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Abstract. We study affine hypersurfaces M which have isotropic difference

tensor. Note that any surface always has isotropic difference tensor. In case
that the metric is positive definite such hypersurfaces have been previously

studied in [2] and [?]. We first show that the dimension of an isotropic affine

hypersurface is either 5, 8, 14 or 26. Next we assume that M is an affine
hypersphere and we obtain in each of the possible dimensions a complete clas-

sification.

1. Introduction

The notion of a submanifold with isotropic second fundamental form was first
introduced in [12] by O’Neill for immersions if Riemannian manifolds and recently
extended by Cabrerizo et al. in [4] for pseudo-Riemannian manifolds. We say that
M has isotropic second fundamental form h if and only if for any tangent vector X
at a point p we have that

< h(X(p), X(p)), h(X(p), X(p)) >= λ(p) < X(p), X(p) >2 .

If λ is independent of the point p, the submanifold is called constant isotropic.
Given the similarities between the basic equations that charactherise the manifolds
and the important role played by the difference tensor it is natural to introduce
the equivalent notion of isotropy in affine geometry. That is, a hypersphere M has
isotropic difference tensor K if and only if for any tangent vector X at a point p
we have that

h(K(X(p), X(p)),K(X(p), X(p))) = λ(p)h(X(p), X(p))2,

where h is the affine metric on the hypersurface. Note that a 2-dimensional affine
surface is always isotropic. In case that the affine metric is positive definite such
submanifolds have been previously studied in [2] and [?]. In [2], beside a restriction
on the dimension, a complete classification was obtained in case that the affine
hypersurface is an affine sphere. In [?] a complete classification was given of 5
dimensional positive definite affine hypersurfaces.

In this paper we deal with the case that the induced affine metric has arbitrary
signature. We will first show that the restriction of the dimension remains valid in
the indefinite case. Even though the proof remains based on the Hurwitz theorem
it is essentially different from the proof in the definite case. This is because unlike
in the definite case, the unit tangent bundle at a point p is no longer a compact
manifold. Instead of this null vectors will play an important role in the proof of
the restriction of the dimension.

In the second part of the paper we will then restrict ourselves to the case that
M is an affine hypersphere and we will deduce that in that case the immersion also
has parallel difference tensor (and is a pseudo-Riemannian symmetric space). We
then look at each of the possible dimensions and determine in each case explicitly
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by elementary means the form of the difference tensor and the possible examples.
Note that for this second part also a more involved Lie group approach would be
possible. We show the following theorems.

Theorem 1. Let M5 ne a 5-dimensional affine hypersphere of R6. Assume that M
is λ-isotropic with λ 6= 0. Then if we identify R6 with symmetric 3 × 3 -matrices,

then M is congruent with the connected component of A =

1 0 0
0 −1 0
0 0 −1

 , of

symmetric matrices with determinant 1.

Note that in the positive definite case we had the connected component of the
identity.

Theorem 2. Let M8 ne a 8-dimensional affine hypersphere of R9. Assume that
M is λ-isotropic with λ 6= 0. Then if we identify

Theorem 3. Let M8 ne a 14-dimensional affine hypersphere of R9. Assume that
M is λ-isotropic with λ 6= 0. Then if we identify

Theorem 4. Let M8 ne a 26-dimensional affine hypersphere of R9. Assume that
M is λ-isotropic with λ 6= 0. Then if we identify

2. Preliminaries

Let f : M −→ Rn+1 be a nondegenerate affine hypersurface immersion. Let D be
the covariant derivative on Rn+1 and Ω the volume form given by Ω(u1, . . . , un+1) =
det(u1, . . . , un+1), such that Rn+1 is endowed with its standard equiaffine structure
(D,Ω). In a general setting, an affine manifold (Mn,∇) is said to be equiaffine if
there exists a volume form ω, i.e. a non-vanishing n-form, on M which is parallel
with respect to ∇:

(1) (∇Xω)(X1 . . . , Xn) = X(ω(X1, . . . , Xn))− ω(∇XX1, . . . , Xn)− . . .
− ω(X1, . . . ,∇XXn).

In this case we may also say that (∇, ω) is an equiaffine structure on Mn. In what
follows, we briefly recall the construction of an equiaffine structure on an affine
hypersurface Mn in Rn+1. For more details we refer to [13].
First, let p ∈ M and X,Y ∈ TpM . If we choose an arbitrary transversal vector
field η we can decompose

DXY = ∇ηXY + hη(X,Y )η.

It is easy to see that ∇η is a connection on M and hη is a symmetric bilinear form.
Note that the fact whether this bilinear form is degenerate or not is independent of
the choice of transversal vector field η. As such M is called nondegenerate if and
only if this bilinear form is nondegenerate. Hence, locally there exists a volume
form on M associated to hη, given by

ωhη (X1, . . . , Xn) =
√
| dethη(Xi, Xj) |.

Next, we want to introduce a canonical transversal vector field ξ. In order to make a
good choice, we define ωη(X1, . . . , Xn) := Ω(X1, . . . , Xn, η), for X1, . . . , Xn vector
fields on Mn and we ask that the volume forms ωξ and ωhξ coincide and that
(∇ξ, ωξ) is an equiaffine structure on Mn. Notice that these conditions guarantee
the existence of a unique (up to sign) transversal vector field ξ, see [13]. It is called
the affine normal vector field, or the Blaschke normal vector field. For convenience,
we will denote from now on ∇ := ∇ξ.
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Finally, in terms of this transversal vector field we get for M the formulas of Gauss
and Weingarten, respectively, as follows:

DXY = ∇XY + h(X,Y )ξ,

DXξ = −SX,
where we call ∇ the induced affine connection, h the affine metric, ξ the affine
normal field or Blaschke normal field and S the affine shape operator. An affine
hypersurface is called a (proper) affine sphere if S is a (non zero) multiple of the
identity.
Moreover, let R denote the curvature tensor of Mn. Then, the following fundamen-
tal equations hold with respect to the induced affine connection:

Gauss equation: R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY ;

Codazzi equation for h : (∇h)(X,Y, Z) = (∇h)(Y,X,Z);

Codazzi equation for S : (∇XS)Y = (∇Y S)X;

Ricci equation: h(SX, Y ) = h(X,SY );

The Codazzi equation implies that for a proper affine sphere, the multiple of the
identity is constant, in which case by applying a homothety of the ambient space,
we may assume that S = εI, where ε = ±1. Moreover we have that ξ + εf , where
f denotes the position vector, is a constant vector which is called the center of the
proper affine hypersphere. By applying a translation in the ambient space we may
of course always assume that the center is the origin.
As ∇ is not necessarily compatible with the affine metric h, we can consider the
difference tensor K, a (1, 2)-type vector field defined as:

K(X,Y ) = ∇XY − ∇̂XY,

where ∇̂ is the Levi-Civita connection on M . By convention, one may also write
KXY instead of K(X,Y ). The classical Berwald theorem states that K vanishes
identically if and only if M is congruent to a nondegenerate quadric.

Proposition 5. We have the following properties for K:

(1) K(X,Y ) = K(Y,X);
(2) for any X we have Y 7→ KXY is a symmetric linear map and traceKX = 0

(the apolarity condition);
(3) h(K(X,Y ), Z) = h(K(X,Z), Y ).

It is easy to prove that ∇h is related to K by:

∇h(X,Y, Z) = −2h(Z,K(X,Y )).

Moreover, the equations of Gauss, Ricci and Codazzi, respectively, may also be
written out with respect to the Levi-Civita connection as follows:

(2){
R̂(X,Y )Z = 1

2 {h(Y, Z)SX − h(X,Z)SY + h(SY,Z)X − h(SX,Z)Y } − [KX ,KY ]Z,

∇̂K(X,Y, Z)− ∇̂K(Y,X,Z) = 1
2{h(Y,Z)SX − h(X,Z)SY − h(SY,Z)X + h(SX,Z)Y, }{

(∇̂XS)Y − (∇̂Y S)X = K(Y, SX)−K(X,SY ),
(∇h)(X,Y, Z) = (∇h)(Y,X,Z),

h(X,SY ) = h(SX, Y ),

where
[KX ,KY ]Z = KXKY Z −KYKXZ

and
∇̂K(X,Y, Z) = ∇̂XK(Y,Z)−K(∇̂XY,Z)−K(Y, ∇̂XZ).



4 MARILENA MORUZ AND LUC VRANCKEN

We have the following Ricci identity :

(3) ∇̂2K(X,Y, Z,W )− ∇̂2K(Y,X,Z,W ) =

R̂(X,Y )K(Z,W )−K(R̂(X,Y )Z,W )− h(Z, R̂(X,Y )W ).

A nondegenerate hypersurface M of the equiaffine space Rn+1 is called locally
homogeneous if for all points p and q of M , there exists a neighborhood Up of p in
M , and an equiaffine transformation A of Rn+1, i.e. A ∈ SL(n+ 1,R)nRn+1, such
that A(p) = q and A(Up) ⊂M . If Up = M for all p, then M is called homogeneous.
Let G be the pseudogroup defined by

G = {A ∈ SL(n+ 1,R) nRn+1 | ∃U , open in M : A(U) ⊂M},

then M is locally homogeneous if and only if G “acts” transitively on M . If M is
homogeneous, then G is a group and every element of G maps the whole of M into
M . The following proposition is probably well known, however, as we did not find
an explicit reference, we include a small proof.

Proposition 6. Let Mn be a nondegenerate homogeneous affine hypersurface. As-
sume that G ⊂ SL(n+ 1,R). Then M is an affine sphere centered at the origin.

Proof. We denote the immersion by f . Let p and q be in M and let g be the affine
transformation which maps p to q. We have that

ξ(g(p)) = dg(ξ(p)),

and

dg(f(p)) = g(f(p)) = f(q)

Moreover as M is homogeneous we know that the position vector can not be a
tangent vector at one point (and therefore at every point). Indeed if that were the
case, we would habe a tangent vector field X such that X(p) = f(p). This would
imply that DYX = Y , and therefore h(X,Y ) = 0 for any vector field Y . This
implies that the immersion f would be degenerate.
Therefore we may write ξ = ρf + Z, where Z is a tangent vector field and ρ a
function. As M is locally homogeneous and g belongs to SL(n + 1,R) it follows
that ρ is constant. The construction of the affine normal of [13] then implies that
M is an affine sphere centered at the origin. ut

The equivalent notion in affine geometry for isotropic submanifolds from Rie-
mannian geometry, which was introduced by O’Neill in [12], corresponds to sub-
manifolds for which the difference tensor K is isotropic, that is, it satisfies:

h(K(X,X),K(X,X)) = λ(p)h(X,X)2,

for some tangent vector field X. Here we will always deal with the case that λ 6= 0.
Therefore, if necessary, by replacing ξ with −ξ, we may assume that λ is positive
and therefore there exists a positive function µ such that λ = µ2. We will also use
the following lemma from [13]:

Lemma 7. Let F : M → Rn+1 be an equiaffine immersion. If the metric on Rn+1

is indefinite, then the immersion is isotropic if and only if for any tangent vectors
X1, X2, X3, X4 ∈ TpM, we have that

(4)

h(K(X1, X2),K(X3, X4))+h(K(X1, X3),K(X2, X4))+h(K(X1, X4),K(X2, X3)) =

λ(p){h(X1, X2)h(X3, X4) + h(X1, X3)h(X2, X4) + h(X1, X4)h(X2, X3)}.
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By using lemma (7) and property (3) in Proposition 5 we get that an affine sub-
manifoldMn in Rn+1 is isotropic if and only if for any tangent vectorsX1, X2, X3, X4 ∈
TpM we have that

(5) KX1KX2X3 +KX2KX1X3 +KX3KX1X2 =

λ(p) (h(X2, X3)X1 + h(X1, X3)X2 + h(X1, X2)X3) .

