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Radiative Heating of a Glass Plate: the
semi-discrete problem (second revision)

Luc Paquet �

November 1, 2017

Absract. In a preceding paper (MSIA, 2012), we have studied the radiative
heating of a glass plate. We have proved existence and uniqueness of the solu-
tion. Here, we want to study the semi-discrete problem and to prove a priori
error estimates. Previously, in that purpose, we have to study the regularity
of the solution to the exact problem and of its time derivative. A very impor-
tant property, Proposition 13, is remarked concerning our elliptic projection, the
milestone in deriving the a priori error estimates. A numerical test coroborating
our theoretical a priori bounds is given.
AMS Subject Classi�cation. 35K20,35K55,45K05,65M22,65M60,65M15.

Keywords. Planck function, radiative heat �ux in a glass plate, nonlinear
heat-conduction equation, regularity of the exact solution and of its time deriv-
ative, semi-discrete problem, elliptic projection, a priori error estimates.

1 Statement of the problem and summary of our
results

The setting is the same as in our previous paper [11], but the problem we
study here is the related semi-discrete problem, our purpose being to prove
some a priori error estimate on the semi-discrete solution. Let us remind only
the equations of the exact problem to which we have been led in [11] and some
results that we will need in the proof of the a priori error estimates. We consider
an in�nite plane horizontal glass plate of thickness l, laid down on its lower face
xg = 0, on a black sheet-metal maintained at absolute ambient temperature
T = Ta. The x-axis is directed upward orthogonally to the glass plate so that the
upper (resp. lower) face of the glass-plate has x = l (resp. x = 0) for equation.
An in�nite plane horizontal black sheet metal S, at absolute temperature u(t) at
time t, placed above the glass plate, emits thermal radiation in every direction,
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whose spectral radiative intensity [18], [17], [10], [13] at wavelength � in the
(dry) air gap between S and the glass plate is given by the famous Planck
function:

B(T; �) =
2C1

�5(e
C2
�T � 1)

with T = u(t); (1)

where C1 = hc20 = 0:595531 10
�16W.m2/sr and C2 = hc0

kB
= 1:438786 10�2 m.�K

([5], p.98) (in [11], the temperature of the source of thermal radiation S at time
t was denoted TS(t), but here we prefer to denote it u(t) like in [12]). After
refraction at the interface fx = lg between air and glass, some part of the ra-
diative energy emitted by the black source S, will be absorbed i.e. converted
into heat in the glass producing in such a way an increase of the temperature
T (x; t) in the glass plate. Assuming the dependent quantities, independent of
the cartesian coordinates y and z, and denoting by tf the �nal time of the heat-
ing process, based on physical considerations, we have shown in [11], that the
radiative heating of the glass plate, can be modelized by the following nonlinear
initial boundary value problem in the unknown (absolute) temperature distrib-
ution in the glass plate T (x; t) along the thickness of the glass plate 0 � x � l
for time 0 � t � tf :8>>>>>><>>>>>>:

cpmg
@T
@t (x; t) = kh

@2T
@x2 (x; t) +  (T (x; t)) + hT;u(x; t);

0 < x < l; 0 < t < tf ;
�kh @T@x (l; t) = hc(T (l; t)� Ta) + (�(T (l; t))��(u(t)));

0 < t < tf ; (B.C. at x = l),
T (0; t) = Ta; 0 < t < tf ; (B.C. at x = 0),
T (x; 0) = T0(x); 8x 2 [0; l]; (I.C. at t = 0),

(2)

where cp, mg, kh are assumed to be positive constants named respectively heat
capacity, mass density and thermal conductivity of the glass [18], [17]. The
quantities appearing in the right-hand side of the above nonlinear parabolic
integro-di¤erential equation and in the boundary condition (B.C.) at x = l, are
de�ned by the following functions:

 (T ) := �
k=MX
k=1

4��kB
k
g (T ); hT;u(x; t) :=

k=MX
k=1

2��kh
k
T;u(x; t)

and �(T ) := �

+1Z
�0

��B(T; �)d�;

(3)

where (the meaning of M and Bkg (T ) are explained below):

hkT;u(x; t) :=

lZ
0

Gk(x; x
0) Bkg (T (x

0; t)) dx0 +Bkg (Ta) E2(�kx)

+Bkg (Ta) �2(�k(2l � x)) +Bkg (u(t))[E2(�k(l � x))� �2(�k(l � x))]

+�k

lZ
0

�1(�k(2l � x� x
0
))Bkg (T (x

0; t)) dx0:

(4)

2



Let us explain the meaning of these di¤erent quantities. In (4), 8 (x; x0) 2

[0; l]2: Gk(x; x0) := �kE1(�k jx� x0j), �1(y) :=
1Z
0

e�
y
� �g(�)

d�
� , and �2(y) :=

1Z
0

e�
y
� �g(�)d�, 8y > 0. �g(�) (0 � � � 1) denotes the re�ectivity coe¢ cient

given by Fresnel�s relation ([10], formula (2.96) p. 47). E1(�) and E2(�) denote
the exponential integral functions of order 1 and 2 respectively. In the de�nition
of �(T ) in (3), �� is a positive constant called the spectral hemispherical emit-
tance ([10], pp.62-63); like in ([16], p. 70), we have supposed that the spectral
hemispherical emittance is equal to the spectral hemispherical absorptance and
is independent of the temperature, for wavelength � of the electromagnetic wave
spectrum belonging to [�0;+1[ (�0 � 5�m for glass, [16], p.70), wavelengths
for which glass is opaque. On the other hand, the region of wavelengths in the
electromagnetic spectrum where glass is semi-tranparent has been decomposed
into M disjoint bands [�k; �k+1[ (k = 1; : : : ;M) [15],[3],[8] and the constants �k
appearing in the above formulas are the linear spectral absorption coe¢ cients

[18], [17], [7], [10], [13] in their respective band. Bk(T ) :=

�k+1Z
�k

B(T; �) d� and

Bkg (T ) := n2gB
k(T ) [11], [15], where ng denotes the refractory index of the glass

(ng � 1:46). Let us also mention that  (T (x; t)) + hT;u(x; t) = � @q
@x (x; t) where

q(x; t) denotes the total radiative heat �ux at time t through the horizontal
plane at level 0 < x < l ([10], p. 276) in the positive x-direction. In the bound-
ary condition at x = l (see (2)), hc > 0 denotes the convective heat transfer
coe¢ cient, the term hc(T (l; t) � Ta) representing the conducto-convective �ux
density at the in�nite surface fx = lg of the glass plate according to Newton�s
law ([18], p.16), ([17], p.13-16). We assume that the initial condition T0(�) (see
(2)) is a continuous positive function on the closed interval [0; l], as an absolute
temperature is always positive in classical physics and T0(�) is a datum. In order
to obtain regularity on the solution T (:; :) of the nonlinear initial boundary value
problem (2), we will suppose moreover in the present paper, at least that the ini-
tial condition T0(�) 2 H1(]0; l[) and that the compatibility condition T0(0) = Ta
between the initial condition T0 and the inhomogeneous Dirichlet boundary
condition T (0; :) = Ta (see (2)) on the lower face fx = 0g of the glass plate, is
veri�ed. We suppose given two di¤erent positive constants Tlow and Tup such
that 0 < Tlow 6 T0(x) 6 Tup, 8x 2 [0; l] (this implies that 0 < Tlow 6 Ta 6 Tup
due to T0(0) = Ta) and that Tlow 6 u(t) 6 Tup, 8t 2 [0; tf ].
We have proved in [11] that for

u 2 Uad = fv 2 H1(]0; tf [);Tlow � v(t) � Tup; 8t 2]0; tf [g; (5)
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that the initial boundary value problem (2) possesses a unique bounded weak
solution

Tu 2 fT 2 L2(0; tf ;H1(]0; l[)); _T 2 L2(0; tf ;
�
H1
L(]0; l[)

��
)g (6)

which is also continuous on Q := [0; l] � [0; tf ], Q denoting the �cylinder�
]0; l[�]0; tf [. In (6), H1

L(]0; l[) denotes the closed subspace of H
1(]0; l[) formed

by those functions of H1(]0; l[) which vanish at the left extremity x = 0 of the
interval ]0; l[. By a weak solution Tu of the initial boundary value problem (2),
we mean that Tu belongs to

fT 2 L2(0; tf ;H1(]0; l[)); _T 2 L2(0; tf ;
�
H1
L(]0; l[)

��
)g

and satis�es 80t 2]0; tf [:8>>>>>>>>>>>><>>>>>>>>>>>>:

cpmg



dTu
dt (�; t); '

�
H1
L(]0;l[)

�;H1
L(]0;l[)

+ kh

lZ
0

@Tu
@x (x; t)'

0(x)dx

�
lZ
0

 (Tu(x; t))'(x)dx�
lZ
0

hTu;u(x; t)'(x)dx

� [�(u(t))��(Tu(l; t))] � '(l)� [hc (Ta � Tu(l; t))]'(l) = 0; 8' 2 H1
L(]0; l[);

Tu(0; t) = Ta; 80t 2]0; tf [;
Tu(x; 0) = T0(x); 80x 2]0; l[:

(7)
We have written Tu to underline the dependence of the weak solution of (2)
with respect to u. Using Stampacchia�s truncation method [1], we have also
proved in [11], that the weak solution of the initial boundary value problem (2)
Tu � T (u) satis�es:

Tlow 6 Tu(x; t) 6 Tup; 8(x; t) 2 Q: (8)

Let us mention, that though an absolute temperature is always positive in classi-
cal physics, that for mathematical purposes only, we have extended the de�nition
of the Planck�s function (1) to negative real numbers T by setting B(T; �) = 0,
if T � 0; in that way for �xed � > 0, the function T 7! B(T; �) is de�ned on
the whole real line and is lipschitzian of Lipschitz constant 2C1

C2�4
(cf. Lemma

3.6 of [11]).
Now these things having been recalled, let us explain what are the results in the
present paper. Firstly, we study the regularity of the exact solution Tu i.e. of the
weak solution of our nonlinear initial boundary value problem (2). Under certain
regularity hypotheses on the initial condition T0 and compatibility conditions,
we prove that Tu 2 H2;1(Q) (see Proposition 3), and that dTu

dt 2 H2;1(Q) (see
Corollary 8), regularity properties that we will need for our a priori error esti-
mates (68), (72) and (77) to be valid. We introduce the semi-discrete problem
(47), its matrix di¤erential form being given by (44) from which the existence
and unicity of its solution Tu;h is nearly immediate (see Proposition 10). We
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introduce the elliptic projection ~Tu;h(:; t) of Tu(:; t) by formula (49). If we would
have a Dirichlet boundary condition at the point x = l, then the technique is
well known ([19], p.7). But in our case, we have the nonlinear Robin boundary
condition (2)(ii) at the point x = l. The key property (see Proposition 13) of
our elliptic projection ~Tu;h(:; t) of Tu(:; t) (49) relative to our setting (2), which
allows us to derive our a priori error estimates, is that ~Tu;h(l; t) = Tu(l; t). Af-
ter having written the error equation (48) and splitted the error e := Tu;h � Tu
on Tu;h in e = � + � where � = Tu;h � ~Tu;h and � = ~Tu;h � Tu, we are on
the road which will lead us to the proofs of our a priori error estimates in h2

for kTu;h(l; :)� Tu(l; :)kL2(]0;tf [) (Corollary 24), for kTu;h � TukC([0;tf ];L2(]0;l[))
(Theorem 25) and in h for krx(Tu;h � Tu)kL2(0;tf ;L2(]0;l[)2) (Proposition 27). A
numerical test is given coroborating our theoretical bounds and we take also this
opportunity to show the in�uence on the solution of our problem of the sum of
terms  (T (x; t)) + hT;u(x; t), modelizing the participating medium character of
the glass into the integro-di¤erential equation (2)(i).

2 Regularity results

At the present time, we know only that Tu 2 fT 2 L2(0; tf ;H
1(]0; l[)); _T 2

L2(0; tf ;
�
H1
L(]0; l[)

��
)g. But we need more on the exact solution Tu.

Proposition 1 The right hand-side (x; t) 7!  (Tu(x; t)) + hTu;u(x; t) of equa-
tion (2)(i) belongs to L2(Q).

Proof. As Tu 2 L2(Q),  � Tu 2 L2(Q) by Corollary 3.3 p.10 of [11]. By the
same result hTu;u belongs also to L

2(Q).

