , h) is not of constant sectional curvature at the point p.

Next, we calculate the curvature tensor from the definition:

(5.9) R(X, Y )Z = ∇X ∇Y Z -∇Y ∇X Z -∇[X,Y ] Z.
For this purpose, we first recall the following result (cf. section 3).

Lemma 5.1 (cf. Lemma 3.1 of [START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF]). Let h be a positive definite metric on R k and let T : R k × R k × R k → R be a symmetric multilinear mapping. We denote by

S k-1 = {v ∈ R k | h(v, v) = 1} and define a function F on S k-1 by F (v) = T (v, v, v).
Let u be a vector at which the function F on S k-1 attains an extremal value and let w ∈ S k-1 such that h(u, w) = 0. Then T (u, u, w) = 0. Moreover, if F attains a relative maximum in u, then we have also that T (u, u, u) -2T (u, w, w) ≥ 0 and in the case T (u, u, u) -2T (u, w, w) = 0, we have T (w, w, w) = 0.

Corollary 5.1. Let M n be a locally strongly convex affine hypersurface of R n+1 .

For p ∈ M n , by taking R n = T p M n in Lemma 5.1 and define T by

T (u, v, w) = h(K u v, w).
Then for a unit vector u, if K u u = λu, T (u, u, u) = λ is an extremal value.

Returning to (5.7), we now prove Lemma 5.2. There exists a neighbourhood U of p and a local unit vector field W on U such that (5.10)

K W W = λ 3 W. Proof. Let {E 1 , E 2 , E 3 , E 4 } be an arbitrary local differentiable h-orthonormal frame fields of (M 4 , h) defined on a neighbourhood U of p such that E i (p) = e i , 1 ≤ i ≤ 4.
We want to look for functions {a 1 , a 2 , a 3 , a 4 } defined on U such that

a 1 (p) = 1, a 2 (p) = a 3 (p) = a 4 (p) = 0,
and W = 4 i=1 a i E i has the property of (5.10). Define a mapping σ :

R 4 × U → R 4 by σ(x 1 , • • • , x 4 , q) = (y 1 , • • • , y 4 ),
where (5.11)

y k = i,j x i x j h(K Ei E j , E k ) -λ 3 x k , 1 ≤ k ≤ 4
are regarded as functions on R 4 × U :

y k = y k (x 1 , x 2 , x 3 , x 4 , q).
Since E i (p) = e i , it is easily seen from (5.7) that at the point

A := (1, 0, 0, 0, p) ∈ R 4 × U ,
we have y k (A) = 0, 1 ≤ k ≤ 4, and

(5.12)

∂y k ∂x A =     λ 3 0 0 0 0 -λ 3 0 0 0 0 -λ 3 0 0 0 0 -3λ 3    
is invertible, hence the implicit function theorem shows that there exists differentiable functions {x i (q), 1 ≤ i ≤ 4} defined on a neighbourhood U ⊂ U of p such that (5.13) y k x 1 (q), x 2 (q), x 3 (q), x 4 (q), q ≡ 0, 1 ≤ k ≤ 4.

Define the local vector field V by V (q) = x 1 (q)E 1 (q) + x 2 (q)E 2 (q) + x 3 (q)E 3 (q) + x 4 (q)E 4 (q), q ∈ U .

Then (5.11) and (5.13) imply that

K V V = λ 3 V and V (p) = e 1 . Let us define V = h(V, V ). Since V (p) = 1, there exists a neighbourhood U ⊂ U of p such that V = 0 on U . Define a local unit vector field W = V V , then we have (5.14) K W W = λ3 V W.
According to Lemma 5.1 and Corollary 5.1, the expression (5.14) shows that, for any q ∈ U , the function F q attains the relative extremal at W (q) with extremal value λ3 V . Claim. At any q ∈ U , the set of extremal values of the function F q on U q M 4 is finite. Proof of the Claim. We are sufficient to verify the assertion at p to see that how many values can h(K v v, v) take for v ∈ U p M , under the additional condition that K v v is parallel to v, i.e., v is a relative extremal vector.

Let us denote v = t 1 e 1 + t 2 e 2 + t 3 e 3 + t 4 e 4 ∈ U p M 4 . Then by (5.7) we see that the condition K v v = cv for some constant c becomes, equivalently, (5.15)

           (t 2 1 -t 2 4 )λ 3 = ct 1 , (t 2 2 -t 2 3 )λ 3 = ct 2 , -2t 2 t 3 λ 3 = ct 3 , -2t 1 t 4 λ 3 = ct 4 .
To solve (5.15) under the condition i (t i ) 2 = 1 we see that there are only two possible values of c, i.e., c 1 = λ 3 , c 2 = √ 2 2 λ 3 . This finishes the proof of the Claim. From the above Claim and (5.14), and since λ3

V changes continuously, we obtain that

V (q) = V (p) = 1,
for all q ∈ U . We have proved Lemma 5.2.