Theorem 8. ([5]) Let (Mn
k , h) be an n−dimensional simply connected pseudo-

Riemannian manifold with index k. Let ∇̂ denote the Levi Civita connection, R̂
its curvature tensor and let TM denote the tangent bundle of Mn

k . If K is a TM -
valued symmetric bilinear form on Mn

k satisfying that
i) h(K(X,Y ), Z) is totally symmetric

ii) (∇̂K)(X,Y, Z) = ∇̂XK(Y, Z)−K(∇̂XY, Z)−K(Y, ∇̂XZ) is totally symmetric,

iii) R̂(X,Y )Z = c(h(Y,Z)X − h(X,Z)Y ) +K(K(Y,Z), X)−K(K(X,Z), Y ),
then there exists an affine immersion φ : Mn

k → Rn+1 as an affine sphere with
induced difference tensor K and induced affine metric h.

Theorem 9. ([5]) Let φ1, φ2 : Mn
k −→ Rn+1 be two affine immersions of an

pseudo-Riemannian n-manifold (Mn
k , h) with difference tensors K1,K2, respec-

tively. If
h(K1(X,Y ), φ1

∗Z) = h(K2(X,Y ), φ2
∗Z)

for all tangent vectors fields X,Y, Z ∈ TpMn
k , then there exists an isometry φ of

Rn+1 such that φ1 = φ ◦ φ2.

3. Possible dimensions and choice of frame

From now on we will always assume that Mn
k is an affine isotropic hypersurface

in Rn+1. Here n denotes the dimension and k the index of the affine metric. In
case that the metric is definite a classification was obtained already in [2], In view
of this we will also assume thay M is neither positive nor negative definite, i.e.
1 ≤ k < n. Also recall that because of the properties of K any surface is isotropic.
Therefore we will also assume that n > 2. First, we have the following lemma:

Lemma 10. Let Mn
k be an n-dimensional isotropic affine hypersurface and let

p ∈Mn
k . If for any null vector v ∈ TpM we have that K(v, v) is a null vector such

that h(K(v, v), v) = 0, then the difference tensor K vanishes.

As its proof is very similar to the proof of Lemma 3.1 in [9], we omit it here.
From now on , we will assume that λ 6= 0. By Lemma 10, there exists a null vector
v0 such that v0 and K(v0, v0) are linearly independent and h(v0,K(v0, v0)) 6= 0.
Using Lemma 7, we have that for any null vector u

(6) h(K(v0, v0),K(v0, u)) = λh(v0, v0)h(v0, u) = 0.

AsKv0 is a symmetric operator with respect to the metric h, we get thatKv0Kv0v0 =
0. Moreover, taking in particular u = v0 in (6), we get that K(v0, v0) is a null vec-
tor.
We can now take a null frame such that

e1 = v0, e2 = Kv0v0.

By rescaling v0 if necessary, we may assume that h(K(v0, v0), v0) = −4λ2. Then we
get

h(e1, e1) = h(e2, e2) = 0 h(e1, e2) = −4λ2,
K(e1, e1) = e2, K(e1, e2) = Kv0Kv0v0 = 0.

(7)

Using the isotropy condition in (5) for X1 = X2 = e1, X3 = e3 we get that

Ke2e2 = −8λ3e1.
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From relation (7) we can see that the space span{e1, e2} is invariant under the op-
erator Ke1 . As the operator Ke1 is symmetric with respect to the metric, it follows
that also the space span{e1, e2}⊥ is invariant under Ke1 .

Now we follow precisely the computations of [9]. We get a basis {e1, e2, u1, . . . , ur, ω
1
1 , ω

1
2 , . . . , ω

r
1, ω

r
2},

which satisfies that {u1, . . . , ur, ω
1
1 , ω

1
2 , . . . , ω

r
1, ω

r
2} is an orthogonal basis of {e1, e2}⊥

and

{
h(e1, e1) = h(e2, e2) = 0, h(e1, e2) = −4λ2,
h(ui, uj) = εiδij , εi = ±1, h(ωα1 , ω

α
1 ) = 1, h(ωα2 , ω

α
2 ) = −1,

(8)



Ke1e1 = e2, Ke1e2 = 0, Ke1ui = λui,

Ke1ω
α
1 = − 1

2λω
α
1 −

√
3

2 λω
α
2 , Ke1ω

α
2 = − 1

2λω
α
2 +

√
3

2 λω
α
1 ,

Ke2e2 = −8λ3e1, Ke2ui = −2λ2ui,

Ke2ω
α
1 = λ2ωα1 −

√
3λ2ωα2 , Ke2ω

α
2 =
√

3λ2ωα1 + λ2ωα2 ,

Ke1Kuiuj =
δijεi
4λ (2λe1 − e2), Kωα1

ωα1 = L(ωα1 , ω
α
1 )− 1

8λ (2λe1 − e2),

Kωα2
ωα2 = L(ωα1 , ω

α
1 ) + 1

8λ (2λe1 − e2), Kωα1
ωα2 =

√
3

8λ (2λe1 + e2),

Kωαk
ωβl = L(ωαk , ω

β
l ), k, l ∈ 1, 2, 1 ≤ α 6= β ≤ r.

(9)

In the above formulas, U and W correspond to the invariant subspaces of Ke1

and the operator L is an operator on W ×W , defined by

(10) L(ω, ω̃) = Kωω̃ +
1

4λ2
h(Kωω̃, e2)e1 +

1

4λ2
h(Kωω̃, e1)e2, ω, ω̃ ∈W.

which is a symmetric operator, satisfies ImL ⊂ U = span{u1, . . . , uk} and

L(ωα1 , ω
α
1 ) = L(ωα2 , ω

α
2 ), L(ωα1 , ω

α
2 ) = 0, Kωα1

ωα2 =
√

3
4

(
e1 + 1

2λe2

)
,

L(ωα1 , ω
β
1 ) = L(ωα2 , ω

β
2 ), L(ωα1 , ω

β
2 ) = −L(ωα2 , ω

β
1 ).

(11)

As in [9] changing the frame by taking

(12) f1 = (2λe1 − e2)/(4µ3), f2 = (2λe1 + e2)/(4µ3),

we get that

(13) h(f1, f1) = −h(f2, f2) = ε0, h(f1, f2) = 0

and


Kf1f1 = −µf1, Kf1f2 = µf2, Kf2f2 = −µf1, Kf1ui = µui, Kf2ui = 0,

Kf1ω
α
1 = −µ2ω

α
1 , Kf1ω

α
2 = −µ2ω

α
2 , Kf2ω

α
1 =

√
3µ
2 ωα2 , Kf2ω

α
1 = −

√
3µ
2 ωα1 ,

Kuiuj = µε0εiδijf1, Kωα1
ωα2 =

√
3

2 µε0f2, Kωα1
ωα1 = L(ωα1 , ω

α
1 )− µ

2 ε0f1,

Kωα2
ωα2 = L(ωα1 , ω

α
1 ) + µ

2 ε0f1, Kωαk
ωβl = L(ωαk , ω

β
l ), k, l ∈ 1, 2, 1 ≤ α 6= β ≤ r.

(14)

Therefore, in order to determine the difference tensor explicitly, we only need to

determine all the terms L(ωαk , ω
β
l ), k, l ∈ {1, 2}, 1 ≤ α, β ≤ r. In order to do so we

will summarize the above properties in a more invariant way.
Let I be the identity map and define for any w ∈W

(15) Tw =
2√
3λ

(
Ke1 +

1

2
λI

)
w.

We can easily check that T satisfies

Tωα1 = ωα2 , Tωα2 = −ωα1 , T 2w = −w, h(Tv,w) = h(v, Tw),
Tωα1 = ωα2 , Tωα2 = −ωα1 , h(Tw, Tv) = −h(w, v), h(Tv,w) = h(v, Tw),
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for w, v ∈ W . In addition, from (11) it follows that L(w, Tv) = −L(v, Tw) and
L(Tw, Tv) = L(v, w). We also have that L satisfies an isotropy condition. Indeed,

let w =
r∑

α=1
aαω

β
2 +

r∑
β=1

bβω
β
2 . By using (13) in lemma 7 we have

h(Kww, e1) =

n∑
α,β=1

aαaβh(Ke1ω
α
1 , ω

β
1 ) +

n∑
α,β=1

bαbβh(Ke1ω
α
2 , ω

β
2 )

+

n∑
α,β=1

aαbβh(Ke1ω
α
1 , ω

β
2 ) +

n∑
α,β=1

bαaβh(Ke1ω
α
2 , ω

β
1 )

= −λ
2

n∑
α,β=1

(aαaβ − bαbβ)δαβ −
√

3λ

2

n∑
α,β=1

(aαbβ + bαaβ)δαβ

= −λ
2
h(w,w) +

√
3λ

2
h(w, Tw).

(16)

Similarly, we obtain

(17) h(Kww, e2) = λ2h(w,w) +
√

3λ2h(w, Tw).

By combining (10), (16) and (17) we get

h(L(w,w), L(w,w)) = h(Kww,Kww) +
1

2λ2
h(Kww, e1)h(Kww, e2)

= λh(w,w)2 +
1

2λ2

(
−1

2
λ3h(w,w)2 +

3

2
λ3h(w, Tw)2

)
=

3

4
λ(h(w,w)2 + h(w, Tw)2).

(18)

Liniarizing the previous expression for arbitrary vectors W1,W2,W3,W4 ∈ W , we
obtain:

(19)

h(L(W1,W2), L(W2,W3))+h(L(W1,W3), L(W2,W4))+h(L(W1,W4), L(W2,W3))

=
3

4
(h(W1,W2)h(W3,W4) + h(W1,W3)h(W2,W4) + h(W1,W4)h(W2,W3)

+h(W1, TW2)h(W3, TW4)+h(W1, TW3)h(W2, TW4)+h(W1, TW4)h(W2, TW3)).

Note that given a metric of neutral signature on {f1, f2}⊥ and operators T and
L satisfying the previous conditions, we can define a frame such that (14) holds.
We start with a vector u ∈ {f1, f2}⊥ with length 1. Then Tu has length −1. We
now write w = au + bTu. The fact that w has length 1 and is orthogonal to Tw.
Then implies that

(a2 − b2) + 2ab < u, Tu >= 1

(a2 − b2) < u, Tu > −2ab = 0,

which determines a and b uniquely upto sign. It is then sufficient to take w1
1 = w

and w1
2 = Tw and to complete the construction is an inductive way.

In what follows we are going to determine the possible dimensions of the studied
submanifold Mn. In order to do this, we will use a well known result from the
theory of composition of quadratic forms, namely the ’1,2,4,8 Theorem’ proved by
Hurwitz in 1898. One can find it for example in [15]. It states that there exists an
n-square identity over the complex numbers of the form

(20) (x2
1 + . . .+ x2

n)(y2
1 + . . .+ y2

n) = z2
1 + . . .+ z2

n,
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where X = (x1, . . . , xn) and Y = (y1, . . . , yn) are systems of indeterminates and
each zk = zk(X,Y ) is a bilinear form in X and Y , if and only if n = 1, 2, 4 or 8.
We are going to see how this result applies in our case and then determine the
values of L on the components of the basis in order to determine the difference
tensor of our immersion.

In order to apply the 1,2,4,8 Theorem, we are going to find conveniently defined
complex vector spaces and an operator which preserves lengths.
First, we denote by UC the complex linear extension of V and by WC the complex
linear extension of W . We now take

W1 = {v + iTv|v ∈W},
W2 = {w − iTw|w ∈W}.

Note that these are indeed complex linear vector spaces as i(v±iTv) = ∓(Tv∓iv) =
(∓Tv±iT (∓Tv)) and we complexify the metric and the previously defined operator
L. Note that L is symmetric and that from the properties of L and T it follows
that the restriction of L to W1 ×W1 and W2 ×W2 vanishes identically. Therefore
in order to determine L it is sufficient to study L on{

L :W1 ×W2 → UC

L(ω, ω̃) = Kωω̃ + 1
4λ2h(Kωω̃, e2)e1 + 1

4λ2h(Kωω̃, e1)e2,
(21)

where UC := span{u1, . . . , ur} over C.

Proposition 11. The operator L defined in (21) satisfies:

(1) For any vectors x ∈ W1 and y ∈ W2 we have

(22) h(L(x, y), L(x, y)) =
3µ2

4
h(x, x)h(y, y);

(2) Given x0 in W1 such that h(x0, x0) = 1, we have that L(x0,−) preserves
norms in the sense that

h(L(x0, y), L(x0, y)) =
3

2
µ2h(y, y),∀y ∈ W2;

(3) Given x0 a non-null vector, we have that L(x0,−) :W2 7→ UC is a bijective
operator;

(4) For any x, x′ ∈ W1, y, z ∈ W2 we have that

(23) h(L(x, y), L(x′, z)) + h(L(x′, y), L(x, z)) =
3

2
µ2h(x, x′)h(y, z).