Proposition 2 The right-hand side t 7�! hc(Tu(l; t) � Ta) + (�(Tu(l; t)) �
�(u(t))) in the boundary condition at x = l of equation (2)(ii) belongs to
L2(]0; tf [).

Proof. As Tu 2 L2(0; tf ;H
1(]0; l[)) and H1(]0; l[)) ,! C([0; l]), the mapping

t 7�! Tu(l; t) belongs to L2(0; tf ). Using Corollary 3.4 p.12 of [11], it follows
that the function t 7�! �(Tu(l; t)) belongs also to L2(0; tf ). By the same result
� � u 2 L2(0; tf ). This proves the result.

Proposition 3 Tu 2 H2;1(Q) := L2(]0; tf [;H
2(]0; l[)) \ H1(]0; tf [;L

2(]0; l[)).
([9], p.6)

Proof. From the two previous propositions, it follows that Tu may be seen as
the solution of:8>>>><>>>>:

@T
@t (x; t) = a@

2T
@x2 (x; t) + f(x; t);

0 < x < l; 0 < t < tf ;
@T
@x (l; t) = g(t); 0 < t < tf ; (B.C. at x = l),
T (0; t) = Ta; 0 < t < tf ; (B.C. at x = 0),
T (x; 0) = T0(x); 8x 2 [0; l]; (I.C. at t = 0).

(9)
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where a 2 R�+, f 2 L2(Q), g 2 L2(]0; tf [) and T0 2 H1(]0; l[) (see the Introduc-
tion). A fortiori f 2 [H1=2+2";1=4+"(Q)]0 and g 2 H�"(]0; tf [), for " 2]0; 1=4[.
Using the result at the bottom of page 78 of [9] with s = �1=4 � ", we obtain
that Tu 2 H3=2�2";3=4�"(Q) (multyplying Tu by a cuto¤ function depending
only on the variable x, we reduce us respectively to the case of the Neumann
boundary condition on the whole boundary f0; lg or respectively to the case of
the Dirichlet boundary conditions on the whole boundary f0; lg and apply the
cited result of [9] in these two cases). Using the �First Trace Theorem�p.9 of
[9], we deduce that Tu(l; :) 2 H1=2�"(]0; tf [) and thus a fortiori to H1=4(]0; tf [).
�(:) being a Lipschitz continuous function ([11], (3.13) p.17), it follows that

tfZ
0

tfZ
0

j�(Tu(l; t))��(Tu(l; s))j2

jt� sj3=2
ds
dt .

tfZ
0

tfZ
0

jTu(l; t)� Tu(l; s)j2

jt� sj3=2
ds
dt < +1;

which implies that �(Tu(l; :)) 2 H1=4(]0; tf [). We have already seen in the
proof of the previous proposition that � � u 2 L2(0; tf ). On the other hand

u 2 H1(]0; tf [), so that
d(��u)
dt (t) = �0(u(t))u0(t). �0(T ) = �

+1Z
�0

"�
@B
@T (T; �)d�

and
��@B
@T (T; �)

�� . 1
�4 ([11], p.14) imply that �

0(�) is a bounded function. Thus
� � u 2 H1(0; tf ) and a fortiori in H1=4(]0; tf [). In conclusion, we know now in
(9) that f 2 L2(Q) and that g 2 H1=4(]0; tf [). Applying now Theorem 6.2 p.37
of [9] with r = 0, we obtain that Tu 2 H2;1(Q). What was to be proved.

Lemma 4 Let us consider the mapping

f : Q! R : (x; t) 7!  (Tu(x; t)) + hTu;u(x; t): (10)

Then @f
@t 2 L

2(Q).

Proof. Firstly  (Tu(x; t)) = �
k=MX
k=1

4��kB
k
g (Tu(x; t)). Thus

@( �Tu)
@t (x; t) =

�
k=MX
k=1

4��k
dBk

g

dT (Tu(x; t))
@Tu
@t (x; t). But, as we have proved in [11] page 14,

dBk
g

dT (�) is bounded. By the previous proposition, we know that @Tu
@t 2 L2(Q).

Thus @( �Tu)@t 2 L2(Q). Secondly, what can we say about @hTu;u@t . In view of for-

mula hTu;u(x; t) :=
k=MX
k=1

2��kh
k
Tu;u

(x; t) (see (3)), it su¢ ces to prove that
@hkTu;u
@t

6



2 L2(Q). But

@hkTu;u
@t (x; t) :=

lZ
0

Gk(x; x
0)

dBk
g

dT (Tu(x
0; t))@Tu@t (x

0; t) dx0

+
dBk

g

dT (u(t))u
0(t)[E2(�k(l � x))� �2(�k(l � x))]

+�k

lZ
0

�1(�k(2l � x� x
0
))
dBk

g

dT (Tu(x
0; t))@Tu@t (x

0; t) dx0:

(11)

From that formula,
dBk

g

dT (�) bounded, @Tu@t 2 L2(Q), Corollary 3.19, Corollary

3.20 of [11] page 23 and u0 2 L2(]0; tf [), follows that
@hkTu;u
@t 2 L2(Q); 8k =

1; : : : ;M . Thus also @hTu;u
@t 2 L2(Q). The proof is complete.

Lemma 5 Let us suppose that T0 2 H2(]0; l[). Then, the following initial
boundary value problem8>>>>>>>>>><>>>>>>>>>>:

cpmg
@v
@t (x; t) = kh

@2v
@x2 (x; t) +

@f
@t (x; t);
0 < x < l; 0 < t < tf ;

�kh @v@x (l; t) = hcv(l; t) + �
0(

tZ
0

v(l; s)ds+ T0(l))v(l; t)��0(u(t))u0(t);

0 < t < tf ; (B.C. at x = l),
v(0; t) = 0; 0 < t < tf ; (B.C. at x = 0),

v(x; 0) = 1
cpmg

(f(x; 0) + khT
00
0 (x)); 80x 2]0; l[; (I.C. at t = 0),

(12)
possesses at least one weak solution. In (12), f denotes the function de�ned by
formula (10).

Proof. Let us �rstly precise what we mean by a weak solution of the initial
boundary value problem (12). By a weak solution, we mean an element v 2
fv 2 L2(0; tf ;H1

L(]0; l[)); _v 2 L2(0; tf ;
�
H1
L(]0; l[)

��
)g such that 80t 2]0; tf [, 8' 2

H1
L(]0; l[) :8>>>>>>>>>><>>>>>>>>>>:

cpmg
d
dt hv(�; t); 'iH1

L(]0;l[)
�;H1

L(]0;l[)
= �kh

lZ
0

@v
@x (x; t)'

0(x)dx

+

lZ
0

@f
@t (x; t)'(x)dx� hcv(l; t)'(l)��

0(

tZ
0

v(l; s)ds+ T0(l))v(l; t)'(l)

+�0(u(t)) _u(t)'(l);
v(x; 0) = 1

cpmg
(f(x; 0) + khT

00
0 (x)); 80x 2]0; l[:

(13)

The homogeneous Dirichlet boundary condition at x = 0, is expressed by the
fact that v 2 L2(0; tf ;H

1
L(]0; l[)) and the initial condition at time t = 0 has

7



sense due to the fact that

fv 2 L2(0; tf ;H1
L(]0; l[)); _v 2 L2(0; tf ;

�
H1
L(]0; l[)

��
)g ,! C([0; tf ];L

2(]0; l[)):

We know also by the previous lemma that @f@t 2 L
2(Q) so that

lZ
0

@f
@t (x; t)'(x)dx

exists for 80t 2]0; tf [. Also by Proposition 1 and Lemma 4, f and df
dt belong

to the space L2(0; tf ;L2(]0; l[)) which implies that f(�; 0) 2 L2(]0; l[). Thus the
right-hand side in the initial condition of problem (13) belongs to L2(]0; l[). Let
us apply Faedo-Galerkin�s method. Let us consider (wj)j�1 an orthonormal
basis in L2(]0; l[) also orthogonal basis in H1

L(]0; l[). In particular, these basis
functions are continuous functions on the closed interval [0; l] and thus bounded.
Let us consider the vectorial subspace generated by w1; : : : ; wm. Let us try to

�nd vm(t) =
mX
j=1

(vm(t)j wj)L2(]0;l[)wj solution of the following Cauchy problem

for the nonlinear system of (integro-) di¤erential equations 8j = 1; : : : ;m:8>>>><>>>>:
cpmg( _vm(t)jwj)L2(]0;l[) + kh(vm(t)jwj)H1

L(]0;l[)
= (@f@t (�; t)jwj)L2(]0;l[) � hc

vm(t)(l)wj(l)��0(
tZ
0

vm(s)(l)ds+ T0(l))vm(t)(l)wj(l) + �
0(u(t)) _u(t)wj(l);

(vm(�; 0)jwj)L2(]0;l[) = 1
cpmg

(f(�; 0) + khT 000 (�)jwj)L2(]0;l[):
(14)

As is usual, to prove existence and uniqueness of a solution to a system of
di¤erential equations, we tranform this system of di¤erential equations in a
system of nonlinear integral equations:8>>>>>>>>>><>>>>>>>>>>:

cpmg(vm(t)jwj)L2(]0;l[) + kh
tZ
0

(vm(s)jwj)H1
L(]0;l[)

ds = (f(�; t)jwj)L2(]0;l[)

�(f(�; 0)jwj)L2(]0;l[) � hc

0@ tZ
0

vm(s)(l)ds

1Awj(l)��(
tZ
0

vm(s)(l)ds

+T0(l))wj(l) + �(T0(l))wj(l) + �(u(t))wj(l)��(u(0))wj(l)
+cpmg(vm(0)jwj)L2(]0;l[); 8j = 1; : : : ;m:

(15)
Let us note that

cpmg(vm(0)jwj)L2(]0;l[) = (f(�; 0) + khT 000 (�)jwj)L2(]0;l[); 8j = 1; : : : ;m: (16)

As vm(s) =
mX
k=1

(vm(s)j wk)L2(]0;l[)wk,

kh(vm(s)jwj)H1
L(]0;l[)

= kh

mX
k=1

(vm(s)jwk)L2(]0;l[)(wkjwj)H1
L(]0;l[)

= kh(vm(s)jwj)L2(]0;l[) kwjk2H1
L(]0;l[)

:

8



In particular kh

tZ
0

(vm(s)jwj)H1
L(]0;l[)

ds = kh kwjk2H1
L(]0;l[)

tZ
0

(vm(s)jwj)L2(]0;l[)ds.

Let us set v(j)m (t) := (vm(t)jwj)L2(]0;l[), 8j = 1; : : : ;m. The above nonlinear in-
tegral equation may be rewritten:

cpmg

0BB@
v
(1)
m (t)
...

v
(m)
m (t)

1CCA = �kh

0BBBBBBBBB@

kw1k2H1
L(]0;l[)

tZ
0

v
(1)
m (s)ds

...

kwmk2H1
L(]0;l[)

tZ
0

v
(m)
m (s)ds

1CCCCCCCCCA
+

0B@ (f(t)jw1)L2(]0;l[)
...