Lemma 5.3. There exists a neighbourhood U of p ∈ M 4 and a local orthonormal frame fields {E 1 , E 2 , E 3 , E 4 } such that E i (p) = e i and {K E1 , K E2 , K E3 , K E4 } still have the same representation as in (5.7), namely

     K E1 E 1 = λ 3 E 1 , K E1 E 4 = -λ 3 E 4 , K E2 E 2 = λ 3 E 2 , K E2 E 3 = -λ 3 E 3 , K E3 E 3 = -λ 3 E 2 , K E4 E 4 = -λ 3 E 1 , K E1 E 2 = K E1 E 3 = K E2 E 4 = K E3 E 4 = 0, (5.16) 
where

λ 3 = (κ -3L 1 )/2.
Proof. By taking the first unit vector field E 1 = W as in Lemma 5.2, it satisfies

K E1 E 1 = λ 3 E 1 ,
and that h(K E1 E 1 , E 1 ) = λ 3 = (κ -3L 1 )/2 is the maximum of the function h(K v , v, v) in U q M for any q ∈ U . Since at p ∈ U , the metric h is not of constant sectional curvature, without loss of generality, we may assume that at any q ∈ U the sectional curvature is not constant. Similar to the previous discussion, the eigenvalues of K E1(q) : T q M 4 → T q M 4 must be {λ 3 , 0, 0, -λ 3 }. Thus the eigenvalues functions of K E1 are constant functions. According to Szabo's result [START_REF] Szabó | Structure theorems on Riemannian spaces satisfying R(X, Y ) • R = 0. I. the local version[END_REF], we have a neighbourhood of p, still denoted by U such that on U we have smooth eigenvector fields {E 2 , E 3 , E 4 } of K E1 , corresponding to the eigenvalues 0 (multiplicities 2) and -λ 3 , respectively, which together with E 1 form an orthonormal frame fields with

K E1 E 2 = K E1 E 3 = 0, K E1 E 4 = -λ 3 E 4 .
By the uniqueness of such non-constant sectional curvature case, we also have

K E4 E 2 = K E4 E 3 = 0, K E4 E 4 = -λ 3 E 1 .
Now, by the apolarity condition, we can assume that (5.17)

K E2 E 2 = αE 2 + βE 3 , K E2 E 3 = βE 2 -αE 3 , K E3 E 3 = -αE 2 -βE 3 ,
where α and β are smooth functions. From the above property of the difference tensor, we immediately have the calculation

R 11 = 3L 1 + 2(λ 3 ) 2 , R 33 = 3L 1 + 2(α 2 + β 2 ).
Then the Einstein condition implies that α 2 + β 2 = (λ 3 ) 2 . Obviously, by the choice of E 1 , E 2 we can assume that α > 0, β ≥ 0. If β = 0, we choose ϕ such that cot(3ϕ) = α β , and define (5.18)

F 2 = cos ϕE 2 + sin ϕE 3 , F 3 = -sin ϕE 2 + cos ϕE 3 .
Then it holds h(K F2 F 2 , F 3 ) = -α sin 3ϕ + β cos 3ϕ = 0. Therefore, up to a transformation like (5.18), we may eventually assume that in (5.17) we have β = 0. Then the assertion of Lemma 5.3 follows.

Completion of the proof of Proposition 5.1. As an application of (5.16), we look at the Codazzi equations: In this way, by calculating all the equations (ijk) we will finally obtain Γ k ij = 0, ∀i, j, k, which imply that, in (5.9), R(X, Y )Z = 0 for any X, Y, Z, i.e., the affine metric is flat. This is a contradiction to (5.8). From this contradiction we complete the proof of Proposition 5.1.

(ijk) ( ∇Ei K)(E j , E k ) -( ∇Ej K)(E i , E k ) = 0. Let us denote ∇Ei E j = Γ k ij E k , Γ k ij + Γ j ik =

4-dimensional Einstein affine hypersphere in case (III)

In this section we prove Proposition 6.1. Let x : M 4 → R 5 be a locally strongly convex affine hypersphere whose affine metric is Einstein, then for any p ∈ M 4 and with respect to the orthonormal basis {e i } 4 i=1 of T p M 4 as stated in Lemma 3.1, if Case (III) occurs then the affine metric is of constant sectional curvature at p.

In Case (III), the eigenvalues of K e1 : where we denote by {e 1 , e 2 } ⊥ the subspace of T p M 4 that is perpendicular to e 1 and e 2 . Now, from (6.2) we have the observation that {e 1 , e 2 } ⊥ is an invariant subspace of K e2 . From this observation we will separate the following discussions into two subcases.