Proof. (1) Take W1 = W3 = ω1 and W2 = W4 = ω2 in relation (19), where
ω1 := v + iTv ∈ W1 and ω2 := w − iTw ∈ W2. Using the proper-
ties of T in (15) and the fact that ω1 and ω2 are orthogonal, we obtain

h(L(ω1, ω2), L(ω1, ω2)) = 3µ2

4 h(ω1, ω1)h(ω2, ω2).
(2) This property follows directly from the previously proved one.
(3) We linearize in the second argument in property (22), that is y  y + z,

for y, z ∈ W2 and we get for arbitrary x ∈ W1

(24) h(L(x, y), L(x, z)) =
3

4
µ2h(x, x)h(y, z).

Fix x = x0, for x0 arbitrarily chosen in W1, and write equation (24) once
for y = y1 and once for y = y2. Assuming L(x0, y1) = L(x0, y2), as h is
nondegenerate and x0 is a non-null vector, we get that L(x0,−) is injective.
This gives dim Im(L(x0,−)) = dimW2 = r, but, as dimUC = r, we obtain
that L is also surjective.
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(4) The property in (23) follows immediately by liniarizing in (24) for x  
x+ x′,∀x, x′ ∈ W1.

ut

Theorem 12. Let Mn
k be a λ-isotropic affine hypersurface. Assume that λ 6= 0.

Then either n = 2, 5, 8, 14 or 26.

Proof. We assume that n > 2. We can write out equation (22) for the elements of
the bases. For more convenience, choose {ei}i={1,...,r}, {fj}j={1,...,r}, {gk}k={1,...,r}

bases for U ,W1,W2, respectively, and let u =
r∑
i=1

uiei, v =
r∑
j=1

vjfj . With this

choice, relation (22) becomes

(25) (u2
1 + . . .+ u2

r)(v
2
1 + . . .+ vr) = z2

1 + . . .+ z2
r ,

where L(ei, fj) = lkijgk and zk =
n∑

i,j=1

uivj l
k
ij . Equation (25) yields an r-square

quadratic equation. Thus, we may apply now the theorem of Hurwitz and obtain
r = 1, 2, 4, 8, which implies that n = 5, 8, 14, 26. ut

4. Isotropic affine hyperspheres

From now on, we will assume that M is a λ-isotropic affine hypersphere with
λ 6= 0.

Proposition 13. Let n ≥ 3 and Mn be an n-dimensional affine λ-isotropic hyper-
sphere in Rn+1. Then Mn is constant isotropic.

Proof. Let e′1 := f1, e
′
2 := f2, e

′
3 := u1, . . . , e

′
r+2 := ur, e

′
r+3 := ω1

1 , . . . , e
′
2r+2 :=

ωr1, e
′
2r+3 := ωr2. Then {e′1, . . . , e′n} is an orthogonal basis with h(e′i, e

′
j) = εiδij , εi =

±1. We denote by Ric the Ricci tensor of Mn with respect to the affine metric
h. As Mn is an affine sphere, we have that the shape operator is a multiple of
the identity, say S = εI. Using as well the Gauss equation in (2), the apolarity
condition in proposition 5 and the isotropy condition (4) we have

Ric(e′j , e
′
k) =

n∑
i=1

εih(R̂(e′i, e
′
j)e
′
k, e
′
i)

= h(ε(εjδjke
′
i − εiδike′j)− [Ke′i

,Ke′j
]e′k, e

′
i)

= nεεjδjk − εεjδjk −
∑
i

εih([Kei ,Kej ]ek, ei).

(26)

For k 6= j we obtain

Ric(e′j , e
′
k) = −

n∑
i=1

εih([Ke′i
,Ke′j

]e′k, e
′
i)

=

n∑
i=1

εih(K(e′i, e
′
j),K(e′i, e

′
k))

= −1

2

n∑
i=1

εih(K(e′i, e
′
i),K(e′j , e

′
k))

= 0

(27)
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and for k = j

Ric(e′j , e
′
j) =

n∑
i=1

εh(K(e′i, e
′
j),K(e′i, e

′
j))

=

n∑
i=1

1

2
[−h(K(e′j , e

′
j),K(e′i, e

′
i)) + 2λ(p)δij + λ(p)εiεj ]

=
(n

2
+ 1
)
εjλ(p).

(28)

Since n ≥ 3, by using the fact that the Levi-Civita connection on Mn is torsion
free and using the second Bianchi identity, we get that λ is constant. ut

Similarly to [9], Proposition 3.6, we can prove the following:

Proposition 14. Let Mn be an n-dimensional affine submanifold in Rn+1. If Mn

is constant isotropic with λ 6= 0, then Mn has parallel difference tensor.

Proof Since Mn is constant isotropic, we have λ = h(K(v, v),K(v, v)) and

by taking the derivative, we obtain h(∇̂χK(v, v),K(v, v)) = 0,∀p ∈ Mn,∀v, χ ∈
TpM

n, h(v, v) = 1.

In the isotropy relation (4) we take X1 = ∇̂χv, X2 = X3 = X4 = v and obtain

h(K(∇̂χv, v),K(v, v)) = λh(∇̂χv, v)h(v, v) = 0, for h(v, v) = 1. This implies

(29) h((∇̂K)(χ, v, v), h(v, v)) = 0.

for any v, χ ∈ TpMn such that h(v, v) = 1 and in particular, we have

(30) h((∇̂K)(v, v, v), h(v, v)) = 0,

Further on, we take the derivative with respect to some vector U ∈ TpM
n in

equation (4) for X1 = X2 = X3 = v,X4 = w and for h(v, w) = 0 and obtain

h((∇̂K)(v, v, v),K(v, w))− h((∇̂K)(v, v, w),K(v, v)) = 0.

As ∇̂K is totally symmetric, using also (29) we have

(31) h((∇̂K)(v, v, v, ),K(v, w)) = 0,

for any v, χ ∈ TpMn such that h(v, v) = 1. We can write K(v,K(v, v)) = av + bw,
for v ∈ TpMn, w an (n− 1)-dimensional tangent vector , h(v, w) = 0. Since{

h(K(v,K(v, v)), v) = h(K(v, v),K(v, v)) = λ,
h(K(v,K(v, v)), w) = bh(w,w) = 0,

we get a = λ, b = 0 so that K(v,K(v, v)) = λv. If we take w = K(v, v) in equation
(31) we get

(32) λh((∇̂K)(v, v, v), v) = 0.

As λ 6= 0, using (32) and the symmetry of ∇̂K, we also have ∇̂K = 0.

Proposition 15. Let n ≥ 3 and Mn be an n−dimensional λ−isotropic affine
hypersphere in Rn+1, such that S = εI, with ε constant. Assume that λ 6= 0. If
Rn+1 is endowed with an indefinite metric and Mn is not totally geodesic, then Mn

is a locally symmetric space and λ = − 1
2ε.

Proof. From the previous propositions we conclude that ∇̂K = 0. Hence, by the
Gauss equation we have ∇̂R = 0, which means that Mn is a locally symmetric
space. Using the Ricci identity, from ∇̂K = 0 we also have R̂.h = 0, that is

(33) R̂(X,Y )K(Z,W )−K(R̂(X,Y )Z,W )−K(Z, R̂(X,Y )W ) = 0,
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for X,Y, Z,W tangent vector fields. If we take X = Z = W = f1, Y = f2, it implies

(34) R̂(f1, f2)K(f1, f1) = 2K(R̂(f1, f2)f1, f1)

and then, from Gauss equation we have

R(f1, f2)f1 = −(ε+ 2λ)f2,

which together with (34) implies ε+ 2λ = 0. ut

Proposition 16. Let n ≥ 3, f1 : Mn
1 → Rn and f2 : Mn

1 → Rn be n−dimensional
λ−isotropic affine hypersphere in Rn+1, such that S1 = S2 = εI, with ε = ±1
constant. Let p1 ∈ M1 and p2 ∈ M2 and assume that there exists an isometry
A : Tp1M1 → Tp2M2 such that

AK1(v, w) = K2(Av,Aw),

i.e. A preserves the difference tensor. Then there exists a local isometry F :
(M1, h1)→ (M2, h2) such that

dF (K1(X,Y )) = K2(dF (X), dF (Y )),

for any vector fields X,Y on M1. Moreover the immersions f1 and f2◦F are locally
congruent.

Proof. From the previous propositions we know that λ is a constant, and that with
respect to the Levi Civita connection M1 and M2 are locally symmetric spaces
whose difference tensor is parallel with respect to the Levi Civita connection.

We take p1 ∈M1 and we take a basis {e′1, . . . , e′n} of Tp1M1. As A is an isometry
we take as basis of Tp2M2 the vectors {Ae′1, . . . , Ae′n}. By the initial conditions we
have that

h1(e′i, e
′
j) = h2(Ae′iAe

′
j) (isometry)

h1(K1(e′i, e
′
j), e

′
k) = h2(AK1(e′i, e

′
j), Ae

′
k) = h2(K2(Ae′i, Ae

′
j), Ae

′
k).

We now extend {e′1, . . . , e′n} to a local differential basis {X1, . . . , Xn} by paral-
lel translation along geodesics with respect to the Levi Civita connection of the
affine metric. In the same way we extend {Ae′1, . . . , Ae′n} to local vector fields
{Y1, . . . , Yn}. As the difference tensors are parallel, we have that the components
of the difference tensor stay constant along geodesics. Therefore by construction,
we have that

h1(Xi, Xj) = h2(Yi, Yj),

h1(K1(Xi, Xj), Xk) = h2(K2(Yi, Yj), Yk)

Hence by the lemma of Cartan, see [7] we know that there exists a local isometry F
such that dF (Xi) = Yi. In order to complete the proof it is now sufficent to apply
Theorem 9. ut

So in order to complete the classification it is now sufficient to determine, up to
isometries, the possible forms of the difference tensor and for each of those forms
obtained to determine an explicit example of an affine hypersphere with isotropic
difference tensors. This is done explicitly for the 4 remaining dimensions 5, 8, 14
and 26 in the next sections.
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5. Affine hyperspheres of dimension 5

5.1. The form of L, dimU = 1. We start with ω = v + iTv ∈ W1, a vector of
length 2. As the length of ω is 2 it follows that v has unit length and is orthogonal
to Tv. So we can take ω1

1 = v and ω1
2 = Tv. Note that by the properties of L we

have that L(v + iTv, v − iTv) is a real vector in UC whose square length is 3µ2.
Hence we can pick a unit vector u1 in U such that

L(v + iTv, v − iTv) =
√

3µu1.

By the properties of L this implies that

L(ω1
1 , ω

1
1) =

√
3

2 µu1.

From the properties of T we see L(ω1
1 , ω

1
2) = 0 and L(ω1

1 , ω
1
1) = L(ω1

2 , ω
1
2), hence L

is completely determined. Therefore L and also K are completely determined and
the signature of the metric, if necessary after replacing ξ by −ξ in order to make
λ > 0, equals 2.

5.2. A canonical example.
We consider R6 = s(3) as the set of all symmetric 3 × 3 matrices and we take as
hypersurface M those symmetric matrices with determinant 1. We define an action
σ of SL(3,R) on M as follows

σ : SL(3,R)× →M, such that (g, p) 7→ σg(p) = gpgT .

Note thatM has two connected components and that the action is transitive on each
of the connected components. The connected component of I has been studied in
[2] where it was shown that it gives a positive definite isotropic affine hypersurface.
It also appears in [8]. Here we are interested in the component of the matrix

A =

1 0 0
0 −1 0
0 0 −1

 , which we denote by M1. So M1 = {gAgT |g ∈ SL(3,R)}.

The isotropy group of A consists of the matrices g of determinant 1 such that
gAgT = A. This Lie group is congruent to SO(2, 1) and therefore, by Theorem 9.2

of [3], we know that M1 is locally isometric with SL(3,R)
SO(2,1) .