(f(t)jwm)L2(]0;l[)

1CA�
0B@ (f(0)jw1)L2(]0;l[)

...
(f(0)jwm)L2(]0;l[)

1CA
�hc

0@ mX
k=1

tZ
0

v
(k)
m (s)ds � wk(l)

1A
0B@ w1(l)

...
wm(l)

1CA
��

0@ mX
k=1

tZ
0

v
(k)
m (s)ds � wk(l) + T0(l)

1A
0B@ w1(l)

...
wm(l)

1CA+ (� (T0(l))+
� (u(t))��(u(0)))

0B@ w1(l)
...

wm(l)

1CA+
0B@ (f(�; 0) + khT 000 (�)jw1)L2(]0;l[)

...
(f(�; 0) + khT 000 (�)jwm)L2(]0;l[)

1CA :

(17)
Now, to prove that this system of m nonlinear scalar integral equations in the m
unknowns v(j)m (�), j = 1; : : : ;m possesses one and only one solution, we proceed
as in the proof of Cauchy�s theorem. Firstly, let us introduce the Banach space
E = C([0; tf ];Rm) endowed with the sup norm. Let us de�ne the mapping T :
E ! E : (v

(1)
m ; : : : ; v

(m)
m ) 7! T (v

(1)
m ; : : : ; v

(m)
m ), where T (v(1)m ; : : : ; v

(m)
m ) denotes

the tranposed of the right-hand side of equation (17). Now, we are going to prove
that some power of the mapping T for the composition law is a contraction.
Inequality (3.6) page 13 of [11] about Planck function, implies that � : R! R
is a Lipschitz function. Thus there exists a positive constant C such that:

���T (v(1)m ; : : : ; v(m)m ) (t)� T (~v(1)m ; : : : ; ~v(m)m ) (t)
���
Rm
� C

mX
j=1

tZ
0

���v(j)m (s)� ~v(j)m (s)
��� ds:
(18)

9



Applying Cauchy-Schwarz inequality in Rm, we obtain:���T (v(1)m ; : : : ; v
(m)
m ) (t)� T (~v(1)m ; : : : ; ~v

(m)
m ) (t)

���
Rm
�

C
p
m

tZ
0

jvm(s)� ~vm(s)jRm ds � C
p
m t kvm � ~vmkE :

(19)
This inequality implies that:


T (v(1)m ; : : : ; v(m)m )� T (~v(1)m ; : : : ; ~v(m)m )





E
� C

p
m tf kvm � ~vmkE : (20)

Iterating, we obtain 8l 2 N� that


T �l(v(1)m ; : : : ; v(m)m )� T �l(~v(1)m ; : : : ; ~v(m)m )




E
� (C

p
mtf )

l

l!
kvm � ~vmkE :

Now eC
p
mtf =

+1X
l=1

(C
p
mtf)

l

l! and as the general term of a convergent series

tends to zero, (
C
p
mtf)

l

l! tends to zero as l ! +1. Thus for l su¢ ciently large
T �l : E ! E is a contraction and possesses thus one and only one �xed point
(v
(1)
m ; : : : ; v

(m)
m ) 2 E = C([0; tf ];Rm) which is also the unique �xed point of

T : E ! E. Thus, we know now that the Cauchy problem for the system of m
nonlinear di¤erential equations (14) possesses one and only one solution in the
time interval [0; tf ]. Now, we have to pass to the limit as m ! +1. In that
purpose, we are going to prove some energy estimate. As vm(t) is for a �xed t a
linear combination of the functions wj , j = 1; : : : ;m, it follows from (14) that:

cpmg( _vm(t)jvm(t))L2(]0;l[) + kh kvm(t)k2H1
L(]0;l[)

= (@f@t (�; t)jvm(t))L2(]0;l[)

�hcvm(t)(l)2 ��0(
tZ
0

vm(s)(l)ds+ T0(l))vm(t)(l)
2 +�0(u(t)) _u(t)vm(t)(l):

As �0(�) � 0, it follows from the previous equality, the inequality: 8" > 0 :

cpmg

2
d
dt kvm(t)k

2
L2(]0;l[) +

�
kh � l(1 + l

2 )"
2
�
kvm(t)k2H1

L(]0;l[)

� 1
"2




@f@t (�; t)


2
L2(]0;l[)

+ 1
"2

��(� � u)0 (t)��2 : (21)

Choosing in the previous inequality " > 0 su¢ ciently small for l(1 + l
2 )"

2 to be
smaller than kh

2 , we have in particular

cpmg

2

d

dt
kvm(t)k2L2(]0;l[) �

1

"2





@f@t (�; t)




2
L2(]0;l[)

+
1

"2
��(� � u)0 (t)��2 :

10



Integrating both sides from 0 to t, we obtain: 8t 2]0; tf [:

cpmg

2 kvm(t)k2L2(]0;l[) � 1
"2

tfZ
0




@f@t (�; t)


2
L2(]0;l[)

dt+ 1
"2

tfZ
0

��(� � u)0 (t)��2 dt
+ 1
2cpmg

kf(�; 0) + khT 000 (�)k
2
L2(]0;l[)

� 1
"2




@f@t 


2
L2(Q)

+ 1
"2 k�

0k21 kuk
2
H1(]0;tf [)

+ 1
2cpmg

kf(�; 0) + khT 000 (�)k
2
L2(]0;l[) :

This inequality shows that kvmkC([0;tf ];L2(]0;l[)) is bounded. Going back to the
inequality (21) and integrating both sides from 0 to tf , we obtain:

(kh � l(1 + l
2 )"

2)

tfZ
0

kvm(t)k2H1
L(]0;l[)

dt+
cpmg

2 kvm(tf )k2L2(]0;l[)

� 1
"2




@f@t 


2
L2(Q)

+ 1
"2

tfZ
0

��(� � u)0 (t)��2 dt+ cpmg

2 kvm(0)k2L2(]0;l[) :

As
kvm(0)kL2(]0;l[) �

1

cpmg
kf(�; 0) + khT 000 kL2(]0;l[)

and thus bounded independently of m, it follows from the previous inequality
that kvmkL2(0;tf ;H1

L(]0;l[))
is also bounded independently of m. Now, we want

to show that ( _vm)m�1 is bounded in L
2(0; tf ;H

1
L(]0; l[)

�). Let w 2 H1
L(]0; l[)

such that kwkH1
L(]0;l[)

� 1. Let us decompose w orthogonally into a part ~w1 2
span(w1; : : : ; wm) and another part ~w2 belonging to the orthogonal of the �nite
dimensional vector subspace span(w1; : : : ; wm) in H1

L(]0; l[). This implies that
k ~w1kH1

L(]0;l[)
� 1. Now:

h _vm(t); wiH1
L(]0;l[)

�;H1
L(]0;l[)

= ( _vm(t)jw)L2(]0;l[)
= ( _vm(t)j ~w1)L2(]0;l[) + ( _vm(t)j ~w2)L2(]0;l[):

But ~w2 =
+1X

k=m+1

(wj wk
kwkkH1

L
(]0;l[)

)H1
L(]0;l[)

wk
kwkkH1

L
(]0;l[)

, this series being convergent

in H1
L(]0; l[) and thus a fortiori in L2(]0; l[) as H1

L(]0; l[) ,! L2(]0; l[). This
implies that for j 2 f1; : : : ;mg:

(wj j ~w2)L2(]0;l[) =
+1X

k=m+1

(wj wk
kwkkH1

L(]0;l[)

)H1
L(]0;l[)

(wj jwk)L2(]0;l[)
kwkkH1

L(]0;l[)

= 0:

As _vm(t) is a linear combination of w1; : : : ; wm, it follows that ( _vm(t)j ~w2)L2(]0;l[) =
0. Thus h _vm(t); wiH1

L(]0;l[)
�;H1

L(]0;l[)
= ( _vm(t)j ~w1)L2(]0;l[). By the �rst equation

11



of (14),

cpmg h _vm(t); wiH1
L(]0;l[)

�;H1
L(]0;l[)

= cpmg( _vm(t)j ~w1)L2(]0;l[)
= �kh(vm(t)j ~w1)H1

L(]0;l[)
+ (@f@t (�; t)j ~w1)L2(]0;l[) � hcvm(t)(l) ~w1(l)

��0(
tZ
0

vm(s)(l)ds+ T0(l))vm(t)(l) ~w1(l) + �
0(u(t)) _u(t) ~w1(l)

� C(



@f@t (�; t)




L2(]0;l[)
+ kvm(t)kH1

L(]0;l[)
+ j _u(t)j);

for some constant C independent of m. Replacing w by �w, we obtain:

cpmg

���h _vm(t); wiH1
L(]0;l[)

�;H1
L(]0;l[)

��� � C(





@f@t (�; t)





L2(]0;l[)

+kvm(t)kH1
L(]0;l[)

+j _u(t)j);

for every w 2 H1
L(]0; l[) such that kwkH1

L(]0;l[)
� 1. Thus

cpmg k _vm(t)kH1
L(]0;l[)

� � C(





@f@t (�; t)





L2(]0;l[)

+ kvm(t)kH1
L(]0;l[)

+ j _u(t)j):

Integrating both sides from 0 to tf , we obtain:

tfZ
0

k _vm(t)k2H1
L(]0;l[)

� dt � C(





@f@t




2
L2(Q)

+

tfZ
0

kvm(t)k2H1
L(]0;l[)

dt+

tfZ
0

j _u(t)j2 dt):

Thus ( _vm)m�1 is bounded in L
2(0; tf ;H

1
L(]0; l[)

�) independently of m as
kvmkL2(0;tf ;H1

L(]0;l[))
is bounded independently of m. Thus, there exists a sub-

sequence
�
vm~l

�
~l�1 of the sequence (vm)m�1 which converges weakly to some

element v in L2(0; tf ;H1
L(]0; l[)), weakly star in L

1(0; tf ;L
2(]0; l[)) and such

that their derivatives
�
_vm~l

�
~l�1 converge weakly to _v in L2(0; tf ;H

1
L(]0; l[)

�).

Let � be an arbitrary function belonging to the space L2(]0; tf [). 8j 2 N� :
tfZ
0

cpmg( _vm~l
(t)jwj)L2(]0;l[)�(t)dt!

tfZ
0

cpmg h _v(t); wjiH1
L(]0;l[)

�;H1
L(]0;l[)

�(t)dt

as ~l! +1 as the mapping

L2(0; tf ;H
1
L(]0; l[)

�)! R : � 7!
tfZ
0

cpmg h�(t); wjiH1
L(]0;l[)

�;H1
L(]0;l[)

�(t)dt

is a continuous linear form on L2(0; tf ;H1
L(]0; l[)

�).

tfZ
0

kh(vm~l
(t)jwj)H1

L(]0;l[)
�(t)dt!

tfZ
0

kh(v(t)jwj)H1
L(]0;l[)

�(t)dt

12



as the sequence
�
vm~l

�
~l�1 converges weakly to v in L2(0; tf ;H1

L(]0; l[)) and the
mapping

L2(0; tf ;H
1
L(]0; l[))! R : � 7!

tfZ
0

kh(�(t)jwj)H1
L(]0;l[)

�(t)dt

is a continuous linear form on L2(0; tf ;H1
L(]0; l[)). As the sequence

�
vm~l

�
~l�1

converges weakly to v in L2(0; tf ;H1
L(]0; l[)), and the mapping

L2(0; tf ;H
1
L(]0; l[))! L2(]0; tf [) : w 7! w(:; l)

is linear and continuous, it follows that the sequence of functions vm~l
(�)(l) con-

verge weakly to v(�)(l) in L2(]0; tf [) as ~l ! +1. This implies that

�
tfZ
0

hcvm~l
(t)(l)wj(l)�(t)dt! �

tfZ
0

hcv(t)(l)wj(l)�(t)dt

as ~l ! +1. Let us show that:

�
tfZ
0

�0(

tZ
0

vm~l
(s)(l)ds+ T0(l))vm~l

(t)(l)wj(l)�(t)dt!

�
tfZ
0

�0(

tZ
0

v(s)(l)ds+ T0(l))v(t)(l)wj(l)�(t)dt

as ~l ! +1. As for every t 2]0; tf [:

�l 
 �]0;t[ 2 H1
L(]0; l[)

� 
 L2(]0; tf [)� ' L2(0; tf ;H
1
L(]0; l[))

�

and as the sequence
�
vm~l

�
~l�1 converges weakly to v in L2(0; tf ;H1

L(]0; l[)), it

follows that

tZ
0

vm~l
(s)(l)ds!

tZ
0

v(s)(l)ds as ~l ! +1, 8t 2]0; tf [. Thus

�0(

tZ
0

vm~l
(s)(l)ds+ T0(l))! �0(

tZ
0

v(s)(l)ds+ T0(l))

13



as ~l ! +1, 8t 2]0; tf [. The sequence of functions vm~l
(�)(l) converging weakly

to v(�)(l) in L2(]0; tf [) as ~l ! +1 is bounded in L2(]0; tf [). Thus:������
tfZ
0

�0(

tZ
0

vm~l
(s)(l)ds+ T0(l))vm~l

(t)(l)wj(l)�(t)dt�

tfZ
0

�0(

tZ
0

v(s)(l)ds+ T0(l))vm~l
(t)(l)wj(l)�(t)dt

������
� jwj(l)j (sup

~l�1



vm~l
(�)(l)




L2(]0;tf [)

)

�[
tfZ
0

�������0(
tZ
0

vm~l
(s)(l)ds+ T0(l))��0(

tZ
0

v(s)(l)ds+ T0(l))

������
2

j�(t)j2 dt]1=2;

(22)
! 0 as ~l ! +1 by Lebesgue bounded convergence theorem. As �0(�) is
bounded, the function