T p M 4 → T p M 4 are 3λ 1 , -λ 1 , -λ 1 , -λ 1 . Now,
Case (III)-(i). If K e2 : {e 1 , e 2 } ⊥ → {e 1 , e 2 } ⊥ has an eigenvalue of multiplicity two, denoting -σ. Denote by U {e 1 , e 2 } ⊥ the set of all unit vectors in {e 1 , e 2 } ⊥ , and we choose an orthonormal basis {e 3 , e 4 } of U {e 1 , e 2 } ⊥ such that

(6.3) h K e3 e 3 , e 3 = max u∈U {e1,e2} ⊥ h K u u, u .
It follows from (6.3) that h K e3 e 3 , e 4 = 0. Then we easily deduce from the above requirements and the apolarity condition the following expressions of the difference tensor:

(6.4)          K e1 e 1 = 3λ 1 e 1 , K e1 e 2 = -λ 1 e 2 , K e1 e 3 = -λ 1 e 3 , K e1 e 4 = -λ 1 e 4 , K e2 e 2 = -λ 1 e 1 + 2σe 2 , K e2 e 3 = -σe 3 , K e2 e 4 = -σe 4 , K e3 e 3 = -λ 1 e 1 -σe 2 + µ 1 e 3 , K e3 e 4 = -µ 1 e 4 , K e4 e 4 = -λ 1 e 1 -σe 2 -µ 1 e 3 ,
where the coefficients satisfy the relation 3λ 1 ≥ 2σ ≥ µ 1 ≥ 0. From (4.1) and (6.4), we have

R 11 = 3L 1 + 12(λ 1 ) 2 , R 22 = 3L 1 + 2(λ 1 ) 2 + 6σ 2 , R 33 = R 44 = 3L 1 + 2(λ 1 ) 2 + 2σ 2 + 2(µ 1 ) 2 .
Then the Einstein condition gives σ = 5 3 λ 1 , µ 1 = 10 3 λ 1 , and it easily follows that R(e i , e j )e k = L 1 + 4(λ 1 ) 2 (δ jk e i -δ ik e j ),

i.e., (M 4 , h) is of constant sectional curvatures L 1 + 4(λ 1 ) 2 at p.

Case (III)-(ii): K e2 : {e 1 , e 2 } ⊥ → {e 1 , e 2 } ⊥ has two distinct eigenvalues -σ 1 and -σ 2 . We choose the unit vectors {e 3 , e 4 } such that K e2 e 3 = -σ 1 e 3 , K e2 e 4 = -σ 2 e 4 .

Then we easily deduce the following expressions of the difference tensor: where the coefficients satisfy the relation 3λ 1 ≥ σ 1 + σ 2 > 0.

To verify the assertion σ 1 + σ 2 > 0, we notice from (6.1) that (6.6) σ 1 + σ 2 = max u∈U {e1} ⊥ h K u u, u ≥ 0, so if σ 1 + σ 2 = 0, it will hold h K u u, u = 0 for all u ∈ U {e 1 } ⊥ . On the other hand, since σ 1 = σ 2 , we may assume σ 1 < 0, then by taking v = 1 2 e 2 + √ 3 2 e 3 , we get a contradiction h K v v, v = - 9 8 σ 1 > 0. ¿From (4.1) and (6.5), we have

                     R 12 = R 13 = R 14 = R 34 = 0, R 23 = (σ 2 -σ 1 )µ 1 , R 24 = (σ 2 -σ 1 )µ 2 ; R 11 = 3L 1 + 12(λ 1 ) 2 , R 22 = 3L 1 + 2(λ 1 ) 2 + 2(σ 1 ) 2 + 2(σ 2 ) 2 + 2σ 1 σ 2 , R 33 = 3L 1 + 2(λ 1 ) 2 + 2(σ 1 ) 2 + 2(µ 1 ) 2 + 2(µ 2 ) 2 , R 44 = 3L 1 + 2(λ 1 ) 2 + 2(σ 2 ) 2 + 2(µ 1 ) 2 + 2(µ 2 ) 2 .
Then the Einstein condition R 33 = R 44 gives (σ 2 ) 2 = (σ 1 ) 2 , a contradiction to σ 2 = ±σ 1 . Therefore, Case (III)-(ii) does not occur.

Proof of the Main Theorem

Let M 4 be a locally strongly convex Einstein affine hypersphere in R 5 which is not a quadric, then we may assume K = 0 on M 4 . Propositions 4.1, 5.1 and 6.1 show that for any p ∈ M 4 , the only possibility is that Case (III)-(i) occurs and (M 4 , h) has constant sectional curvature at p. According to the classification of affine hyperspheres with constant affine sectional curvatures, due to Vrancken, Li and Simon [START_REF] Vrancken | Affine spheres with constant affine sectional curvature[END_REF] (see also [START_REF] Li | Global affine differential geometry of hypersurfaces[END_REF]), we finally see that M 4 is affinely equivalent to the hyperbolic affine hypersphere Q(4, 1) : x 1 x 2 x 3 x 4 x 5 = 1 in R 5 .