Note that, of course, every element of SL(3,R) acts at the same time also on s(3)
and that this action belongs to SL(6,R), see [13]. This implies that M1 is at the
same time an homogeneous affine hypersurface and by Proposition 6 an equiaffine
sphere centered at the origin.

In order to determine the tangent space at p = gAgT , we look at the curves in
M1

γ(s) = gesXAesX
T

gT .

These are indeed curves in M1, provided that esX ∈ SL(3,R) or, equivalently,

provided that TrX = 0. Note that γ′(s) = gesX(XA + AXT )esX
T

gT , where
v = (XA + AXT ) is a symmetric matrix. So by using a dimension argument we
see that the tangent space is given by

{gvgT |v = 2XA,XA = AXT ,TrX = 0, X ∈ R3×3} = TpM1.
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Working now at the pointA, taking g = I andX ∈ so(2, 1) = {X ∈ R3×3|TrX =
0, XA = AXT } we see that

∇γ′(s)γ′(s) + h(γ′, γ′)γ = γ′′(s)

= esX(4X2A)esX
T

= esX((4X2 − 4
3 Tr(X2)I)A)esX

T

+ 4
3 Tr(X2)esXAesX

T

= esX((4X2 − 4
3 Tr(X2)I)A)esX

T

+ 4
3 Tr(X2)γ(s).

As the matrix (4X2 − 4
3 Tr(X2)I) commutes with A, we can decompose the above

expression into a tangent part and a part in the direction of the affine normal given
by the position vector, and therefore we find that

h(γ′(s), γ′(s)) = 4
3 Tr(X2).

So we see that s is a constant length parametrisation of the curve γ and therefore
we have that h(γ′, ∇̂γ′γ′) = 0 and

h(γ′,∇γ′γ′) = h(γ′,K(γ′, γ′))

In addition, we have

γ′′′(s) = ∇γ′(s)∇γ′(s)γ′(s) + h(γ′, γ′)γ′ + h(γ′,K(γ′, γ′)γ

= esX(8X3A)esX
T

= esX((8X3 − 8
3 Tr(X3)I)A)esX

T

+ 8
3 Tr(X3)γ(s).

So therefore working at s = 0 and writing v = 2XA as tangent vector, we obtain
that

h(v, v) = 4
3 Tr(X2),

h(v,K(v, v)) = 8
3 TrX3.

Linearising the above expressions, i.e. writing v = α1v1 + α2v2, respectively v =
α1v1 +α2v2 +α3v3, for v = 2XiA, i = 1, 2, 3, and looking at the coefficient of α1α2,
respectively α1α2α3, we obtain that

h(v1, v2) = 4
3 Tr(X1X2) = 4

3 Tr(X2X1)

6h(K(v1, v2), v3) = 8
3 (TrX1X2X3 + TrX3X1X2 + TrX2X3X1 + TrX1X3X2 + TrX3X2X1 + TrX2X1X3)

= 8(TrX1X2X3 + TrX2X1X3).

So we see that

K(v1, v2) = 2(X1X2 +X2X1 − 2
3 Tr(X1X2)I)A.

Indeed, we have that (X1X2+X2X1− 2
3 Tr(X1X2)I) has vanishing trace, commutes

with A and therefore K(v1, v2) is indeed the unique tangent vector such that

h(K(v1, v2), v3) = 4
3 (Tr(X1X2X3) + Tr(X2X1X3)).

As by Cayley Hamilton, for a matrix X with vanishing trace, we have that X3 =
1/2 Tr(X2)X + det(X)I, we deduce that

TrX4 = 1
2 (TrX2)2,

and therefore we have that

h(K(v, v),K(v, v)) = 4
3 Tr(2X2 − 2

3 TrX2I)2

= 4
3 (4 TrX4 + 4

9 (TrX2)2TrI − 8
3 (TrX2)2)

= 8
9 (TrX2)2

= 1
2 (h(v, v))2.
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Hence M1 is isotropic with positive λ. A straightforward computation also shows
that the index of the metric is 2. Combining therefore the results in this section
with Proposition 16 and the classification result of O. Birembaux and M. Djoric,
see [2] in the positive definite case, we get the following theorem:

Theorem 17. Let M be a 5-dimensional λ-isotropic affine hypersphere, with λ 6= 0.
Therefore, if necessary, by changing the sign of the affine normal, we may assume
that λ is positive. Then either

(1) the metric is positive definite, M is isometric with SL(3,R)
SO(3) and M is affine

congruent to an open part of the hypersurface {ggT |g ∈ SL(3,R)} of R6 ≡
s(3) ⊂ R3×3 , or

(2) the metric has signature 2, M is isometric with SL(3,R)
SO(2,1) and M is affine

congruent to an open part of the hypersurface {gAgT |g ∈ SL(3,R)}, where

A =

1 0 0
0 −1 0
0 0 −1

, of R6 ≡ s(3) ⊂ R3×3 .

6. Affine hyperspheres of dimension 8

6.1. The form of L, dimU = 2.
Let W = span{ω1

1 , ω
1
2 , ω

2
1 , ω

2
2} andW1 = span{ω1

1+iω1
2 , ω

2
1+iω2

2},W2 = span{ω1
1−

iω1
2 , ω

2
1 − iω2

2}. Remark that all the bases are orthogonal and in addition

h(ω1
1 + iω1

2 , ω
1
1 + iω1

2) = h(ω2
1 + iω2

2 , ω
2
1 + iω2

2) = 2,

h(ω1
1 − iω1

2 , ω
1
1 − iω1

2) = h(ω2
1 − iω2

2 , ω
2
1 − iω2

2) = −2.

Then, straightforward computations lead to
L(ω1

1 + iω1
2 , ω

1
1 − iω1

2) = 2L(ω1
1 , ω

1
1),

L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) = 2L(ω1
1 , ω

2
1)− 2iL(ω1

1 , ω
2
2),

L(ω2
1 + iω2

2 , ω
1
1 − iω1

2) = 2L(ω1
1 , ω

2
1) + 2iL(ω1

1 , ω
2
2),

L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) = 2L(ω2
1 , ω

2
1).

(35)

Notice that the vector L(ω1
1 + iω1

2 , ω
1
1 − iω1

2) is a real vector of length 3µ2. So we
can pick u1 ∈ U , h(u1, u1) = 1 such that

(36) L(ω1
1 + iω1

2 , ω
1
1 − iω1

2) =
√

3µu1.

With this choice, from property (24) we obtain that L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) is or-
thogonal to u1. Moreover as its length is a real number, we must have that
Re(L(ω1

1 + iω1
2 , ω

2
1 − iω2

2) and Im(L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) are orthogonal to each
other. As they are also both orthogonal to u1, one of them has to vanish. There-
fore, we get two cases:
Case II–1. Re(L(ω1

1 + iω1
2 , ω

2
1 − iω2

2)) = 0
Now we obtain that L(ω1

1 , ω
2
1) = 0 and L(ω1

1 + iω1
2 , ω

2
1− iω2

2) is an imaginary vector
of length 3µ2, orthogonal to u1. Thus, we can pick u2 ∈ U in the direction of
L(ω1

1 + iω1
2 , ω

2
1 − iω2

2) such that h(u2, u2) = −1 and such that

(37) L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) = i
√

3µu2.

Consider now L(ω2
1 + iω2

2 , ω
2
1 − iω2

2). It is a real vector orthogonal to u2, of length

3µ2 and thus we can write L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) = ±
√

3µu1.
Furthermore, from (35), (37) and Proposition 11- (4), we obtain

3µ2 = −h(L(ω1
1 + iω1

2 , ω
2
1 − iω2

2), L(ω2
1 + iω2

2 , ω
1
1 − iω1

2))

= h(L(ω1
1 + iω1

2 , ω
1
1 − iω1

2), L(ω2
1 + iω2

2 , ω
2
1 − iω2

2))

=
√

3µh(u1, L(ω2
1 + iω2

2 , ω
2
1 − iω2

2)).
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So we get that L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) =
√

3µu1. In this case, the signature of the
metric is 4.
Case II–2. Im(L(ω1

1 + iω1
2 , ω

2
1 − iω2

2)) = 0
Reasoning in a similar way, we choose u2 ∈ U a real vector in the direction of
L(ω1

1 + iω1
2 , ω

2
1− iω2

2), with h(u2, u2) = 1 such that L(ω1
1 + iω1

2 , ω
2
1− iω2

2) =
√

3µu2.

We find L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) = −
√

3µu1 and in this case the signature of the
metric is 3.

6.2. Two canonical examples.
First we consider R9 as the set of Hermitian symmetric matrics Y ∈ C3×3. We take
as hypersurface M those Hermitian symmetric matrices with determinant 1. We
define an action σ of SL(3,C) on M as follows

σ : SL(3,C)×M →M, such that (g, p) 7→ σg(p) = gpḡT .

Note thatM has two connected components and that the action is transitive on each
of the connected components. The connected component of I has been studied in
[2], where it was shown that it gives a positive definite isotropic affine hypersurface.
It also appears in [8]. Here we are interested in the component of the matrix

A =

1 0 0
0 −1 0
0 0 −1

 , which we denote by M1. So M1 = {gAḡT |g ∈ SL(3,R)}.

The isotropy group consists of the matrices g of determinant 1 such that gAḡT = A.
This Lie group is congruent to SU(2, 1) and therefore, by Theorem 9.2 of [3], we

know that M1 is locally isometric with SL(3,C)
SU(2,1) .

Note that of course every element of SL(3,C) acts at the same time also on R9 in
a linear way and that, therefore, this action belongs to GL(9,R). A straightforward
computation shows that this action actually belongs to SL(9,R). This implies that
M1 is at the same time an homogeneous affine hypersurface and, by Proposition 6,
an equiaffine sphere centered at the origin. So, in order to determine the properties
of M1, it is sufficient to look at a single point.

In order to determine the tangent space at the point p = gAḡT , we look at the
curves in M1

γ(s) = gesXAesX̄
T

ḡT .

These are indeed curves in M1 provided that esX ∈ SL(3,C) or equivalently

provided that TrX = 0. Note that γ′(s) = gesX(XA + AX̄T )esX̄
T

ḡT , where
v = (XA + AX̄T ) is a Hermitian symmetric matrix. So by using a dimension
argument we see that the tangent space is given by

{gvḡT |v = 2XA,XA = AX̄T ,TrX = 0, X ∈ C3×3} = TpM1.

Working now at the point A, taking g = I and X ∈ su(2, 1) = {X ∈ C3×3|TrX =
0, XA = AX̄T } we see that

∇γ′(s)γ′(s) + h(γ′, γ′)γ = γ′′(s)

= esX(4X2A)esX
T

= esX((4X2 − 4
3 Tr(X2)I)A)esX̄

T

+ 4
3 Tr(X2)esXAesX̄

T

= esX((4X2 − 4
3 Tr(X2)I)A)esX̄

T

+ 4
3 Tr(X2)γ(s).

As the matrix (4X2 − 4
3 Tr(X2)I) commutes with A, we can decompose the above

expression into a tangent part and a part in the direction of the affine normal given
by the position vector, and therefore we find that

h(γ′(s), γ′(s)) = 4
3 Tr(X2).



16 MARILENA MORUZ AND LUC VRANCKEN

So we see that s is a constant length parametrisation of the curve γ and therefore
we have that h(γ′, ∇̂γ′γ′) = 0 and

h(γ′,∇γ′γ′) = h(γ′,K(γ′, γ′)).

As

γ′′′(s) = ∇γ′(s)∇γ′(s)γ′(s) + h(γ′, γ′)γ′ + h(γ′,K(γ′, γ′)γ

= esX(8X3A)esX̄
T

= esX((8X3 − 8
3 Tr(X3)I)A)esX̄

T

+ 8
3 Tr(X3)γ(s),

working at s = 0 and writing v = 2XA as tangent vector, we have that

h(v, v) = 4
3 Tr(X2),

h(v,K(v, v)) = 8
3 TrX3.

Linearising the above expressions, i.e. writing v = α1v1 + α2v2, respectively v =
α1v1 +α2v2 +α3v3, for v = 2XiA, i = 1, 2, 3, and looking at the coefficient of α1α2,
respectively α1α2α3, we obtain that

h(v1, v2) = 4
3 Tr(X1X2) = 4

3 Tr(X2X1),

6h(K(v1, v2), v3) = 8
3 (TrX1X2X3 + TrX3X1X2 + TrX2X3X1 + TrX1X3X2 + TrX3X2X1 + TrX2X1X3)

= 8(TrX1X2X3 + TrX2X1X3).