]0; tf [! R : t 7! �0(

tZ
0

v(s)(l)ds+ T0(l))

is bounded and thus the function

]0; tf [! R : t 7! �0(

tZ
0

v(s)(l)ds+ T0(l))�(t)

belongs to L2(]0; tf [). As the sequence of functions vm~l
(�)(l) converges weakly

to v(�)(l) in L2(]0; tf [) as ~l ! +1, we have also that

tfZ
0

�0(

tZ
0

v(s)(l)ds+T0(l))�(t)vm~l
(t)(l))dt!

tfZ
0

�0(

tZ
0

v(s)(l)ds+T0(l))�(t)v(t)(l))dt

(23)
as ~l ! +1. In conclusion, from (22) and (23) follows that:

tfZ
0

�0(

tZ
0

vm
~l
(s)(l)ds+ T0(l))vm

~l
(t)(l)wj(l)�(t)dt

!
tfZ
0

�0(

tZ
0

v(s)(l)ds+ T0(l))v(t)(l)wj(l)�(t)dt;

as ~l ! +1. We are now in a position to pass to the limit as ~l ! +1 in the
�rst equation of (14) and we obtain:

14



tfZ
0

cpmg h _v(t); wjiH1
L(]0;l[)

�;H1
L(]0;l[)

�(t)dt+

tfZ
0

kh(v(t)jwj)H1
L(]0;l[)

�(t)dt

=

tfZ
0

(@f@t (�; t)jwj)L2(]0;l[)�(t)dt�
tfZ
0

hcv(t)(l)wj(l)�(t)dt

�
tfZ
0

�0(

tZ
0

v(s)(l)ds+ T0(l))v(t)(l)wj(l)�(t)dt+

tfZ
0

�0(u(t)) _u(t)wj(l)�(t)dt;

(24)
8j 2 N� and 8� 2 L2(]0; tf [). As the sequence

�
vm~l

�
~l�1 converges weakly to v

in L2(0; tf ;H1
L(]0; l[)), and their derivatives

�
_vm~l

�
~l�1 weakly to _v in

L2(0; tf ;H
1
L(]0; l[)

�), the sequence
�
vm~l

(�; 0)
�
~l�1 converges weakly to v(�; 0) in

L2(]0; l[). From, the second equation of (14) follows that v(:; 0) = 1
cpmg

(f(�; 0)+
khT

00
0 ). This fact and (24) prove the existence of at least one weak solution to

the initial boundary value problem (12).

Lemma 6 The initial boundary value problem (12) possesses one and only one
weak solution.

Proof. The existence of a solution has been proved in the preceding lemma.
Thus it remains to prove uniqueness. Let us consider two weak solutions v and
v̂ of the initial boundary value problem (12). Thus v and v̂ satis�es (13). In
particular v(x; 0) = v̂(x; 0); 80x 2]0; l[. We must prove that v = v̂. Considering
v � v̂, we have:

cpmg
d
dt hv(�; t)� v̂(�; t); 'iH1

L(]0;l[)
�;H1

L(]0;l[)
= �kh

lZ
0

@(v�v̂)
@x (x; t)'0(x)dx

�hc (v(l; t)� v̂(l; t))'(l)

�

24�0( tZ
0

v(l; s)ds+ T0(l))v(l; t)��0(
tZ
0

v̂(l; s)ds+ T0(l))v̂(l; t)

35'(l):

15



Taking ' = v(�; t)� v̂(�; t) for some �xed t 2]0; tf [ in the previous equation, we
obtain:

cpmg

2
d
dt

lZ
0

(v(x; t)� v̂(x; t))2dx+ kh
lZ
0

(@(v�v̂)@x (x; t))2dx+ hc (v(l; t)� v̂(l; t))2

= ��0(
tZ
0

v(l; s)ds+ T0(l)) (v(l; t)� v̂(l; t))2

��0(
tZ
0

v(l; s)ds+ T0(l))v̂(l; t) (v(l; t)� v̂(l; t))

+�0(

tZ
0

v̂(l; s)ds+ T0(l))v̂(l; t) (v(l; t)� v̂(l; t)) :

(25)
This equality can be rewritten:

cpmg

2
d
dt

lZ
0

(v(x; t)� v̂(x; t))2dx+ kh
lZ
0

(@(v�v̂)@x (x; t))2dx+ hc (v(l; t)� v̂(l; t))2

+�0(

tZ
0

v(l; s)ds+ T0(l)) (v(l; t)� v̂(l; t))2

=

24�0( tZ
0

v̂(l; s)ds+ T0(l))��0(
tZ
0

v(l; s)ds+ T0(l))

35 v̂(l; t) (v(l; t)� v̂(l; t)) :
Now, it is easy to see that �0 is a Lipschitz function as �00 is bounded. Denoting
by C the Lipschitz constant of �0, we have:24�0( tZ

0

v̂(l; s)ds+ T0(l))��0(
tZ
0

v(l; s)ds+ T0(l))

35 v̂(l; t) (v(l; t)� v̂(l; t))
� C

������
tZ
0

(v̂(l; s)� v(l; s))ds

������ jv̂(l; t)j jv(l; t)� v̂(l; t)j :

Setting C 0 = C jv̂(l; t)j, a = jv(l; t)� v̂(l; t)j, b =

������
tZ
0

(v̂(l; s)� v(l; s))ds

������ and
applying Young�s inequality:

ab � hc
2C 0

a2 +
C 0

2hc
b2;
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we have that:

C

������
tZ
0

(v̂(l; s)� v(l; s))ds

������ jv̂(l; t)j jv(l; t)� v̂(l; t)j = C 0ab

� hc
2 (v(l; t)� v̂(l; t))

2
+ (C0)2

2hc

0@ tZ
0

(v̂(l; s)� v(l; s))ds

1A2

:

Thus:

cpmg

2
d
dt

lZ
0

(v(x; t)� v̂(x; t))2dx+ kh
lZ
0

(@(v�v̂)@x (x; t))2dx+ hc
2 (v(l; t)� v̂(l; t))

2

+�0(

tZ
0

v(l; s)ds+ T0(l)) (v(l; t)� v̂(l; t))2

� (C0)2

2hc

0@ tZ
0

(v̂(l; s)� v(l; s))ds

1A2

� (C0)2

2hc
t

tZ
0

(v̂(l; s)� v(l; s))2ds:

Let us set  (t) =

tZ
0

(v̂(l; s)� v(l; s))2ds. We have thus a fortiori the inequality:

cpmg

2

d

dt

lZ
0

(v(x; t)� v̂(x; t))2dx+ hc
2
 0(t) � C2t

2hc
v̂(l; t)2 (t):

Let us integrate both sides of this inequality from 0 to ~t for an arbitrary ~t 2]0; tf [.
We obtain:

cpmg

2

lZ
0

(v(x; ~t)� v̂(x; ~t))2dx+ hc
2
 (~t) � C2

2hc

~tZ
0

tv̂(l; t)2 (t)dt:

Setting �
�
~t
�
=

~tZ
0

tv̂(l; t)2 (t)dt, we obtain:

cpmg

2

lZ
0

(v(x; ~t)� v̂(x; ~t))2dx+ hc
2
 (~t) � C2

2hc
�
�
~t
�
:

A fortiori:
hc
2
 (~t) � C2

2hc
�
�
~t
�
; 8~t 2]0; tf [:
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Thus:

�0
�
~t
�
� C2

h2c
~tv̂(l; ~t)2�

�
~t
�
; 8~t 2]0; tf [:

Setting g(~t) := C2

h2c
~tv̂(l; ~t)2, we obtain �0

�
~t
�
� g(~t)�

�
~t
�
; 8~t 2]0; tf [. We have also

� (0) = 0. Thus by Gronwall�s inequality ([6],(ii) p.624): �
�
~t
�
= 0, 8~t 2]0; tf [

i.e.

~tZ
0

tv̂(l; t)2 (t)dt = 0. But  (t) =

tZ
0

(v̂(l; s)� v(l; s))2ds. Thus:

v̂(l; t)2
tZ
0

(v̂(l; s)� v(l; s))2ds = 0; 80t 2]0; tf [: (26)

By symmetry, we have also that:

v(l; t)2
tZ
0

(v̂(l; s)� v(l; s))2ds = 0; 80t 2]0; tf [: (27)

We want to prove that this implies

v̂(l; s) = v(l; s);80s 2 [0; tf ]: (28)

Let us consider:

�t := supft 2 [0; tf ];
tZ
0

(v̂(l; s)� v(l; s))2ds = 0g:

By continuity, we have of course that:

�tZ
0

(v̂(l; s)� v(l; s))2ds = 0:

80s 2 [0; �t], we have thus v̂(l; s) = v(l; s). If �t = tf , then (28) is proved. If

�t < tf , 8t 2]�t; tf [:
tZ
0

(v̂(l; s)�v(l; s))2ds > 0. By (26), (27): v̂(l; t) = 0 = v(l; t),

80t 2]�t; tf [. Thus (28) is also proved in that case. From (28) and (25) follows
that 80t 2]0; tf [:

cpmg

2

d

dt

lZ
0

(v(x; t)� v̂(x; t))2dx+ kh
lZ
0

(
@ (v � v̂)

@x
(x; t))2dx = 0:

18



The second term in the left-hand side of the previous equation is of course

positive, so that: d
dt

lZ
0

(v(x; t)� v̂(x; t))2dx � 0, 80t 2]0; tf [. Thus the absolutely

continuous function:

[0; tf ]! R+ : t 7!
lZ
0

(v(x; t)� v̂(x; t))2dx

is decreasing and null at t = 0. Being positive, this function is null 8t 2 [0; tf ]
so that v(�; t) = v̂(�; t) in L2(]0; l[), 8t 2 [0; tf ]. Thus uniqueness is also proved.

Proposition 7 Under the regularity condition on the initial condition T0 that
T0 2 H2(]0; l[), the compatibility condition T0(0) = Ta at x = 0, and the compat-
ibility condition between the initial condition and the boundary condition (29)(ii)
at x = l :

�khT 00(l) = hc (T0(l)� Ta) + �(T0(l))��(u(0));
the unique weak solution Tu of the initial boundary value problem (2) i.e.8>>>>>><>>>>>>:

cpmg
@T
@t (x; t) = kh

@2T
@x2 (x; t) +  (T (x; t)) + hT;u(x; t);

0 < x < l; 0 < t < tf ;
�kh @T@x (l; t) = hc(T (l; t)� Ta) + (�(T (l; t))��(u(t)));

0 < t < tf ; (B.C. at x = l),
T (0; t) = Ta; 0 < t < tf ; (B.C. at x = 0),
T (x; 0) = T0(x); 8x 2 [0; l]; (I.C. at t = 0),

(29)

satis�es the regularity property: dTu
dt 2 L

2(]0; tf [;H
1(]0; l[)).