Remark 7.1. For n ≥ 5, there exists affine hypersphere in R n+1 whose affine metric is Einstein and possesses non-constant sectional curvatures. A typical example is the standard embedding of SL(3, R)/SO(3) into R 6 (cf. [START_REF] Hu | On locally strongly convex affine hypersurfaces with parallel cubic form. Part I[END_REF]). For more typical examples, we refer to [START_REF] Hu | Locally strongly convex affine hypersurfaces with parallel cubic form[END_REF] (see also [START_REF] Birembaux | Isotropic affine spheres[END_REF]).

  0. Besides (3.4), we can further use the apolarity condition to assume that, at p ∈ M 4 : (3.6) K e2 e 2 = -λ 1 e 1 + (µ 4 + µ 6 )e 2 -µ 2 e 3 -µ 3 e 4 , K e2 e 3 = -µ 2 e 2 -µ 4 e 3 + µ 5 e 4 , K e2 e 4 = -µ 3 e 2 + µ 5 e 3 -µ 6 e 4 , K e3 e 3 = -λ 2 e 1 -µ 4 e 2 + (µ 1 + µ 2 )e 3 -µ 7 e 4 , K e3 e 4 = µ 5 e 2 -µ 7 e 3 -µ 1 e 4 , K e4 e 4 = -λ 3 e 1 -µ 6 e 2 -µ 1 e 3 + (µ 3 + µ 7 )e 4 ,

If µ 5

 5 = 0, then (4.6)-(4.9) show that σ 1 = σ 2 = σ 3 = 0. If on the other hand, µ 5 = 0, then (4.6)-(4.8) implies that at most one of {σ 1 , σ 2 , σ 3 } is nonzero. So by symmetry we need only to consider the following three subcases: Case (I)-(i): µ 5 = σ 1 = σ 2 = 0 and σ 3 = 0. Case (I)-(ii): µ 5 = σ 1 = σ 2 = σ 3 = 0. Case (I)-(iii): µ 5 = 0 and σ 1 = σ 2 = σ 3 = 0.

K e1 e 1 = λ 3 e 1 , K e1 e 4 = -λ 3 e 4 , K e2 e 2 = λ 3 e 2 ,K e2 e 3 = -λ 3 e 3 , K e3 e 3 = -λ 3 e 2 , K e4 e 4 = -λ 3 e 1 ,K

 114422333241 e1 e 2 = K e1 e 3 = K e2 e 4 = K e3 e 4 = 0.

  e 1 , e 2 )e 1 = -L 1 e 2 , R(e 1 , e 2 )e 2 = L 1 e 1 ; R(e 1 , e 3 )e 1 = -L 1 e 3 , R(e 1 , e 3 )e 3 = L 1 e 1 ; R(e 1 , e 4 )e 1 = -(L 1 + 2(λ 3 ) 2 )e 4 , R(e 1 , e 4 )e 4 = (L 1 + 2(λ 3 ) 2 )e 1 ; R(e 2 , e 3 )e 2 = -(L 1 + 2(λ 3 ) 2 )e 3 , R(e 2 , e 3 )e 3 = (L 1 + 2(λ 3 ) 2 )e 2 ; R(e 2 , e 4 )e 2 = -L 1 e 4 , R(e 2 , e 4 )e 4 = L 1 e 2 ; R(e 3 , e 4 )e 3 = -L 1 e 4 , R(e 3 , e 4 )e 4 = L 1 e 4 ;

K 4 ;K e3 e 3 = -λ 1 e 1 -σ 1 e 2 + µ 1 e 3 + µ 2 e 4 , K e3 e 4 = µ 2 e 3 -µ 1 e 4 ;K e4 e 4 =

 4312344344 e1 e 1 = 3λ 1 e 1 , K e1 e 2 = -λ 1 e 2 , K e1 e 3 = -λ 1 e 3 , K e1 e 4 = -λ 1 e 4 ; K e2 e 2 = -λ 1 e 2 + (σ 1 + σ 2 )e 2 , K e2 e 3 = -σ 1 e 3 , K e2 e 4 = -σ 2 e -λ 1 e 1 -σ 2 e 2 -µ 1 e 3 -µ 2 e 4 ,

  we first choose e 2 such that

	(6.1)	h K e2 e 2 , e 2 = max u∈U {e1} ⊥
	From (6.1), we get	
	(6.2)	h K e2 e

h K u u, u , where U {e 1 } ⊥ denotes the set of all unit vectors perpendicular to e 1 in U p M 4 . 2 , u = 0, ∀u ∈ {e 1 , e 2 } ⊥ ,
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