So we see that

K(v1, v2) = 2(X1X2 +X2X1 − 2
3 Tr(X1X2)I)A.

Indeed, we have that (X1X2 +X2X1− 2
3 Tr(XY )I) has vanishing trace, commutes

with A and therefore K(v1, v2) is indeed the unique tangent vector such that

h(K(v1, v2), v3) = 4
3 (Tr(X1X2X3) + Tr(X2X1X3)).

As by Cayley Hamilton for a matrix X with vanishing trace we have that X3 =
1/2 Tr(X2)X + det(X)I, we deduce that

TrX4 = 1
2 TrX2,

and therefore, we have that

h(K(v, v),K(v, v)) = 4
3 Tr(2X2 − 2

3 TrX2I)2

= 4
3 (4 TrX4 + 4

9 (TrX2)2TrI − 8
3 (TrX2)2)

= 8
9 (TrX2)2

= 1
2 (h(v, v))2.

Hence M1 is isotropic with positive λ. A straightforward computation also shows
that the index of the metric is 4.

Next, we consider R9 = R3×3. We take as hypersurface M2 those matrices with
determinant 1. We define an action σ of SL(3,R) on M2 as follows

σ : SL(3,R)×M2 →M2, such that (g, p) 7→ σg(p) = gp.

The isotropy group of the identity matrix consists only of the identity matrix.
Therefore, by Theorem 9.2 of [3] we know that M2 is locally isometric with SL(3,R).

Note that, of course, every element of SL(3,R) acts at the same time also on R9

in a linear way and that therefore this action belongs toGL(9,R). A straightforward
computation shows that this action actually belongs to SL(9,R). This implies that
M2 is at the same time an homogeneous affine hypersurface and, by Proposition 6,
an equiaffine sphere centered at the origin. So in order to determine the properties
of M2 it is sufficient to look at a single point.



A CLASSIFICATION OF ISOTROPIC AFFINE HYPERSPHERES 17

In order to determine the tangent space at a point p, we look at the curves in
M2

γ(s) = esXp.

These are indeed curves in M2, provided that esX ∈ SL(3,R) or equivalently,
provided that TrX = 0. Note that γ′(s) = esXXp, so by using a dimension
argument we see that the tangent space is given by

{Xp|TrX = 0, X ∈ R3×3} = TpM2.

Working now at the point I and X ∈ sl(3,R) = {X ∈ R3×3|TrX = 0}, we see
that

∇γ′(s)γ′(s) + h(γ′, γ′)γ = γ′′(s)

= esXX2

= esX(X2 − 1
3 Tr(X2)I) + 1

3 Tr(X2)esX

= esX(X2 − 1
3 Tr(X2)I) + 1

3 Tr(X2)γ(s).

As the matrix (X2 − 1
3 Tr(X2)I) commutes with esX and has vanishing trace, we

can interprete esX(X2 − 1
3 Tr(X2)I) as a tangent vector at the point esX . By

decomposing the above expression into a tangent part and a part in the direction
of the affine normal given by the position vector, we deduce that

h(γ′(s), γ′(s)) = 1
3 Tr(X2).

So we see that s is a constant length parametrisation of the curve γ and therefore
we have that h(γ′, ∇̂γ′γ′) = 0 and

h(γ′,∇γ′γ′) = h(γ′,K(γ′, γ′)).

As

γ′′′(s) = ∇γ′(s)∇γ′(s)γ′(s) + h(γ′, γ′)γ′ + h(γ′,K(γ′, γ′)γ

= esXX3

= esX(X3 − 1
3 Tr(X3)I)esX

T

+ 1
3 Tr(X3)γ(s),

working at s = 0 and writing v = X as tangent vector, we have that

h(v, v) = 1
3 Tr(X2),

h(v,K(v, v)) = 1
3 TrX3.

Linearising the above expressions, i.e. writing v = α1v1 + α2v2, respectively v =
α1v1 + α2v2 + α3v3, for vi = Xi, i = 1, 2, 3, and looking at the coefficient of α1α2,
respectively α1α2α3 we obtain that

h(v1, v2) = 1
3 Tr(X1X2) = 1

3 Tr(X2X1),

6h(K(v1, v2), v3) = 1
3 (TrX1X2X3 + TrX3X1X2 + TrX2X3X1 + TrX1X3X2 + TrX3X2X1 + TrX2X1X3)

= (TrX1X2X3 + TrX2X1X3).

So we see that

K(v1, v2) = 1
2 (X1X2 +X2X1 − 2

3 Tr(X1X2)I).

Indeed, we have that (X1X2 + X2X1 − 2
3 Tr(X1, X2)I) has vanishing trace and

therefore K(v1, v2) is indeed the unique tangent vector such that

h(K(v1, v2), v3) = 1
6 (Tr(X1X2X3) + Tr(X2X1X3)).

As by Cayley Hamilton for a matrix X with vanishing trace we have that X3 =
1/2 Tr(X2)X + det(X)I, we deduce that

TrX4 = 1
2 (TrX2)2,
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and therefore we have that

h(K(v, v),K(v, v)) = 1
3 Tr(X2 − 1

3 TrX2I)2

= 1
3 (TrX4 + 1

9 (TrX2)2TrI − 2
3 (TrX2)2)

= 1
18 (TrX2)2

= 1
2 (h(v, v))2.

Hence M1 is isotropic with positive λ. A straightforward computation also shows
that the index of the metric is 3.

Combining therefore the results in this section with Proposition 16 and the
classification result of O. Birembaux and M. Djoric, see [2] in the positive definite
case, we get the following theorem:

Theorem 18. Let M be a 8-dimensional λ-isotropic affine hypersphere, with λ 6= 0.
Therefore if necessary by changing the sign of the affine normal we may assume
that λ is positive. Then either

(1) the metric is positive definite, M is isometric with SL(3,C)
SU(3) and M is affine

congruent to an open part of the hypersurface {gḡT |g ∈ SL(3,C)} of R9,
identified with the space of Hermitian symmetric matrices, or

(2) the metric has signature 4, M is isometric with SL(3,C)
SU(2,1) and M is affine

congruent to an open part of the hypersurface {gA|gT |g ∈ SL(3,C)} of R9,

where A =

1 0 0
0 −1 0
0 0 −1

, identified with the space of Hermitian symmet-

ric matrices, or
(3) the metric has signature 3, M is isometric with SL(3,R) and M is affine

congruent with SL(3,R) considered as a hypersurface in R9 identified with
R3×3.

7. Affine hyperspheres of dimension 14

7.1. The form of L, dimUC = 4.
We start with w1 ∈ W a vector with length 1. As L(w1 + iTw1, w1 − iTw1) is a
real vector in U with length 3µ2 there exists a real unit length vector u1 in U such
that

L(w1 + iTw1, w1 − iTw1) =
√

3µu1.

We now complete u1 to a basis of U by choosing orthogonal u2, u3, u4 in {u1}⊥
such that h(uk, uk) = εk, where εk = ±1. We also introduce δk, for k=2,3,4, by

δk = i, if εk = −1 and δk = 1, if εk = 1.

Now we apply Proposition 11, which tells us that we can find vectors w2, w3, w4

such that

L(w1 + iTw1, w2 − iTw2) =
√

3µδ2u2,

L(w1 + iTw1, w3 − iTw3) =
√

3µδ3u3,

L(w1 + iTw1, w4 − iTw4) =
√

3µδ4u4.

The first two properties of Proposition 11 then tells us that {w1, Tw1, . . . , w4, Tw4}
is a basis of W , as in Lemma 7. Of course the previous equations also imply that

L(wk + iTwk, w1 − iTw1) =
√

3µδ̄kuk.

We now look at L(w2 + iTw2, w3 − iTw3). From the last part of Proposition
11 it follows that this vector is orthogonal to L(w2 + iTw2, w1 − iTw1), L(w1 +
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iTw1, w3 − iTw3) and L(w1 + iTw1, w1 − iTw1). So this implies that there exists
a complex number b4 such that

L(w2 + iTw2, w3 − iTw3) = b4u4.

Similarly, we have that

L(w2 + iTw2, w4 − iTw4) = b3u3,

L(w3 + iTw3, w4 − iTw4) = b2u2.

Using again Proposition 11 we see that there exists real numbers ck such that

h(L(wk + iTwk, wk − iTwk), L(wk + iTwk, wk − iTwk)) = ckuk.

From

(38) h(L(wk + iTwk, wk − iTwk), L(w1 + iTw1, w1 − iTw1)) =

− h(L(wk + iTwk, w1 − iTw1), L(w1 + iTw1, wk − iTwk)),

it follows that ck = −
√

3µεk. Next we use the fact that for different indices k and
` we have that

(39) h(L(wk + iTwk, wk − iTwk), L(w` + iTw`, w` − iTw`)) =

− h(L(wk + iTwk, w` − iTw`), L(w` + iTw`, wk − iTwk)).

Expressing this for the different possibilities for k and ` we find that

3µ2ε2ε3 = −|b4|2ε4

3µ2ε2ε4 = −|b3|2ε3

3µ2ε4ε3 = −|b2|2ε4.

Hence, up to permuting the vectors, we see that there are two possibilities. Either
ε2 = ε3 = ε4 = −1, in which case the index of the metric is 8 or ε2 = −1 and
ε3 = ε4 = 1, in which case the index of the metric is 6.

Computing the length of L(w2 + iTw2, w3 − iTw3) we have in both cases that
b24ε4 = 3µ2. So if necessary by changing the sign of u4 and w4, we may assume that

b4 =
√

3µ.
We now complete the argument by looking at

h(L(w2+iTw2, w3−iTw3), L(w1+iTw1, w4−iTw4) = −h(L(w1+iTw1, w3−iTw3), L(w2+iTw2, w4−iTw4)

This yields that b3 = −
√

3µ. Interchanging the indices 2 and 3 in the formula above
finally gives that b2 = −

√
3µ in the first case, and −

√
3µi in the second case.

7.2. Two canonical examples.

First we look at the following example. We identify R15 with the set of all skew
symmetric matrices in R6×6. So an element p ∈ R15 is of the form

p =


0 a1 a2 a3 a4 a5

−a1 0 a6 a7 a8 a9

−a2 −a6 0 a10 a11 a12

−a3 −a7 −a10 0 a13 a14

−a4 −a8 −a11 −a13 0 a15

−a5 −a9 −a12 −a14 −a15 0

 .

We take as hypersurface M in R15 the skew symmetric matrices with determinant
1. Let G = SL(6,R). Then, we have an action ρ of G on M by ρ(g)(p) = gpgT
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Here we are interested in the connected component of the matrix

I0 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0

 .

If necessary, we restrict now M to the orbit of I0. Its isotropy group consists of
the matrices g of determinant 1 such that gI0g

T = I0. This Lie group is congruent
to Sp(6) and therefore by Theorem 9.2 of [3] we know that M1 is locally isometric

with SL(6,R)
Sp(6) .

Note that of course every element of SL(6,R) acts at the same time also on R15 in
a linear way and that therefore this action belongs to GL(15,R). A straightforward
computation shows that this action actually belongs to SL(15,R). This implies that
M is at the same time an homogeneous affine hypersurface and by Proposition 6
an equiaffine sphere centered at the origin. So in order to determine the properties
of M it is sufficient to look at a single point.

In order to determine the tangent space at a point p = gI0g
T , we look at the

curves in M

γ(s) = gesXI0e
sXT gT .

These are indeed curves in M1, provided that esX ∈ SL(6,R) or equivalently,

provided that TrX = 0. Note that γ′(s) = gesX(XI0 + I0X
T )esX

T

gT , where
v = (XI0 + I0X

T ) is a symmetric matrix. So by using a dimension argument we
see that the tangent space is given by

{gvgT |v = 2XI0, XI0 = I0X
T ,TrX = 0, X ∈ R6×6} = TpM.

In fact, such a matrix X is of the form

X =


a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 0 −a5

c1 c2 −a1 − b2 0 −b4 −a4

d1 d2 0 −a1 − b2 b3 a3

e1 0 −d2 c2 b2 a2

0 −e1 −d1 c1 b1 a1

 .