Proof. Let us consider the weak solution v 2 fw 2 L2(0; tf ;H
1
L(]0; l[)); _w 2

L2(0; tf ;
�
H1
L(]0; l[)

��
)g of the initial boundary value problem (12); thus by (13)

8' 2 H1
L(]0; l[) :8>>>>>>>><>>>>>>>>:

cpmg
d
dt hv(�; t); 'iH1

L(]0;l[)
�;H1

L(]0;l[)
= �kh

lZ
0

@v
@x (x; t)'

0(x)dx+

lZ
0

@f
@t (x; t)'(x)dx

�hcv(l; t)'(l)��0(
tZ
0

v(l; s)ds+ T0(l))v(l; t)'(l) + �
0(u(t)) _u(t)'(l)

and v(x; 0) = 1
cpmg

(f(x; 0) + khT
00
0 (x)); 80x 2]0; l[;

(30)
where f denotes the function f : Q ! R : (x; t) 7!  (Tu(x; t)) + hTu;u(x; t)
(10). We know by the two preceding lemmas, that this initial boundary value
problem possesses one and only one weak solution. Let us set:

T (x; t) :=

tZ
0

v(x; s)ds+ T0(x):
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This implies that v(x; t) = @T
@t (x; t). Let us integrate both sides of (30) from 0

to t; we obtain:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

cpmg

lZ
0

@T
@t (x; t)'(x)dx�

lZ
0

f(x; 0)'(x)dx+

lZ
0

khT
0
0(x)'

0(x)dx� khT 00(l)'(l)

= �kh
lZ
0

@T
@x (x; t)'

0(x)dx+ kh

lZ
0

T 00(x)'
0(x)dx+

lZ
0

f(x; t)'(x)dx

�
lZ
0

f(x; 0)'(x)dx� hcT (l; t)'(l) + hcT0(l)'(l)

��(T (l; t))'(l) + �(T0(l))'(l) + �(u(t))'(l)��(u(0))'(l):

Using the compatibility condition:

�khT 00(l) = hc (T0(l)� Ta) + �(T0(l))��(u(0));

and f(x; t) =  (Tu(x; t))+hTu;u(x; t), we obtain after simpli�cations 8t 2]0; tf [:8>>>>>>>>>>>><>>>>>>>>>>>>:

cpmg

lZ
0

@T
@t (x; t)'(x)dx+ kh

lZ
0

@T
@x (x; t)'

0(x)dx�
lZ
0

 (Tu(x; t))'(x)dx

�
lZ
0

hTu;u(x; t)'(x)dx� [�(u(t))��(T (l; t))]'(l)

� [hc(Ta � T (l; t))]'(l) = 0; 8' 2 H1
L(]0; l[)

T (0; t) = Ta; 0 < t < tf ; (B.C. at x = 0),
T (x; 0) = T0(x); 8x 2 [0; l]; (I.C. at t = 0):

(31)
By (7) and (31), we have 8t 2]0; tf [:8>>>>>>>><>>>>>>>>:

cpmg
d
dt hTu(�; t)� T (�; t); 'iH1

L(]0;l[)
�;H1

L(]0;l[)
+ kh

lZ
0

@(Tu�T )
@x (x; t)'0(x)dx

+ [�(Tu(l; t))��(T (l; t))]'(l)
+ [hc(Tu(l; t)� T (l; t))]'(l) = 0; 8' 2 H1

L(]0; l[)
(Tu � T ) (0; t) = 0; 0 < t < tf ; (B.C. at x = 0),
(Tu � T ) (x; 0) = 0; 80x 2 [0; l]; (I.C. at t = 0):

(32)
Considering ' = Tu(�; t) � T (�; t) 2 H1

L(]0; l[) for some �xed t 2]0; tf [ in (32),
we obtain:

d

dt

lZ
0

(Tu(x; t)� T (x; t))2 dx � 0; 80t 2]0; tf [:
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Thus, the absolutely continuous function

t 7!
lZ
0

(Tu(x; t)� T (x; t))2 dx

is a positive decreasing function with respect to the variable t. As this function
takes the value 0 for t = 0, this function is zero. Thus Tu = T which implies
dTu
dt =

dT
dt = v 2 L2(]0; tf [;H1(]0; l[)). What was to be proved.

Corollary 8 If we suppose moreover that T0 2 H3(]0; l[), then dTu
dt 2 H

2;1(Q).

Proof. We keep the same notations as in the proof of the preceding proposition.
By using formulas (10), (3) and (4) with t = 0, deriving with respect to x, using
the fact that Bkg (T0) 2 H1(]0; l[) and decomposing that function as the sum
of an a¢ ne function de�ned on the interval ]0; l[ and a function in �H1(]0; l[),
function that we extend by 0 as a function on the whole real line and using
properties of the convolution operator, one can prove that df(:;0)

dx 2 L2(]0; l[).
Consequently 1

cpmg
(f(:; 0) + khT

00
0 ) 2 H1(]0; l[). As @f@t 2 L

2(Q), by Lemma 4,

t 7! hcv(l; t) + �
0(

tZ
0

v(l; s)ds+ T0(l))v(l; t)��0(u(t))u0(t)

belongs to L2(]0; tf [). Thus, the initial boundary value problem (12) is of the
form (9) with Ta replaced by 0 in the boundary condition at x = 0. Thus by
Proposition 3, dTudt = v solution of (30), i.e. weak solution of the initial boundary
value problem (12), belongs to H2;1(Q).

3 The semi-discrete problem

In this section, we will suppose that the hypotheses of Corollary 8 are satis�ed
i.e. that T0 2 H3(]0; l[), that T0(0) = Ta, and that

�khT 00(l) = hc (T0(l)� Ta) + �(T0(l))��(u(0)):

This implies that Tu and dTu
dt belong to H2;1(Q). In particular Tu and dTu

dt
belong to L2(]0; tf [;H2(]0; l[)) implying that Tu 2 C([0; tf ];H

2(]0; l[)). Let us
now de�ne what is the semi-discrete problem corresponding to the exact problem
(2). Given Nh 2 N�, let us de�ne the mesh x0 = 0 < x1 < x2 < � � � < xj <
� � � < xNh

= l on the interval [0; l]. By 'i (i = 0; : : : ; Nh), let us denote the
continuous function on the interval [0; l], a¢ ne on each subinterval [xj�1; xj ]
(j = 1; : : : ; Nh) which takes the value 1 at the node xi and 0 at all the other
nodes xj , j 6= i. Thus:

'0(x) :=

� x1�x
x1�x0 if x 2 [x0; x1];
0 if x 2]x1; xNh ];

(33)

21



'i(x) :=

8>>><>>>:
0 if x 2 [0; xi�1[;

x�xi�1
xi�xi�1 if x 2 [xi�1; xi[;
xi+1�x
xi+1�xi if x 2 [xi; xi+1];
0 if x 2]xi+1; xNh ];

(34)

for i = 1; : : : ; Nh � 1, and

'Nh
(x) :=

(
0 if x 2 [x0; xNh�1];

x�xNh�1
xNh�xNh�1

if x 2 [x
Nh�1

; xNh
]:

(35)

Every function 'i (i = 0; : : : ; Nh) belongs to the space H1(]0; l[). Let us denote
by Xh the �nite dimensional vector subspace of H1(]0; l[) generated by the
functions 'i (i = 0; : : : ; Nh). The semi-discrete problem is the following: �nd

Tu;h(xj ; �) 2 C1([0; tf ];R); j = 1; : : : ; Nh

satisfying the initial conditions

Tu;h(xj ; 0) = T0(xj); 8j = 1; : : : ; Nh (36)

such that the function

Tu;h : [0; tf ]! Xh : t 7! Tu;h(�; t) = Ta'0 +

NhX
j=1

Tu;h(xj ; t)'j (37)

satis�es on the time interval [0; tf ] the system of di¤erential equations:

cpmg

NhX
j=1

dTu;h
dt (xj ; t)

lZ
0

'j(x)'k(x)dx+ Takh

lZ
0

'00(x)'
0
k(x)dx

+

NhX
j=1

Tu;h(xj ; t)kh

lZ
0

'0j(x)'
0
k(x)dx�

lZ
0

 (Ta'0(x) +

NhX
j=1

Tu;h(xj ; t)

lZ
0

'j(x)'k(x)dx�
lZ
0

h

Ta'0+

NhX
j=1

Tu;h(xj ;t)'j ;u

(x; t)'k(x)dx

+[�(Tu;h(l; t))��(u(t))]�k;Nh

+hc (Tu;h(l; t)� Ta) �k;Nh
= 0; 8k = 1; : : : ; Nh:

(38)

A more �functional analytic� equivalent de�nition traced on the de�nition of
what is a weak solution (7) of the exact problem (2) is given below by formula
(47). Let us set

�h(t) = (Tu;h(x1; t); : : : ; Tu;h(xNh
; t)): (39)

Let us de�ne the square matrix of order Nh, Mh = (mh
j;k)1�j;k�Nh

by mh
j;k =

lZ
0

'j(x)'k(x)dx, 8j; k = 1; : : : ; Nh and the related matrix Ah = cpmgM
h. We
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will need also in the following, the square matrix Bh = (bhj;k)1�j;k�Nh
of order

Nh by bhj;k = kh

lZ
0

'0j(x)'
0
k(x)dx, 8j; k = 1; : : : ; Nh. These three square matrices

of order Nh are tridiagonal, symmetric, positive de�nite and thus invertible. In
the particular case of the equidistributed grid xj = jh, j = 0; 1; : : : ; Nh on the
interval [0; l] with h = l

Nh
, an easy computation shows that

mh
i;i =

2h

3
; mh

i;i+1 = mh
i+1;i =

h

6
; 8i = 1; : : : ; Nh � 1;mh

Nh;Nh
=
h

3

and

bhi;i =
2kh
h
; bhi;i+1 = bhi+1;i =

�kh
h

; 8i = 1; : : : ; Nh � 1; bhNh;Nh
=
kh
h
:

Now, let us introduce the nonlinear function

efh : RNh ! RNh : �h = (�1; : : : ; �Nh
) 7! efh(�h) = ( efh1 (�h); : : : ; efhNh

(�h))

de�ned as follows:

efhk (�h) = lZ
0

 (Ta'0(x) +

NhX
j=1

�j'j(x))'k(x)dx

+
MX
k�=1

2��k�

lZ
0

[

lZ
0

Gk�(x; x
0)Bk

�

g (Ta'0(x
0) +

NhX
j=1

�j'j(x
0))dx0]'k(x)dx+

MX
k�=1

2��2k�

lZ
0

[

lZ
0

�1(�k�(2l � x� x0))Bk
�

g (Ta'0(x
0) +

NhX
j=1

�j'j(x
0))dx0]'k(x)dx

��(�Nh
) �k;Nh

� hc�Nh
�k;Nh

; 8k = 1; : : : ; Nh:
(40)

Lemma 9 The nonlinear mapping

efh : RNh ! RNh : �h = (�1; : : : ; �Nh
) 7! efh(�h)

is lipschitzian.

Proof. By ([11], p.14), the �rst order derivative of the Planck function with
respect to the absolute temperature T satis�es the bounds: 0 � @B

@T (T; �) �
2C1
C2�4

. This inequality implies that the �rst order derivatives
�
Bk

�

g

�0
and �0 are

bounded which in turn implies that the �rst order partial derivatives @ efh
@�j

(j =

1; : : : ; Nh) are also bounded. From this last fact follows that efh is lipschitzian.
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We also de�ne the nonlinear function egh : R ! RNh : u 7! egh(u) =
(eg1(u); : : : ; egNh

(u)) as follows:

egk(u) = MX
k�=1

2��k�

lZ
0

[E2(�k�(l � x))� �2(�k�(l � x))]'k(x)dx Bk
�

g (u)

+� (u) �k;Nh
; 8k = 1; : : : ; Nh;

(41)

and the vector Ch = (chk)1�k�Nh
of RNh by

chk = �khTa
lZ
0

'00(x))'
0
k(x)dx+

MX
k�=1

2��k�B
k�

g (Ta)

lZ
0

E2(�k�x)'k(x)dx

+
MX
k�=1

2��k�B
k�

g (Ta)

lZ
0

�2(�k�(2l � x))'k(x)dx+

+hcTa �k;Nh
; 8k = 1; : : : ; Nh:

(42)

It is easy to see that the nonlinear function egh : R ! RNh is Lipschitz-
continuous. Let us still introduce the initial condition, the vector

Th0 := (T0(xj))1�j�Nh
(43)

of RNh . Having introduced these notations, in particular (39) and (43), we may
rewrite the semi-discrete problem (38) in the following matrix di¤erential form:�

Ah _�h(t) +Bh�h(t) = ~fh(�h(t)) + ~gh(u(t)) + Ch; 8t 2 [0; tf ];
�h(0) = Th0 :

(44)

Proposition 10 The nonlinear Cauchy problem (44) possesses one and only
one solution.

Proof. Let us set

F : [0; tf ]� RNh ! RNh : (t; y) 7! (Ah)�1[�Bhy + ~fh(y) + ~gh(u(t)) + Ch]:

F is a continuous function, which by Lemma 9 is moreover lipschitzian with
respect to the y variable uniformly in t. Applying the Cauchy-Lipschitz Theorem
([4], p. 65), the result follows.
As an immediate corollary, we have:

Corollary 11 The semi-discrete problem de�ned by the conditions (36),(37)
and (38) possesses one and only one solution.

Let us set:
Sh = span < '1; : : : ; 'Nh

> : (45)
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It is a vectorial subspace of dimension Nh of H1
L(]0; l[). Formula (37) may be

rewritten:

Tu;h(t) = Ta +

NhX
j=1

(Tu;h(xj ; t)� Ta)'j ; (46)

which shows us that 8t 2 [0; tf ], Tu;h(t) 2 Ta + Sh. The semi-discrete problem
de�ned by the conditions (36),(37) and (38) may be rewritten in the following
form: �nd Tu;h 2 C1([0; tf ];Ta + Sh) such that 8t 2 [0; tf ]:8>>>>>>>>>>>><>>>>>>>>>>>>:

cpmg

lZ
0

@Tu;h
@t (x; t)�(x)dx+ kh

lZ
0

@Tu;h
@x (x; t)�0(x)dx

�
lZ
0

 (Tu;h(x; t))�(x)dx�
lZ
0

hTu;h(:;t);u(x; t)�(x)dx

+ [�(Tu;h(l; t))��(u(t))]�(l) + [hc (Tu;h(l; t)� Ta)]�(l) = 0; 8� 2 Sh;
Tu;h(0; t) = Ta; 8t 2 [0; tf ];

Tu;h(:; 0) = Ih(T0):
(47)

In formula (47), Ih denotes the Lagrange interpolation operator at the Nh +
1 points x0 = 0; x1; x2; : : : ; xNh

= l by continuous functions, which are
polynomials of degree at most 1 in each interval ]xj ; xj+1[, 8j = 0; : : : ; Nh � 1.
Our purpose is now to establish, an a priori error estimate. In that purpose, let
us �rstly write the error equation that is the equation for the error e := Tu;h�Tu:

Proposition 12 The error e := Tu;h � Tu on Tu;h satis�es for 80 t 2]0; tf [:8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

cpmg
d
dt he(�; t); �iH1

L(]0;l[)
�;H1

L(]0;l[)
+ kh

lZ
0

@e
@x (x; t)�

0(x)dx

�
lZ
0

[ (Tu(x; t) + e(x; t))�  (Tu(x; t))]�(x)dx

�
lZ
0

�
hTu(:;t)+e(:;t);u(x; t)� hTu(:;t);u(x; t)

�
�(x)dx

+ [�(Tu(l; t) + e(l; t))��(Tu(l; t))]�(l) + hce(l; t)�(l) = 0; 8� 2 Sh;
e(0; t) = 0; 8t 2 [0; tf ];
e(:; 0) = Ih(T0)� T0:

(48)

Proof. Equation (48)(i) follows by taking the di¤erence between equation
(47)(i) and equation (7)(i) which are both valid for every � 2 Sh. We have
proved in [11], that Tu 2 C( �Q) which implies that Tu(0; :) 2 C([0; tf ]). Thus
Tu(0; t) = Ta for all t 2 [0; tf ]. Taking the di¤erence between equation (47)(ii)
and equation (7)(ii), we obtain e(0; t) = 0; 8t 2 [0; tf ] (not only for almost
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every t 2 [0; tf ]). Finally, taking the di¤erence between equation (47)(iii) and
equation (7)(iii), we obtain e(:; 0) = Ih(T0) � T0 (this equality being true at
every point x 2 [0; l], not only almost everywhere, as both sides are continuous
functions).
For an arbitrary t �xed in the interval [0; tf ], let us introduce the elliptic

projection ~Tu;h(:; t) of Tu(:; t) de�ned by: ~Tu;h(:; t) 2 Ta + Sh, and satis�es:

lZ
0

@ ~Tu;h
@x

(x; t)�0(x)dx =

lZ
0

@Tu
@x

(x; t)�0(x)dx; 8� 2 Sh: (49)

In particular ~Tu;h(0; t) = Ta. Also Tu(0; t) = Ta. Thus Tu(:; t) � Ta and
~Tu;h(:; t) � Ta both belong to H1

L(]0; l[). Equation (49) may be rewritten in
the equivalent form:

lZ
0

@
�
~Tu;h � Ta

�
@x

(x; t)�0(x)dx =

lZ
0

@ (Tu � Ta)
@x

(x; t)�0(x)dx; 8� 2 Sh: (50)

Equation (50), shows us that ~Tu;h(:; t) � Ta is the orthogonal projection of
Tu(:; t)�Ta onto Sh � H1

L(]0; l[) for the scalar product of H
1
L(]0; l[). As already

said in the introduction, if we would have a Dirichlet boundary condition at the
point x = l, then the technique of elliptic projection is well known ([19], p.7).
But in our case, we have the nonlinear Robin boundary condition (2)(ii) at the
point x = l. The key property of our elliptic projection (49), which will allow
us to prove optimal a priori error estimates is that

~Tu;h(l; t) = Tu(l; t);

a property that we now establish:

Proposition 13 Equation (49) is equivalent to ~Tu;h(l; t) = Tu(l; t) and

lZ
0

@ ~Tu;h
@x

(x; t)�0(x)dx =

lZ
0

@Tu
@x

(x; t)�0(x)dx;8� 2 �Sh;

where �Sh := f� 2 Sh;�(l) = 0g.

Proof. Let us consider the function

� :]0; l[! R : x 7! x

l
:

This function � 2 Sh and �(l) = 1. Also �0(x) = 1
l , 8x 2]0; l[. Equation (49)

with that function � gives us:

1

l
( ~Tu;h(l; t)� Ta) =

1

l
(Tu(l; t)� Ta)
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and thus ~Tu;h(l; t) = Tu(l; t). The equivalence with equation (49) follows from
the fact that the �nite dimensional vectorial subspace Sh de�ned by formula (45)
is also equal to span h'1; : : : ; 'Nh�1; �i and also that span h'1; : : : ; 'Nh�1i =
�Sh.

Remark 14 The above de�nition and properties of the elliptic projection of
Tu(:; t) extends to an arbitrary function T 2 H1(]0; l[) by replacing Ta by T (0).
In particular, we will speak in the next corollary of the elliptic projection of
dTu
dt (:; t) for almost every t 2 [0; tf ]; in that case

dTu
dt (:; t)(0) = 0 and Ta must

be replaced by 0.

Now, we split the error e := Tu;h � Tu on Tu;h, into two terms:

e = � + � (51)

where: �
� = Tu;h � ~Tu;h;

� = ~Tu;h � Tu:
(52)

� veri�es the following equations:

Proposition 15 For almost every t 2 [0; tf ], we have 8� 2 Sh:8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

cpmg h�t(�; t); �iH1
L(]0;l[)

�;H1
L(]0;l[)

+ kh

lZ
0

@�
@x (x; t)�

0(x)dx�
lZ
0

[ (Tu;h(x; t))

� ( ~Tu;h(x; t))]�(x)dx�
lZ
0

[hTu;h(:;t);u(x; t)�

h ~Tu;h(:;t);u(x; t)]�(x)dx+
h
�(Tu;h(l; t))��( ~Tu;h(l; t))

i
�(l) + hc�(l; t)�(l)

= �cpmg h�t(�; t); �iH1
L(]0;l[)

�;H1
L(]0;l[)

+

lZ
0

[ ( ~Tu;h(x; t))

� (Tu(x; t))]�(x)dx+
lZ
0

h
h ~Tu;h(:;t);u(x; t)� hTu(:;t);u(x; t)

i
�(x)dx;

�(0; t) = 0; 8t 2 [0; tf ];
�(:; 0) = Tu;h(�; 0)� ~Tu;h(�; 0):

(53)

Proof. The �rst equation follows by splitting the terms in the error equation
(48) using the decomposition e = � + � of the error e, from equation (49)

which implies that

lZ
0

@�
@x (x; t)�

0(x)dx = 0, 8� 2 Sh and ~Tu;h(l; t) = Tu(l; t).

The second one follows from the fact that Tu;h � Ta 2 C([0; tf ];Sh) and also
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~Tu;h�Ta due to the fact that Tu 2 C([0; tf ];H1(]0; l[)) and equation (50). Thus
�(0; t) = Tu;h(0; t) � ~Tu;h(0; t) is null for every t 2 [0; tf ]. The third equation
has sense due to the continuity of Tu;h and ~Tu;h and is trivial.

Corollary 16 For almost every t 2]0; tf [, �(:; t) veri�es the following inequal-
ity:

cpmg

2
d
dt k�(�; t)k

2
L2(]0;l[) + kh krx�(�; t)k

2
L2(]0;l[)2 + hc�(l; t)

2 � cpmg

� k�t(�; t)kL2(]0;l[) k�(�; t)kL2(]0;l[) + (Lh + L ) k�(�; t)kL2(]0;l[) k�(�; t)kL2(]0;l[)
+Lh k�(�; t)k2L2(]0;l[) ;

(54)
where L and Lh denote the Lipschitz constants of  and of the mapping
L2(]0; l[)! L2(]0; l[) : T 7! hT;u.

Proof. Firstly, let us observe that by equation (50), d
dt
~Tu;h(:; t) =

^�dTu
dt (:; t)

�
and that being the orthogonal projection of dTu

dt (:; t) onto Sh, the mapping
t 7! d

dt
~Tu;h(:; t) belongs to L2(]0; tf [;Sh). Also, t 7! d

dtTu;h(:; t) belongs to
L2(]0; tf [;Sh). Thus t 7! d�

dt (:; t) belongs to L
2(]0; tf [;Sh). Also t 7! d�

dt (:; t)
belongs to L2(]0; tf [;H1(]0; l[)). Putting � = �(�; t) in equality (53), we obtain:

cpmg

2
d
dt k�(�; t)k

2
L2(]0;l[) + kh

lZ
0

@�
@x (x; t)

2dx+ hc�(l; t)
2

�
lZ
0

h
 (Tu;h(x; t))�  ( ~Tu;h(x; t))

i
�(x; t)dx+

h
�(Tu;h(l; t))��( ~Tu;h(l; t))

i

��(l; t) �

������
lZ
0

h
hTu;h(:;t);u(x; t)� h ~Tu;h(:;t);u(x; t)

i
�(x; t)dx

������
+

������
lZ
0

h
h ~Tu;h(:;t);u(x; t)� hTu(:;t);u(x; t)

i
�(x; t)dx

������
+cpmg k�t(�; t)kL2(]0;l[) k�(�; t)kL2(]0;l[)

+

������
lZ
0

h
 ( ~Tu;h(x; t))�  (Tu(x; t))

i
�(x; t)dx

������ :
(55)

Now,  (T ) := �
k=MX
k=1

4��kB
k
g (T ) and thus the mapping T 7�! � (T ) is an

increasing function of T . Thus

�
h
 (Tu;h(x; t))�  ( ~Tu;h(x; t))

i
�(x; t) =

h
(� )(Tu;h(x; t))� (� )( ~Tu;h(x; t))

i
� (Tu;h(x; t)� ~Tu;h(x; t))
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is always positive. In the same way, as �(T ) := �

+1Z
�0

��B(T; �)d�, it is also an

increasing function of T , which implies the positivity of the termh
�(Tu;h(l; t))��( ~Tu;h(l; t))

i
�(l; t) =

h
�(Tu;h(l; t))��( ~Tu;h(l; t))

i
� (Tu;h(l; t)� ~Tu;h(l; t)):

We are thus allowed to drop the last two terms in the left hand side of inequality
(55). Now by Corollary 3.7 page 14 and Lemma 3.18 page 22 of [11] and formula
(4), it follows that the mapping L2(]0; l[)! L2(]0; l[) : T 7! hT;u is lipschitzian.
Calling its Lipschitz constant Lh, it follows that:������

lZ
0

h
hTu;h(:;t);u(x; t)� h ~Tu;h(:;t);u(x; t)

i
�(x; t)dx

������ �


hTu;h(:;t);u(�; t)� h ~Tu;h(:;t);u(�; t)


L2(]0;l[) k�(�; t)kL2(]0;l[)
� Lh




Tu;h(�; t)� ~Tu;h(�; t)




L2(]0;l[)

k�(�; t)kL2(]0;l[) = Lh k�(�; t)k2L2(]0;l[) :
(56)

Proceeding analogously, we also have the bound:������
lZ
0

h
h ~Tu;h(:;t);u(x; t)� hTu(:;t);u(x; t)

i
�(x; t)dx

������
� Lh k�(�; t)kL2(]0;l[) k�(�; t)kL2(]0;l[) :

(57)

By Lemma 3.6 page 13 of [11] and formula (3), it follows that the mapping
R ! R : T 7�!  (T ) is Lipschitzian. Calling its Lipschitz constant L , it
follows that:������

lZ
0

h
 ( ~Tu;h(x; t))�  (Tu(x; t))

i
�(x; t)dx

������ � L k�(�; t)kL2(]0;l[) k�(�; t)kL2(]0;l[) :

(58)
From (55) and inequalities (56) to (58), follows inequality (54). What was to
be proved.
We can not a priori absorb the term Lh k�(�; t)k2L2(]0;l[) in the right-hand

side of inequality (54) of our previous corollary, by a fraction of a term in the
left-hand side. To remedy to that, we multiply both sides of inequality (54), by
exp(2�t) for � = � Lh

cpmg
. Let us set:

~�(�; t) := exp(�t)�(�; t) and ~�(�; t) := exp(�t)�(�; t): (59)
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Proposition 17 The following bound holds:

cpmg




~�(�; t)


2
L2(]0;l[)

+ kh

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+ hc

tZ
0

~�(l; s)2ds

� cpmg




~�(�; 0)


2
L2(]0;l[)

+ 2
(cpmgCPO)

2

kh

tZ
0

k~�t(�; s)k2L2(]0;l[) ds

+2 (LbCPO)
2

kh

tZ
0

k~�(�; s)k2L2(]0;l[) ds;

(60)

where Lb := 2Lh + L .