Working now at the point I0, taking g = I and X ∈ {X ∈ R6×6|TrX = 0, XI0 =
I0X

T } we see that

∇γ′(s)γ′(s) + h(γ′, γ′)γ = γ′′(s)

= esX(4X2I0)esX
T

= esX((4X2 − 4
6 Tr(X2)I)I0)esX

T

+ 4
6 Tr(X2)esXI0e

sXT

= esX((4X2 − 4
6 Tr(X2)I)I0)esX

T

+ 4
6 Tr(X2)γ(s).

As the matrix (4X2 − 4
6 Tr(X2)I) commutes with I0, we can decompose the above

expression into a tangent and a part in the direction of the affine normal given by
the position vector, and therefore we find that

h(γ′(s), γ′(s)) = 4
6 Tr(X2).

So we see that s is a constant length parametrisation of the curve γ and therefore
we have that h(γ′, ∇̂γ′γ′) = 0 and

h(γ′,∇γ′γ′) = h(γ′,K(γ′, γ′))
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As

γ′′′(s) = ∇γ′(s)∇γ′(s)γ′(s) + h(γ′, γ′)γ′ + h(γ′,K(γ′, γ′)γ

= esX(8X3I0)esX
T

= esX((8X3 − 8
6 Tr(X3)I)I0)esX

T

+ 8
6 Tr(X3)γ(s),

working at s = 0 and writing v = 2XI0 as tangent vector, we have that

h(v, v) = 4
6 Tr(X2),

h(v,K(v, v)) = 8
6 TrX3.

Linearising the above expressions, i.e. writing v = α1v1 + α2v2, respectively v =
α1v1 +α2v2 +α3v3, for vi = 2XI0, i = 1, 2, 3, and looking at the coefficient of α1α2,
respectively α1α2α3 we obtain that

h(v1, v2) = 4
6 Tr(X1X2) = 4

6 Tr(X2X1),

6h(K(v1, v2), v3) = 8
3 (TrX1X2X3 + TrX3X1X2 + TrX2X3X1 + TrX1X3X2 + TrX3X2X1 + TrX2X1X3)

= 4(TrX1X2X3 + TrX2X1X3).

So we see that

K(v1, v2) = 2(X1X2 +X2X1 − 2
6 Tr(X1X2)I)I0.

Indeed we have that (X1X2 +X2X1− 2
6 Tr(X1X2)I) has vanishing trace, commutes

with I0 and therefore K(v1, v2) is indeed the unique tangent vector such that

h(K(v1, v2), v3) = 2
3 (Tr(X1X2X3) + Tr(X2X1X3)).

By straightforward computations we deduce that

TrX4 = 1
4 (TrX2)2,

and therefore we have that

h(K(v, v),K(v, v)) = 4
6 Tr(2X2 − 2

3 TrX2I)2

= 4
6 (4 TrX4 + 4

9 (TrX2)2TrI − 8
3 (TrX2)2)

= 2
9 (TrX2)2

= 1
2 (h(v, v))2.

Hence M1 is isotropic with positive λ. A straightforward computation also shows
that the index of the metric is 4.

Next, the following example ilustrates the case when the signature of the in-
definite metric on M14 is 8. First we identify R15 with the set of matrices a =

{
(
E F
−F̄ Ē

)
, E = ĒT , F = −FT } ⊂ C6×6. An element in a is of the form

p :=


a1 a2 + ia3 a4 + ia5 0 a6 + ia7 a8 + ia9

a2 − ia3 a10 a11 + ia12 −a6 − ia7 0 a13 + ia14

a4 − ia5 a11 + ia12 a15 −a8 − ia9 −a13 − ia14 0
0 −a6 + ia7 −a8 + ia9 a1 a2 − ia3 a4 − ia5

a6 − ia7 0 −a13 + ia14 a2 + ia3 a10 a11 − ia12

a8 − ia9 a13 − ia14 0 a4 + ia5 a11 + ia12 a15

 .

We take as hypersurface M in R15 all such matrices with determinant 1. Let
G = SU∗(6). Then, we have an action ρ of G on M by ρ(g)(p) = gpḡT . Note
that M has two connected components and that the action is transitive on each of
the connected components. The connected component of I has been studied in [2],
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where it was shown that it gives a positive definite isotropic affine hypersurface.
Here we are interested in the connected component M1 containing the matrix

I0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

 .

Its isotropy group consists of the matrices g of determinant 1 such that gI0ḡ
T = I0.

This Lie group is congruent to Sp(1, 2) and therefore, by Theorem 9.2 of [3], we

know that M is locally isometric with SU∗(6)
Sp(1,2) .

Note that of course every element of SU∗(6) acts at the same time also on R15 in
a linear way and that therefore this action belongs to GL(15,R). A straightforward
computation shows that this action actually belongs to SL(15,R). This implies that
M is at the same time an homogeneous affine hypersurface and, by Proposition 6,
an equiaffine sphere centered at the origin. So in order to determine the properties
of M1, it is sufficient to look at a single point.

In order to determine the tangent space at a point p = gI0ḡ
T , we look at the

curves in M

γ(s) = gesXI0e
sX̄T ḡT .

These are indeed curves in M1, provided that TrX = 0 and XJ = JX̄, for J =(
0 In
−In 0

)
. Note that γ′(s) = gesX(XI0+I0X̄

T )esX̄
T

ḡT . So by using a dimension

argument, we see that the tangent space is given by

{gvḡT |v = 2XI0, XI0 = I0X̄
T ,TrX = 0, XJ = JX̄,X ∈ C6×6} = TpM1.

In fact, such an X if of the form
−x− x0 x1 + iy1 x2 + iy2 0 x3 − iy3 x4 − iy4

x1 − iy1 x x5 + iy5 −x3 + iy3 0 −x6 + iy6

−x2 + iy2 −x5 + iy5 x0 x4 − iy4 x6 − iy6 0
0 −x3 − iy3 −x4 − iy4 −x− x0 x1 − iy1 −x2 − iy2

x3 + iy3 0 −x6 − iy6 x1 + iy1 x −x5 + iy5

x4 + iy4 x6 + iy6 0 x2 + iy2 x5 + iy5 x0

 .

Working now at the point I0, taking g = I and X ∈ C6×6 satisfying XI0 =
I0X̄

T ,TrX = 0, XJ = JX̄, we see that

∇γ′(s)γ′(s) + h(γ′, γ′)γ = γ′′(s)

= esX(4X2I0)esX̄
T

= esX((4X2 − 4
6 Tr(X2)I)I0)esX̄

T

+ 4
6 Tr(X2)esXI0e

sX̄T

= esX((4X2 − 4
6 Tr(X2)I)I0)esX̄

T

+ 4
6 Tr(X2)γ(s).

As the matrix (4X2− 4
6 Tr(X2)I) has the same properties as X, we can decompose

the above expression into a tangent part and a part in the direction of the affine
normal given by the position vector, and therefore we find that

h(γ′(s), γ′(s)) = 4
6 Tr(X2).

So we see that s is a constant length parametrisation of the curve γ and therefore
we have that h(γ′, ∇̂γ′γ′) = 0 and

h(γ′,∇γ′γ′) = h(γ′,K(γ′, γ′)).
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As

γ′′′(s) = ∇γ′(s)∇γ′(s)γ′(s) + h(γ′, γ′)γ′ + h(γ′,K(γ′, γ′)γ

= esX(8X3I0)esX̄
T

= esX((8X3 − 8
6 Tr(X3)I)I0)esX̄

T

+ 8
6 Tr(X3)γ(s),

working at s = 0 and writing v = 2XI0 as tangent vector, we have that

h(v, v) = 4
6 Tr(X2),

h(v,K(v, v)) = 8
6 TrX3.

Linearising the above expressions, i.e. writing v = α1v1 + α2v2, respectively v =
α1v1 +α2v2 +α3v3, for vi = 2XI0, i = 1, 2, 3, and looking at the coefficient of α1α2,
respectively α1α2α3 we obtain that

h(v1, v2) = 4
6 Tr(X1X2) = 4

6 Tr(X2X1),

6h(K(v1, v2), v3) = 8
3 (TrX1X2X3 + TrX3X1X2 + TrX2X3X1 + TrX1X3X2 + TrX3X2X1 + TrX2X1X3)

= 4(TrX1X2X3 + TrX2X1X3).

So we see that

K(v1, v2) = 2(X1X2 +X2X1 − 2
6 Tr(X1X2)I)I0.

Indeed we have that (X1X2 +X2X1− 2
6 Tr(X1X2)I) has vanishing trace, commutes

with I0 and therefore K(v1, v2) is indeed the unique tangent vector such that

h(K(v1, v2), v3) = 2
3 (Tr(X1X2X3) + Tr(X2X1X3)).

By straightforward computations we deduce that

TrX4 = 1
4 (TrX2)2,

and therefore we have that

h(K(v, v),K(v, v)) = 4
6 Tr(2X2 − 2

3 TrX2I)2

= 4
6 (4 TrX4 + 4

9 (TrX2)2TrI − 8
3 (TrX2)2)

= 2
9 (TrX2)2

= 1
2 (h(v, v))2.

Hence M1 is isotropic with positive λ. A straightforward computation also shows
that the index of the metric is 8.

8. Affine hyperspheres of dimension 26

8.1. The form of L, dimU = 8.
Before treating each case of the signature for the metric, we first will give some
lemmas which will be very useful in order to simplify the proof significantly. We
start with an arbitrary vector w + iTw ∈ W1 with length 2 and define a real
vector

√
3µu = L(w + iTw,w − iTw). We call w1

1 = w and w1
2 = Tw. Next,

we choose arbitrary orthogonal vectors u2, . . . , u8 such that u1, u2, . . . , u8 forms an
orthonormal (real) basis in U , that is h(uj , uk) = εjδjk, where εj = ±1 indicate
the length of uj . As the operator L(ω1

1 + iω1
2 ,−) is bijective, for every uj we find

ω1
j , ω

2
j , such that

(40) L(ω1
1 + iω1

2 , ω
j
1 − iω

j
2) =

√
3µδjuj , where δj =

{
1, if ε = 1
i, if ε = −1.

Lemma 19. For the previously defined vectors, L satisfies

L(ωk1 + iωk2 , ω
k
1 − iωk2 ) = −

√
3µεku1.
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Proof. The result is straightforward, by properties (23) and (24):

h(L(ωk1 + iωk2 , ω
k
1 − iωk2 ), L(ω1

1 + iω1
2 , ω

j
1 − iω

j
2)) =

= −h(L(ω1
1 + iω1

2 , ω
k
1 − iωk2 ), L(ωk1 + iωk2 , ω

j
1 − iω

j
2))

= −δ
δ̄
h(L(ωk1 + iωk2 , ω

1
1 − iω1

2), L(ωk1 + iωk2 , ω
j
1 − iω

j
2))

= −δ
δ̄

3µ2

2
h(ω1

1 + iω1
2 , ω

j
1 − iω

j
2))

=

{
0, j 6= 1
−3µ2εk, j = 1.

(41)

ut

Lemma 20. Let uj and uk determine εj and εk such that εj = εk, for k, j > 1.

Then L(ωk1 + iωk2 , ω
j
1 − iω

j
2) is an imaginary vector.

Proof. Let us define the orthonormal basis of U given by
u∗k = cos(t)uk + sin(t)uj ,
u∗j = −sin(t)uk + cos(t)uk,
u∗l = ul, l 6= k, j.

By relation (40), we compute

L(ω1
1 + iω1

2 , cos(t)(ωk1 − iωk2 ) + sin(t)(ωj1 − iω
j
2)) =

√
3µδj(cos(t)uk + sin(t)uj)

and therefore we find ω∗k1 +iω∗k2 = cos(t)(ωk1 +iωk2 )+sin(t)(ωj1+iωj2) and ω∗j1 +iω∗j2 =

− sin(t)(ωk1 + iωk2 ) + cos(t)(ωj1 + iωj2) such that

L(ω1
1 + iω1

2 , ω
∗k
1 + iω∗k2 ) =

√
3δku

∗
k.