Proof. Multiplying both sides of inequality (54) by exp(2�t); and using

exp(�t)�t(�; t) = @t(exp(�t)�(�; t))� � exp(�t)�(�; t);

as well as

exp(�t)�t(�; t) = @t(exp(�t)�(�; t))� � exp(�t)�(�; t);

we obtain:

cpmg

2
d
dt




~�(�; t)


2
L2(]0;l[)

+ kh




rx~�(�; t)


2
L2(]0;l[)2

+ hc~�(l; t)
2

� cpmg k~�t(�; t)kL2(]0;l[)



~�(�; t)




L2(]0;l[)
+ (Lh + L + j�j cpmg) k~�(�; t)kL2(]0;l[)

�



~�(�; t)




L2(]0;l[)
+ (Lh + �cpmg)




~�(�; t)


2
L2(]0;l[)

:

Taking � = � Lh
cpmg

, we have thus Lh + �cpmg = 0. The previous inequality
becomes:

cpmg

2
d
dt




~�(�; t)


2
L2(]0;l[)

+ kh




rx~�(�; t)


2
L2(]0;l[)2

+ hc~�(l; t)
2

� cpmg k~�t(�; t)kL2(]0;l[)



~�(�; t)




L2(]0;l[)
+ Lb k~�(�; t)kL2(]0;l[)




~�(�; t)



L2(]0;l[)

:

(61)
Integrating both sides of the previous inequality from 0 to t, we obtain:

cpmg

2




~�(�; t)


2
L2(]0;l[)

+ kh

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+ hc

tZ
0

~�(l; s)2ds

� cpmg

2




~�(�; 0)


2
L2(]0;l[)

+ cpmg

tZ
0

k~�t(�; s)kL2(]0;l[)



~�(�; s)




L2(]0;l[)
ds

+Lb

tZ
0

k~�(�; s)kL2(]0;l[)



~�(�; s)




L2(]0;l[)
ds:

(62)
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Now, let us apply �Cauchy�s inequality with ��: 8a 2 R+, 8b 2 R+, 8� 2 R�+:
ab � �a2 + b2

4� to bound the products in the right-hand side of the previous
inequality. Firstly, let us denote by CPO the Poincaré constant i.e. 8' 2
H1
L(]0; l[) : k'kL2(]0;l[) � CPO krx'kL2(]0;l[)2 (it is easy to see that CPO = 2

� l).
1�) 8" > 0 :

cpmg

tZ
0

k~�t(�; s)kL2(]0;l[)



~�(�; s)




L2(]0;l[)
ds

� cpmg

0@ tZ
0

k~�t(�; s)k2L2(]0;l[) ds

1A1=20@ tZ
0




~�(�; s)


2
L2(]0;l[)

ds

1A1=2

� "

tZ
0




~�(�; s)


2
L2(]0;l[)

ds+
(cpmg)

2

4"

tZ
0

k~�t(�; s)k2L2(]0;l[) ds

� "C2PO

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+
(cpmg)

2

4"

tZ
0

k~�t(�; s)k2L2(]0;l[) ds:

Let us take " = kh
4C2

PO
. Thus:

cpmg

tZ
0

k~�t(�; s)kL2(]0;l[)



~�(�; s)




L2(]0;l[)
ds

� kh
4

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+
(cpmgCPO)

2

kh

tZ
0

k~�t(�; s)k2L2(]0;l[) ds:

(63)
2�) 8~" > 0 :

Lb

tZ
0

k~�(�; s)kL2(]0;l[)



~�(�; s)




L2(]0;l[)
ds

� Lb

0@ tZ
0

k~�(�; s)k2L2(]0;l[) ds

1A1=20@ tZ
0




~�(�; s)


2
L2(]0;l[)

ds

1A1=2

� ~"
tZ
0




~�(�; s)


2
L2(]0;l[)

ds+
L2b
4~"

tZ
0

k~�(�; s)k2L2(]0;l[) ds

� ~"C2PO

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+
L2b
4~"

tZ
0

k~�(�; s)k2L2(]0;l[) ds:

Let us take ~" = kh
4C2

PO
. Thus:
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Lb

tZ
0

k~�(�; s)kL2(]0;l[)



~�(�; s)




L2(]0;l[)
ds

� kh
4

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+ (LbCPO)
2

kh

tZ
0

k~�(�; s)k2L2(]0;l[) ds:

(64)
Multiplying both sides of inequality (62) by 2 and using inequalities (63) to
(64), we obtain:

cpmg




~�(�; t)


2
L2(]0;l[)

+ kh

tZ
0




rx~�(�; s)


2
L2(]0;l[)2

ds+ hc

tZ
0

~�(l; s)2ds

� cpmg




~�(�; 0)


2
L2(]0;l[)

+ 2
(cpmgCPO)

2

kh

tZ
0

k~�t(�; s)k2L2(]0;l[) ds

+2 (LbCPO)
2

kh

tZ
0

k~�(�; s)k2L2(]0;l[) ds:

What was to be proved.

In view of the previous proposition, we must bound



~�(�; 0)


2

L2(]0;l[)
,

tZ
0

k~�t(�; s)k2L2(]0;l[) ds

and

tZ
0

k~�(�; s)k2L2(]0;l[) ds. Firstly:

k�(�; 0)kL2(]0;l[) =



Tu;h(�; 0)� ~Tu;h(�; 0)





L2(]0;l[)

� kTu;h(�; 0)� Tu(�; 0)kL2(]0;l[) +



Tu(�; 0)� ~Tu;h(�; 0)





L2(]0;l[)

:
(65)

Lemma 18 8t 2 [0; tf ]:


 ~Tu;h(�; t)� Tu(�; t)



H1
L(]0;l[)

. h kTu(�; t)kH2(]0;l[) :

Proof. Equation (50), shows us that ~Tu;h(:; t)�Ta is the orthogonal projection
of Tu(:; t)� Ta onto Sh � H1

L(]0; l[) for the scalar product of H
1
L(]0; l[). Thus:


 ~Tu;h(�; t)� Tu(�; t)




H1
L(]0;l[)

=



(Tu(�; t)� Ta)� � ~Tu;h(�; t)� Ta�




H1
L(]0;l[)

= inf
�2Sh

k(Tu(�; t)� Ta)� �kH1
L(]0;l[)

= inf
�2Ta+Sh

kTu(�; t)� �kH1
L(]0;l[)

� kTu(�; t)� IhTu(�; t)kH1
L(]0;l[)

. h kTu(�; t)kH2(]0;l[) :

But, in view of (65), what we need (at least for t = 0) is a bound in the
L2(]0; l[)-norm of ~Tu;h(�; 0) � Tu(�; 0). We will thus apply a duality argument
(like in [19], p.5):
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Proposition 19 The following bound holds 8t 2 [0; tf ]:

k�(�; t)kL2(]0;l[) =



 ~Tu;h(�; t)� Tu(�; t)




L2(]0;l[)
. h2 kTu(�; t)kH2(]0;l[) :

In the right hand side of the above inequality, h means max
j=1;:::;Nh

(xj � xj�1).

Proof. Let us consider the two-points boundary value problem in the interval
]0; l[: given ' 2 L2(]0; l[), �nd  2 H2(]0; l[) such that8<: � 00(x) = '(x); 8x 2]0; l[;

 (0) = 0;
 (l) = 0:

By the closed graph theorem, there exists a constant C > 0, such that

k kH2(]0;l[) � C k'kL2(]0;l[) :

Using ~Tu;h(0; t) = Tu(0; t) = Ta and Proposition 13 which tells us that ~Tu;h(l; t) =
Tu(l; t), we have:

( ~Tu;h(�; t)� Tu(�; t)j')L2(]0;l[) = �( ~Tu;h(�; t)� Tu(�; t)j 00)L2(]0;l[)

= �( ~Tu;h(l; t)� Tu(l; t)) 0(l) + ( ~Tu;h(0; t)� Tu(0; t)) 0(0) +
lZ
0

(
@ ~Tu;h
@x (x; t)

�@Tu
@x (x; t)) 

0(x)dx =

lZ
0

(
@ ~Tu;h
@x (x; t)� @Tu

@x (x; t)) 
0(x)dx

=

lZ
0

(
@ ~Tu;h
@x (x; t)� @Tu

@x (x; t))( 
0(x)� �0(x))dx; 8� 2 Sh;

by equation (49). Thus using the preceding lemma:���( ~Tu;h(�; t)� Tu(�; t)j')L2(]0;l[)��� � 


 ~Tu;h(�; t)� Tu(�; t)



H1(]0;l[)

� inf
�2Sh

k � �kH1(]0;l[) � h kTu(�; t)kH2(]0;l[) inf�2Sh
k � �kH1(]0;l[)

� h kTu(�; t)kH2(]0;l[) k � Ih kH1(]0;l[)

. h2 kTu(�; t)kH2(]0;l[) k kH2(]0;l[)

. h2 kTu(�; t)kH2(]0;l[) k'kL2(]0;l[) :

Taking the supremum over all ' 2 L2(]0; l[) such that k'kL2(]0;l[) � 1, we obtain:


 ~Tu;h(�; t)� Tu(�; t)



L2(]0;l[)

. h2 kTu(�; t)kH2(]0;l[) :

What was to be proved.
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Corollary 20 Assuming that Tu(�; 0) 2 H2(]0; l[):



~�(�; 0)




L2(]0;l[)
. h2 kTu(�; 0)kH2(]0;l[) :

Proof. By inequality (65) and the previous proposition:


~�(�; 0)



L2(]0;l[)

� kTu;h(�; 0)� Tu(�; 0)kL2(]0;l[) +



Tu(�; 0)� ~Tu;h(�; 0)





L2(]0;l[)

. kTu;h(�; 0)� Tu(�; 0)kL2(]0;l[) + h2 kTu(�; 0)kH2(]0;l[)

= kIh(Tu(�; 0))� Tu(�; 0)kL2(]0;l[) + h2 kTu(�; 0)kH2(]0;l[)

. h2 kTu(�; 0)kH2(]0;l[) :

Proposition 21

tZ
0

k~�(�; s)k2L2(]0;l[) ds . h4
tZ
0

kTu(�; s)k2H2(]0;l[) ds.

Proof. ~�(�; s) := exp(�s)�(�; s) and � is negative. Thus:
tZ
0

k~�(�; s)k2L2(]0;l[) ds �

tZ
0

k�(�; s)k2L2(]0;l[) ds. Thus it su¢ ces to bound
tZ
0

k�(�; s)k2L2(]0;l[) ds. �(�; s) :=

~Tu;h(�; s)� Tu(�; s). By the preceding proposition

k�(�; s)kL2(]0;l[) . h2 kTu(�; s)kH2(]0;l[) :

Thus:
tZ
0

k�(�; s)k2L2(]0;l[) ds . h4
tZ
0

kTu(�; s)k2H2(]0;l[) ds:

What was to be proved.

It remains thus to bound

tZ
0

k~�t(�; s)k2L2(]0;l[) ds.

Proposition 22

tZ
0

k~�t(�; s)k2L2(]0;l[) ds . h4
tZ
0



dTu
dt (�; s)



2
H2(]0;l[)

ds+h4
tZ
0

kTu(�; s)k2H2(]0;l[) ds:

Proof. @s(exp(�s)�)(:; s) = exp(�s) (@s�) (:; s) + � exp(�s)�(:; s). Thus:

~�t(�; s) = exp(�s)�t(:; s) + � exp(�s)�(:; s);
= exp(�s)�t(:; s) + �~�(:; s);

which implies:

k~�t(�; s)kL2(]0;l[) � exp(�s) k�t(�; s)kL2(]0;l[) + j�j k~�(�; s)kL2(]0;l[)
� k�t(�; s)kL2(]0;l[) + j�j k~�(�; s)kL2(]0;l[) ;
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as � is negative (see (59). By Proposition 21: 8s 2 [0; tf ]:

tZ
0

k~�(�; s)k2L2(]0;l[) ds . h4
tZ
0

kTu(�; s)k2H2(]0;l[) ds:

It su¢ ces thus to bound

tZ
0

k�t(�; s)k2L2(]0;l[) ds. �t(�; s) =
d ~Tu;h
dt (�; s) �

dTu
dt (�; s).