Next, by lemma (19) we may write

L(ω∗k1 + iω∗k2 , ω∗k1 − iω∗k2 ) = −
√

3µεku1

and using the bilinearity of L, we get the conclusion. ut

Lemma 21. Let uj and uk determine εj and εk such that εj = −1 and εk = 1, for

k, j > 1. Then L(ωk1 + iωk2 , ω
j
1 − iω

j
2) is a real vector.

Proof. First, define an orthonormal basis of U given by
u∗k = cosh(t)uk + sinh(t)uj ,
u∗j = sinh(t)uk + cosh(t)uk
u∗l = ul, l 6= k, j

and notice that L(ω1
1 + iω1

2 , ω
k
1 − iωk2 ) =

√
3µuk and L(ω1

1 + iω1
2 , ω

j
1 − iω

j
2)
√

3µuj .

We take a, b, c, d complex functions and find ω∗k1 − iω∗k2 = a(ωk1 − iωk2 )+ b(ωj1− iω
j
2)

and ω∗j1 − iω
∗j
2 = c(ωk1 − iωk2 ) + d(ωj1 − iω

j
2) to be the unique vectors satisfying

L(ω1
1 + iω1

2 , ω
∗k
1 − iω∗k2 ) =

√
3µu∗k and L(ω1

1 + iω1
2 , ω
∗j
1 − iω

∗j
2 )
√

3µu∗j .

Therefore, we find

a = cosh(t), b = i sinh(t), c = −i sinh(t) and d = cosh(t).

Finally, using the bilinearity of L, the conclusion follows easily from

L(ω∗k1 + iω∗k2 , ω∗k1 − iω∗k2 ) = −
√

3µu1.

ut
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In what follows, we will study the remaining cases for the metric on U . First we
deal with the case that the signature of the metric is 4, 5 or 6. Let u1 be defined
as in the beginning of this section. Next, choose u2 ⊥ u1 such that h(u2, u2) = −1

and w2
1 and w2

2 such that L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) =
√

3µu2 and u3 ⊥ u1, u2 and w3
1

and w3
2 such that h(u3, u3) = −1, L(ω1

1 + iω1
2 , ω

3
1 − iω3

2) =
√

3µu3. Then, we look
at the vector L(ω2

1 + iω2
2 , ω

3
1 − iω3

2) and see, by property (23), that it is orthogonal
to u1, u2 and u3 and has length 3µ2 and by lemma (20), that it is an imaginary
vector. Therefore, we define u4 of length −1 such that

L(ω2
1 + iω2

2 , ω
3
1 − iω3

2) =
√

3µiu4.

Next, by surjectivity of L(ω1
1 + iω1

2 ,−) and by (40) we can pick w4
1 and w4

2 such

that L(ω1
1 +iω1

2 , ω
4
1−iω4

2) =
√

3µiu4. In the following, we pick u5 ⊥ u1, u2, u3, u4 of

length 1 and obtain ω5
1 , ω

5
2 such that L(ω1

1 + iω1
2 , ω

5
1 − iω5

2) =
√

3µu5. Remark that
the vectors L(ω2

1 + iω2
2 , ω

5
1 − iω5

2), L(ω3
1 + iω3

2 , ω
5
1 − iω5

2), L(ω4
1 + iω4

2 , ω
5
1 − iω5

2) are
real, of positive length, mutually orthogonal and orthogonal to u1, u5. Therefore,
the choice of u1, . . . , u5 implies that the metric on {u2, u3, u4}⊥ is positive definite.
Therefore, the cases when the metric has signature 4, 5 or 6 cannot happen.

In case that the index is 0, we proceed as follows. Let u1 be defined as before,
choose u2 ⊥ u1 of length 1 and obtain the existence of ω2

1 , ω
2
2 such that L(ω1

1 +

iω1
2 , ω

2
1 − iω2

2) =
√

3µu2 and L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) = −
√

3µu1. Then, choose

u3 ⊥ u1, u2 of length 1 and obtain again L(ω1
1 + iω1

2 , ω
3
1 − iω3

2) =
√

3µu3 and

L(ω3
1 + iω3

2 , ω
3
1 − iω3

2) = −
√

3µu1. Moreover, the vector L(ω2
1 + iω2

2 , ω
3
1 − iω3

2) is an
imaginary vector, orthogonal on u1, u2, u3 (by relation (23)) and therefore, we get
the existence of a unit vector of negative length, u4, such that L(ω2

1+iω2
2 , ω

3
1−iω3

2) =√
3µiu4. This contradicts the fact that the index equals 0.
Next, we start anew, with different choices of vectors in order to eliminate the

case when the signature of the metric is 1.
Let u1 be defined as before, choose u2 ⊥ u1 of length −1 and obtain the existence of
ω2

1 , ω
2
2 such that L(ω1

1 +iω1
2 , ω

2
1−iω2

2) =
√

3µiu2 and L(ω2
1 +iω2

2 , ω
2
1−iω2

2) =
√

3µu1.

Then, choose u3 ⊥ u1, u2 of length 1 and obtain again L(ω1
1+iω1

2 , ω
3
1−iω3

2) =
√

3µu3

and L(ω3
1 + iω3

2 , ω
3
1 − iω3

2) = −
√

3µu1. Moreover, the vector L(ω2
1 + iω2

2 , ω
3
1 − iω3

2)
is a real vector, orthogonal on u1, u2, u3 (by relation (23)) and therefore, we get the
existence of a unit vector of positive length, u4, such that L(ω2

1 + iω2
2 , ω

3
1 − iω3

2) =√
3µu4. Consequently, L(ω1

1 + iω1
2 , ω

4
1 − iω4

2) =
√

3µu4 and L(ω4
1 + iω4

2 , ω
4
1 − iω4

2) =

−
√

3µu1. Next, we pick u5 ⊥ u1, u2, u3, u4 of length 1 and find

L(ω1
1 + iω1

2 , ω
5
1 − iω5

2) =
√

3µu5 and L(ω5
1 + iω5

2 , ω
5
1 − iω5

2) = −
√

3µu1.

Finally, by lemma (20) and the property in (23), we see that the vectors L(ω3
1 +

iω3
2 , ω

5
1 − iω5

2) and L(ω3
1 + iω3

2 , ω
4
1 − iω4

2) are orthogonal imaginary vectors. This
implies that the index of the metric is at least 2.

Now, we will prove that the metric on U cannot have signature 2. Let u1

be defined as in (??), choose u2 ⊥ u1 of length −1 and obtain ω2
1 , ω

2
2 such that

L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) =
√

3µiu2 and L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) =
√

3µu1. Then, choose

u3 ⊥ u1, u2 of length −1 and obtain again L(ω1
1 + iω1

2 , ω
3
1 − iω3

2) =
√

3µiu3 and

L(ω3
1 + iω3

2 , ω
3
1 − iω3

2) =
√

3µu1. Remark now that the vector L(ω2
1 + iω2

2 , ω
3
1 − iω3

2)
is an imaginary vector, orthogonal on u1, u2, u3 (by relation (23)). So we have

that L(ω2
1 + iω2

2 , ω
3
1 − iω3

2) =
√

3µiu4, where u4 has negative length and belongs to
{u1, u2, u3}⊥, where the metric is positive definite, which is a contradiction.

Next we deal with the case that the index of the metric equals 7. So on {u1}⊥
the metric is negative definite. We may take u2 ∈ U such that h(u2, u2) = −1 and
h(u1, u2) = 0.
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As L(ω1
1 + iω1

2 ,−) is a surjective operator, we can pick w1
1 and w1

2 = Tw1
1 such that

L(ω1
1 + iω1

2 , ω
2
1 − iω2

2) =
√

3µiu2,(42)

L(ω2
1 + iω2

2 , ω
1
1 − iω1

2) = −
√

3µiu2.(43)

and by the lemma we have L(ω2
1 + iω2

2 , ω
2
1 − iω2

2) =
√

3µu1 Next, we take u3 ∈ U
such that h(u3, u3) = −1. In a similar way as before, we define ω3

1 and ω3
2 and

obtain

L(ω1
1 + iω1

2 , ω
3
1 − iω3

2) =
√

3µiu3.(44)

By the lemma this implies that L(ω3
1 + iω3

2 , ω
3
1 − iω3

2) =
√

3µu1. Next, we find that
L(ω3

1+iω3
2 , ω

2
1−iω2

2) is an imaginary vector which is orthogonal to u1, u2 and u3 such

that we may write L(ω3
1 +iω3

2 , ω
2
1−iω2

2) =
√

3µiu4, for some u4 ∈ U , u4 ⊥ u1, u2, u3.
Given u4, we define new ω4

1 and ω4
2 in W2 such that L(ω1

1 + iω1
2 , ω

4
1 − iω4

2) =√
3µiu4 and we have L(ω4

1 + iω4
2 , ω

4
1 − iω4

2) =
√

3µu1. Next, we want to determine
L(ω2

1 + iω2
2 , ω

4
1 − iω4

2). We immediately obtain that it is an imaginary vector of
length 3µ2 which is orthogonal to u1, u2 and u4. As

h(L(ω2
1+iω2

2 , ω
4
1−iω4

2), L(ω1
1+iω1

2 , ω
3
1−iω3

2)) = −h(L(ω2
1+iω2

2 , ω
3
1−iω3

2), L(ω1
1+iω1

2 , ω
4
1−iω4

2)) = 3µ2,

it follows from the Cauchy-Schwartz inequality on {u1}⊥ that L(ω2
1 + iω2

2 , ω
4
1 −

iω4
2) =

√
3µiu3. Similarly it follows that L(ω4

1 + iω4
2 , ω

3
1 − iω3

2) ==
√

3µiu2.
Remember that so far we have defined u1, u2, u3 and u4 ∈ U and ω1

1 , ω
1
2 , ω2

1 , ω
2
2 ,

ω3
1 , ω

3
2 ,ω4

1 , ω
4
2 ∈ W. We take now some arbitrary u5 ∈ {u1, u2, u3, u4}⊥ such that

h(u5, u5) = −1 and use again the surjectivity of L(ω1
1 + iω1

2 ,−) to define w5
1 and

w5
2 = Tw5

1 such that L(ω1
1 + iω1

2 , ω
5
1 − iω5

2) =
√

3µiu5 and

(45) L(ω5
1 + iω5

2 , ω
5
1 − iω5

2) =
√

3µu1.

Next, we proceed with the computations as we did, for instance, for L(ω3
1 +iω3

2 , ω
2
1−

iω2
2) and define u6, u7, u8 ∈ U such that

L(ω5
1 + iω5

2 , ω
2
1 − iω2

2) =
√

3µiu6,

L(ω5
1 + iω5

2 , ω
3
1 − iω3

2) =
√

3µiu7,

L(ω5
1 + iω5

2 , ω
4
1 − iω4

2) =
√

3µiu8.

Given u6, u7, u8, we use the surjectivity of L(ω1
1 + iω1

2 ,−) and just like previously
done, we define ωk1 , ω

k
2 ∈ U , for k = 6, 7, 8 and determine

L(ω1
1 + iω1

2 , ω
k
1 − iωk2 ) =

√
3µiuk.

Next, we find L(ωk1 + iωk2 , ω
k
1 − iωk2 ) =

√
3µu1 for k = 6, 7, 8. Then, we compute

similarly as for L(ω2
1 + iω2

2 , ω
4
1 − iω4

2) in order to determine

(46) L(ω6
1 + iω6

2 , ω
2
1 − iω2

2) = −
√

3µiu5.

As for the vectors L(ω3
1 + iω3

2 , ω
6
1− iω6

2), L(ω4
1 + iω4

2 , ω
6
1− iω6

2) and L(ω2
1 + iω2

2 , ω
7
1−

iω7
2), by using property (24) and the determined vectors so far, we see they are in the

directions of u8, u7 and u8 respectively. We can easily determine their components
by following the same procedure as for L(ω3

1 + iω3
2 , ω

2
1 − iω2

2). Thus, we may write

L(ω3
1 + iω3

2 , ω
6
1 − iω6

2) = εu8,

L(ω4
1 + iω4

2 , ω
6
1 − iω6

2) = ε1u7,

L(ω2
1 + iω2

2 , ω
7
1 − iω7

2) = ε2u8,
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where ε, ε1, ε2 = ±
√

3µi. Further on, in order to determine L(ω3
1 + iω3

2 , ω
7
1 − iω7

2),
we first see by property (24) that it is orthogonal to {u1, u2, u3, u4, u7, u8}. Next,
as

(47) h(L(ω3
1 + iω3

2 , ω
7
1 − iω7

2), L(ω1
1 + iω1

2 , ω
6
1 − iω6

2))+

h(L(ω1
1 + iω1

2 , ω
7
1 − iω7

2), L(ω3
1 + iω3

2 , ω
6
1 − iω6

2)) = 0

and

(48) h(L(ω3
1 + iω3

2 , ω
7
1 − iω7

2), L(ω1
1 + iω1

2 , ω
5
1 − iω5

2))+

h(L(ω1
1 + iω1

2 , ω
7
1 − iω7

2), L(ω3
1 + iω3

2 , ω
5
1 − iω5

2)) = 0

we find

L(ω3
1 + iω3

2 , ω
7
1 − iω7

2) =
√

3µiu5.(49)

It is easy to see that L(ω4
1 + iω4

2 , ω
7
1 − iω7

2) is coliniar with u6. From (23) we obtain

(50) h(L(ω1
1 + iω1

2 , ω
6
1 − iω6

2), L(ω4
1 + iω4

2 , ω
7
1 − iω7

2))+

h(L(ω4
1 + iω4

2 , ω
6
1 − iω6

2), L(ω1
1 + iω1

2 , ω
7
1 − iω7

2)) = 0⇔

h(u6, L(ω4
1 + iω4

2 , ω
7
1 − iω7

2)) = ε1,

so that L(ω4
1 + iω4

2 , ω
7
1 − iω7

2) = −ε1u6.
Using similar methods we consecutively obtain that

L(ω2
1 + iω2

2 , ω
8
1 − iω8

2) = −
√

3ε2µiu7

L(ω3
1 + iω3

2 , ω
8
1 − iω8

2) = −
√

3εµiu7.

Note that by applying (??) on

h(L(ω3
1 + iω3

2 , ω
8
1 − iω8

2), L(ω2
1 + iω2

2 , ω
5
1 − iω5

2)),

we see that ε = −ε2. Using similar arguments, we proceed to find that

L(ω4
1 + iω4

2 , ω
8
1 − iω8

2) =
√

3ε1ε2µiu5

ε1 = ε2

L(ω5
1 + iω5

2 , ω
6
1 − iω6

2) = −
√

3µiu2

L(ω5
1 + iω5

2 , ω
7
1 − iω7

2) = −
√

3µiu3

L(ω5
1 + iω5

2 , ω
8
1 − iω8

2) = −
√

3µiu4

L(ω6
1 + iω6

2 , ω
7
1 − iω7

2) =
√

3µiε2u4,

L(ω6
1 + iω6

2 , ω
8
1 − iω8

2) = −
√

3ε2µiu3,

L(ω7
1 + iω7

2 , ω
8
1 − iω8

2) =
√

3µiε2u2.

Moreover it now immediately follows that ε2 = 1.
At last, we will study the solution given by the case when the metric on U has

signature 3. Start with u1 defined as in (40), choose u2 ⊥ u1 of length −1 and by

surjectivity of L(ω1
1 + iω1

2 ,−) find ω2
1 , ω

2
2 such that L(ω1

1 + iω1
2 , ω

2
1− iω2

2) =
√

3µiu2.

Similarly, choose u3 ⊥ u1, u2 of length −1 and find L(ω1
1 + iω1

2 , ω
3
1− iω3

2) =
√

3µiu3.
Then, by lemma (20) we can see that the vector L(ω2

1 + iω2
2 , ω

3
1− iω3

2) is imaginary,
therefore, it defines a unit vector u4, of length −1, such that L(ω2

1 +iω2
2 , ω

3
1−iω3

2) =√
3µiu4. Moreover, we find the unique vectors ω4

1 and ω4
2 such that L(ω1

1 +iω1
2 , ω

4
1−

iω4
2) =

√
3µiu4 and L(ω4

1 + iω4
2 , ω

4
1− iω4

2) =
√

3µu1. Further on, we see that L(ω2
1 +

iω2
2 , ω

4
1 − iω4

2) and L(ω3
1 + iω3

2 , ω
4
1 − iω4

2) are orthogonal to u1, u2, u4 and u1, u3, u4.
We compute by property (23) h(L(ω2

1 + iω2
2 , ω

4
1 − iω4

2), L(ω1
1 + iω1

2 , ω
3
1 − iω3

2)) and
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h(L(ω3
1 + iω3

2 , ω
4
1 − iω4

2), L(ω1
1 + iω1

2 , ω
2
1 − iω2

2)) and, as the metric on {u2, u3, u4}⊥
is positive definite, we find

L(ω2
1 + iω2

2 , ω
4
1 − iω4

2) = −
√

3µiu3 and L(ω3
1 + iω3

2 , ω
4
1 − iω4

2) =
√

3µiu2.

Next, we choose u5 ⊥ u1, u2, u3, u4 of length 1 and find ω5
1 , ω

5
2 such that L(ω1

1 +

iω1
2 , ω

5
1 − iω5

2) =
√

3µu5. Then, we notice by property (23) that L(ω2
1 + iω2

2 , ω
5
1 −

iω5
2), L(ω3

1 + iω3
2 , ω

5
1 − iω5

2) and L(ω4
1 + iω4

2 , ω
5
1 − iω5

2) are real vectors and satisfy
the orthogonality conditions which allow us to pick u6, u7, u8 of length 1, in their
directions respectively, and complete {u1, u2, u3, u4} to an orthonormal basis, that

is L(ω2
1 + iω2

2 , ω
5
1 − iω5

2) =
√

3µu6, L(ω3
1 + iω3

2 , ω
5
1 − iω5

2) =
√

3µu7 and L(ω4
1 +

iω4
2 , ω

5
1 − iω5

2) =
√

3µu8. Notice that, by lemmas (20) and property (40) we obtain

L(ω6
1 + iω6

2 , ω
6
1 − iω6

2) = −
√

3µu1, L(ω1
1 + iω1

2 , ω
6
1 − iω6

2) =
√

3µu6,

L(ω7
1 + iω7

2 , ω
7
1 − iω7

2) = −
√

3µu1, L(ω1
1 + iω1

2 , ω
7
1 − iω7

2) =
√

3µu7,

L(ω8
1 + iω8

2 , ω
8
1 − iω8

2) = −
√

3µu1, L(ω1
1 + iω1

2 , ω
8
1 − iω8

2) =
√

3µu8.

In the following, we determine L(ω2
1 + iω2

2 , ω
6
1 − iω6

2) = −
√

3µu5, as it is a real
vector of length 3µ2, orthogonal on u1, u2, u3, u4, u6, and given that its component
in the direction of u5 is −

√
3µ ( by property (23)). Furthermore, we find L(ω2

1 +

iω2
2 , ω

7
1 − iω7

2) = ε1

√
3µu8, as it is orthogonal to L(ω2

1 + iω2
2 , ω

k
1 − iωk2 ) and L(ω1

1 +
iω1

2 , ω
7
1 − iω7

2), for k = 2, . . . , 6 and ε1 = ±1. Similarly, we determine for εj = ±1,
j = 2, . . . , 8 the following vectors

L(ω2
1 + iω2

2 , ω
8
1 − iω8

2) = ε2

√
3µu7, L(ω5

1 + iω5
2 , ω

6
1 − iω6

2) = −i
√

3µu2

L(ω3
1 + iω3

2 , ω
6
1 − iω6

2) = ε3

√
3µu8, L(ω5

1 + iω5
2 , ω

7
1 − iω7

2) = −i
√

3µu3,

L(ω3
1 + iω3

2 , ω
7
1 − iω7

2) = −
√

3µu5, L(ω5
1 + iω5

2 , ω
8
1 − iω8

2) = ε8

√
3µu4,

L(ω3
1 + iω3

2 , ω
8
1 − iω8

2) = ε4

√
3µu6, L(ω6

1 + iω6
2 , ω

7
1 − iω7

2) = −ε5i
√

3µu4,

L(ω4
1 + iω4

2 , ω
6
1 − iω6

2) = ε5

√
3µu7, L(ω6

1 + iω6
2 , ω

8
1 − iω8

2) = −ε3i
√

3µu3,

L(ω4
1 + iω4

2 , ω
7
1 − iω7

2) = ε6

√
3µu6, L(ω7

1 + iω7
2 , ω

8
1 − iω8

2) = −ε1i
√

3µu2.

L(ω4
1 + iω4

2 , ω
8
1 − iω8

2) = ε7

√
3µu5,

Then, we can easily find the relations between the coefficients εj using property
(23): ε2 = −ε1, ε4 = −ε3, ε6 = −ε5 and ε7 = −1, ε8 = −i. Moreover, we can
find ε1 = −1, ε3 = 1 and ε5 = −1 by applying property (23) successively to
L(ω6

1 + iω6
2 , ω

7
1 − iω7

2) and L(ω2
1 + iω2

2 , ω
3
1 − iω3

2), L(ω2
1 + iω2

2 , ω
7
1 − iω7

2) and L(ω5
1 +

iω5
2 , ω

4
1 − iω4

2), and finally, to L(ω3
1 + iω3

2 , ω
8
1 − iω8

2) and L(ω2
1 + iω2

2 , ω
5
1 − iω5

2).

8.2. Two canonical examples.

When the indefinite signature on U is 7, we have the following example.
Let h3(O) denote the set of Hermitian matrices with entries in O, the space of
octonions endowed with the Jordan multiplication ◦:

h(O)3 = {N ∈M3(O)|N̄T = N},

X ◦ Y =
1

2
(XY + Y X).

By definition, we have that the determinant of N ∈ h3(O) is given by

detN =
1

3
Tr(N ◦N ◦N)− 1

2
Tr(N ◦N) +

1

6
(TrN)3.

Remark that a matrix N ∈ h3(O) is of the form N =

ξ1 x3 x̄2

x̄3 ξ2 x1

x2 x̄1 ξ3

 , where

ξi ∈ R, xi ∈ O. For more details for the space of octonions see [1]. Next, we define
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G = {N ∈ h(O)3|det(N) = 1}. We define an action of G on M1 = {N̄ANT |N ∈ G}
by

ρ : G×M1 −→M1

ρ(N)X = N̄XNT ,

where A =

1 0 0
0 −1 0
0 0 −1

 . By construction, this action is transitive and therefore

M1 is congruent with G/H, where H = {N ∈ G|AN̄ANT = I}. Note that ρ(N) can
be seen as a linear transformation acting on R27 and a straightforward computation
shows that ρ(N) ∈ SL(27,R). Therefore, M1 is an homogeneous affine hypersphere
in R27. It is now sufficient to work around a point. We introduce local coordinates
around a point p ∈M1 by taking y1, · · · , y26 such that ξ1 = 1,

ξ2 = y1, ξ3 = y2, x1 =

7∑
i=0

y3+iei, x2 =

7∑
i=0

y11+iei, x3 =

7∑
i=0

y19+iei,

for {e0, · · · , e7} a basis of O. Therefore, the parametrization for our hypersurface
is given by {

F : R26 → R27

p 7−→ g(p)−
1
3 (1, p),

where p = (y1, · · · , y26) and g(p) := detN. By using the multiplication table for
octonions, we can determine g(p) and then, straightforward computations around

the point N =

1 0 0
0 −1 0
0 0 −1

 allow us to find that the isotropy condition holds

for λ = 1
2 . Thus, the signature of the metric on M is 16.

When the indefinite signature on U is 3, we have the following example.
Consider the set of Hermitian matrices with entries in the split-octonions space en-
dowed with the Jordan multiplication ◦, as previously defined. For {1, i, j, k, li, lj, lk}
an orthogonal basis of the split-octonion space, the length of a vector x = x0 +
x1i+ x2j + x3k + x4l + x5li+ x6lj + x7lk is given by

h(x, x) = x̄x = (x2
0 + x2

1 + x2
2 + x2

3)− (x2
4 + x2

5 + x2
6 + x2

7).

We define the manifold in a similar way as in the previous example and, by similar
arguments, we get that M is an isotropic affine hypersphere of dimension 26 for
which the signature of the metric is 12.
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