As, we have already observed, by equation (50): d
dt
~Tu;h(:; t) =

^�dTu
dt (:; t)

�
.

In particular, d
dt
~Tu;h(:; t) is the orthogonal projection of dTu

dt (:; t) onto Sh �
H1
L(]0; l[) for the scalar product ofH

1
L(]0; l[). Also by Proposition 13,

d ~Tu;h
dt (l; t) =

dTu
dt (l; t). Replacing Tu(�; t) by

dTu
dt (:; t) and

~Tu;h(�; t) by d
dt
~Tu;h(:; t) =

^�dTu
dt (:; t)

�
,

in the estimate stated in Proposition 19, we obtain 80t 2 [0; tf ]



 ddt ~Tu;h(�; t)� dTu
dt
(:; t)






L2(]0;l[)

. h2




dTudt (:; t)






H2(]0;l[)

:

This estimate implies that:

tZ
0

k�t(�; s)k2L2(]0;l[) ds =
tZ
0




 ddt ~Tu;h(�; s)� dTu
dt (:; s)




2
L2(]0;l[)

ds

� h4
tZ
0



dTu
dt (�; s)



2
H2(]0;l[)

ds;

(66)
from which the result now follows.
Collecting the above results, we obtain the following estimate on � = Tu;h�

~Tu;h:

Proposition 23 The following estimate holds for � = Tu;h � ~Tu;h:

cpmg k�(�; t)k2L2(]0;l[) + kh
tZ
0

krx�(�; s)k2L2(]0;l[)2 ds+ hc
tZ
0

�(l; s)2ds

. h4 kTu(�; 0)k2H2(]0;l[) + h
4

tZ
0



dTu
dt (�; s)



2
H2(]0;l[)

ds+ h4
tZ
0

kTu(�; s)k2H2(]0;l[) ds:

(67)

Proof. This result follows from Proposition 17, Corollary 20, Proposition 22
and Proposition 21.

Corollary 24 For the value of the solution Tu;h ot the semi-discrete problem
at the point x = l, we have the following a priori error estimate:
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kTu;h(l; :)� Tu(l; :)kL2(]0;tf [) . h2

 
kTu(�; 0)kH2(]0;l[) +





dTudt





L2(0;tf ;H2(]0;l[)

!
:

(68)

Proof. As ~Tu;h(l; :) = Tu(l; :) by Proposition 13, it follows that:

Tu;h(l; :)� Tu(l; :) = Tu;h(l; :)� ~Tu;h(l; :) = �(l; :):

Thus by (67), it follows

kTu;h(l; :)� Tu(l; :)kL2(]0;tf [) . h2(kTu(�; 0)kH2(]0;l[) + kTukL2(0;tf ;H2(]0;l[)

+


dTu
dt




L2(0;tf ;H2(]0;l[)

):

(69)
But for every t 2 [0; tf ] :

kTu(�; t)kH2(]0;l[) . kTu(�; 0)kH2(]0;l[) +





dTudt





L2(0;tf ;H2(]0;l[))

(70)

which implies

kTukL2(0;tf ;H2(]0;l[)) . kTu(�; 0)kH2(]0;l[) +





dTudt





L2(0;tf ;H2(]0;l[))

: (71)

By inequalities (69) and (71), the result follows.
We are now ready to state our a priori error estimate for the solution Tu;h

ot the semi-discrete problem:

Theorem 25 For the solution Tu;h of the semi-discrete problem, we have the
following a priori error estimate:

kTu;h � TukC([0;tf ];L2(]0;l[)) . h2

 
kTu(�; 0)kH2(]0;l[) +





dTudt





L2(0;tf ;H2(]0;l[))

!
:

(72)

Proof. As we have explained at the begining of this section, Tu 2 C([0; tf ];H2(]0; l[)).
As ~Tu;h(�; t)�Ta is the orthogonal projection of Tu(�; t)�Ta onto Sh inH1

L(]0; l[),
~Tu;h 2 C([0; tf ];H1(]0; l[)). A fortiori ~Tu;h 2 C([0; tf ];L2(]0; l[)). Using the pre-
vious proposition, we obtain:


Tu;h � ~Tu;h





C([0;tf ];L2(]0;l[))

. h2(kTu(�; 0)kH2(]0;l[) + kTukL2(0;tf ;H2(]0;l[))

+


dTu
dt




L2(0;tf ;H2(]0;l[))

):

(73)
By Proposition 19:


 ~Tu;h(�; t)� Tu(�; t)




L2(]0;l[)
. h2 kTu(�; t)kH2(]0;l[) ; 8t 2 [0; tf ]: (74)
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By inequality (74) and (70) follows:




 ~Tu;h � Tu



C([0;tf ];L2(]0;l[))

. h2

 
kTu(�; 0)kH2(]0;l[) +





dTudt





L2(0;tf ;H2(]0;l[))

!
:

(75)
By inequalities (75), (73), and the triangular inequality follows:

kTu � Tu;hkC([0;tf ];L2(]0;l[)) . h2(kTu(�; 0)kH2(]0;l[) + kTukL2(0;tf ;H2(]0;l[))

+


dTu
dt




L2(0;tf ;H2(]0;l[))

):

(76)
Using inequality (71), the result follows.

Now, we want also to give some a priori error estimate for the gradient
rxTu;h. Firstly a lemma:

Lemma 26

tZ
0

k~�(�; s)k2H1(]0;l[) ds . h2
tZ
0

kTu(�; s)k2H2(]0;l[) ds.

Proof. Equation (50), shows us that ~Tu;h(:; t)�Ta is the orthogonal projection
of Tu(:; t)� Ta onto Sh � H1

L(]0; l[) for the scalar product of H
1
L(]0; l[). Thus:

k�(�; s)kH1(]0;l[) .



Tu(�; s)� ~Tu;h(�; s)





H1
L(]0;l[)

= inf
�2Ta+Sh

kTu(�; s)� �kH1
L(]0;l[)

� kTu(�; s)� IhTu(�; s)kH1
L(]0;l[)

. h kTu(�; s)00kL2(]0;l[) . h kTu(�; s)kH2(]0;l[) :

As � is negative, it follows from the previous inequality:

tZ
0

k~�(�; s)k2H1(]0;l[) ds =

tZ
0

kexp(�s)�(�; s)k2H1(]0;l[) ds =

tZ
0

exp(2�s)

� k�(�; s)k2H1(]0;l[) ds �
tZ
0

k�(�; s)k2H1(]0;l[) ds . h2
tZ
0

kTu(�; s)k2H2(]0;l[) ds:

Proposition 27 For the gradient rxTu;h, we have the following a priori error
estimate:

krx(Tu;h � Tu)kL2(0;tf ;L2(]0;l[)2) . h

 
kTu(�; 0)kH2(]0;l[) +





dTudt





L2(0;tf ;H2(]0;l[))

!
:

(77)
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Proof. From inequality (67) follows that:


rx �Tu;h � ~Tu;h

�



L2(0;tf ;L2(]0;l[)2)

. h2(kTu(�; 0)kH2(]0;l[) + kTukL2(0;tf ;H2(]0;l[))

+


dTu
dt




L2(0;tf ;H2(]0;l[))

):

(78)
On the other hand, from Lemma 26, it follows that:


rx � ~Tu;h � Tu�




L2(0;tf ;L2(]0;l[)2)
. h kTukL2(0;tf ;H2(]0;l[)) : (79)

By inequalities (78), (79) and the triangle inequality follows that:

krx(Tu;h � Tu)kL2(0;tf ;L2(]0;l[)2) . h(kTu(�; 0)kH2(]0;l[) + kTukL2(0;tf ;H2(]0;l[))

+


dTu
dt




L2(0;tf ;H2(]0;l[))

):

Using inequality (71) the result follows.

4 Numerical Tests

Using the P1��nite element in space with a regular grid on the interval [0; l] and
the implicit Euler scheme in time, with prediction-correction on the nonlinear
terms in (40), we have computed the temperature along the tickness in the glass
plate. Moreover, to avoid the computation of double integrals with logarithmic
singularities at each time iteration step in (40) very costly in computational
time, we have turned back to the origin of these terms coming from the inte-
gration of the radiative intensities Ik

�
(x; t; �) (k� = 1; : : : ;M) with respect to

the cosine direction � on the interval [�1; 1] (see formula (2.18) p.9 of [11]), by
performing rather a composite midpoint numerical integration in � like in N.
Siedow�s program based on their publication [15]. M has been choosen to be 30
like in that program also. The numerical results shown in Figure 0 below, have
been obtained by decomposing the interval [0; l] (the thickness l of the plate is
taken equal to 6:1 millimeters like in [15]) into nss = 64 subintervals of equal
length and by taking as time step � = 0:1 second. The temperature u (denoted
TS in [11] but u in [12]) of the in�nite black radiative source placed above the
glass plate has been choosen equal to 1500 �C. The ambient air temperature
has been taken equal to 25�C and also the initial temperature T0 of the glass
plate1 . The heat transfer coe¢ cient hc at the upper face of the glass plate has
been chosen equal to 5:0 W/(m2 � �K) (in [15], it is 280:5 W/(m2 � �K) but
it concerns tempering2). The heat conductivity of the glass plate kh has been
chosen equal to 0:8 W/(m � �K) in conformity with ([17], p.449). The graph
of the temperature along the thickness of the glass plate with respect to time is
the following:

1 for convenience the temperatures are cited in �C; the corresponding absolute temperatures
in �K are obtained by adding 273:15 to the temperatures cited in �C.

2 I take here the opportunity to thank my colleague F. Béchet from the Tempo laboratory
in our university, who has made me that remark.
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Figure 0: Temperatures in function of time

If we do not take into account the terms  (T (x; t)) + hT;u(x; t) modelizing the
participating medium character of the glass3 into equation (2)(i), instead of
T (l; 100) = 386:29 �C we obtain T (l; 100) = 393:58 �C, instead of T ( 3l4 ; 100) =
295:71 �C we obtain T ( 3l4 ; 100) = 300:50

�C, instead of T ( l2 ; 100) = 206:38
�C

we obtain T ( l2 ; 100) = 208:17 �C, and instead of T ( l4 ; 100) = 116:12 �C we
obtain T ( l4 ; 100) = 116:42

�C.
To confront our error estimate (72) with a numerical experiment, we have

computed the temperature along the tickness of the glass plate at the �xed time
t = 10 seconds choosing a small �xed time step � = 0:01 second. The numerical
results have been compared after one thousand of time steps for more and more
re�ned meshes on the space interval [0; l]: h = l

8 ,
l
16 ,

l
32 ,

l
64 ,

l
128 ,

l
256 , taking as

reference the solution computed with h = l
1024 (its graph is plotted in green in

Figure 1):

We observe quadratic behaviour of the relative error measured in the L2(]0; l[)
norm with respect to h = l

nss in accordance with our a priori error esti-
mate (72) in Theorem 25 (nss denotes the number of subintervals [(i� 1)h; ih],
i = 1; : : : ; nss, into which the interval [0; l] has been decomposed):

3 semi-transparent medium
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Figure 1: Temperatures in �C at 5, 10, and 100 s with respect to x.
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Figure 2: Relative error at time t=10 s in function of nss.
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In blue in Figure 2, we have plotted the �ve points, results of our numerical
computations:

nss Log10

�
ksol�sol_refk

2

ksol_refk
2

�
8 = 23 �3:0402
16 = 24 �3:6421
32 = 25 �4:2443
64 = 26 �4:8470
128 = 27 �5:4515
256 = 28 �6:0637

In red, on the same �gure, we have plotted the regression line �tting at best
these �ve points in the sense of mean-squares. The equation of that straight
line is the following:

Log10(
ksol � sol_refk2
ksol_refk2

) = �1:2248� 0:60424 � Log2(nss)

which implies that:

ksol � sol_refk2
ksol_refk2

= 0:059592� nss�2:00772 :

Remark 28 For the temperature on the upper face of the glass plate at the �xed
time t = 10 seconds, we have also observed quadratic convergence with respect
to h in accordance with our a priori error estimate in Corollary 24:

The equation of the regression line (see Fig. 3) for the relative error is:

Log10(relative_error) = �1:34� 0:609 � Log2(nss)

which implies that:

relative_error = 0:0457� nss�2:02:
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