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It is well known that the sphere S 6 (1) admits an almost complex structure J, constructed using the Cayley algebra, which is nearly Kaehler. Let M be a Riemannian submanifold of a manifold M with an almost complex structure J. It is called a CR submanifold if there exists a C ∞differentiable holomorphic distribution D 1 in the tangent bundle such that its orthogonal complement D 2 in the tangent bundle is totally real. If the second fundamental form vanishes on D i , the submanifold is D i -geodesic.

. Note that both the original example as its generalisations are D i geodesic. Here, we investigate the class of the three-dimensional minimal CR submanifolds M of the nearly Kaehler 6-sphere S 6 (1) which are not linearly full. We show that this class coincides with the class of D 1 and D 2 geodesic CR submanifolds and we obtain a complete classification of such submanifolds.

Introduction

Considering R 7 as the imaginary Cayley numbers, it is possible to introduce a vector cross product × on R 7 , which in its turn induces an almost complex structure J on the standard unit sphere S 6 (1) in R 7 which is compatible with the standard metric. It was shown by Calabi and Gluck, see [START_REF] Calabi | What are the best almost complex structures on the 6-sphere in Differential Geometry: geometry in mathematical physics and related topics[END_REF], that this structure, from a geometric viewpoint, is the best possible almost complex structure on S 6 (1). Details about this construction are recalled in Section 2.

With respect to the almost complex structure J, it is natural to study submanifolds for which J maps the tangent space into the tangent space (and hence also the normal space into the normal space) and those for which J maps the tangent into the normal space. The first class are called almost complex submanifolds and the second class of submanifolds mentioned are called totally real submanifolds.

One of the natural generalization of almost complex and totally real submanifolds are CR submanifolds and there are two different notions of this therm. By the first one, if the dimension of the holomorphic tangent space, the maximal J-invariant subspace H x M = JT x M ∩T x M, x ∈ M is independent on the choice of x ∈ M then the submanifold M is called the Cauchy-Riemann submanifold, or briefly CR submanifold with the CR dimension being the constant complex dimension of H x M . By the definition of Bejancu, see [START_REF] Bejancu | Geometry of CR-submanifolds[END_REF], a submanifold M is called a CR submanifold if there exists on M a differentiable holomorphic distribution H such that its orthogonal complement H ⊥ ⊂ T M is a totally real distribution. It is clear that the CR submanifold by Bejancu's definition is also CR by the other definition. The converse is true for submanifolds of the maximal CR dimension m -1 2 , where m is the dimension of the submanifold.

A CR submanifold is called proper if it is neither totally real (i.e. H ⊥ = T M ) nor almost complex (i.e. H = T M ).

CR submanifolds have been previously studied amongst others by K. Mashimo, H. Hashimoto and K. Sekigawa in [START_REF] Sekigawa | Some CR submanifolds in a 6-dimensional sphere[END_REF] and [START_REF] Hashimoto | On some 3-dimensional CR submanifolds in S 6[END_REF]. In particular, in [START_REF] Hashimoto | On some 3-dimensional CR submanifolds in S 6[END_REF], the following one-parameter family of immersions of S 2 × R was introduced:

F λ ((y 1 , y 2 , y 3 ), s) = y 1 (cos se 1 + sin se 5 ) + y 2 (cos λse 2 + sin λse 5 ) + y 3 (cos(1 + λ)se 3 -sin(1 + λ)se 7 ), where y 2 1 + y 2 2 + y 2 3 = 1 and {e 1 , . . . , e 7 } is a G 2 frame. Note that in [START_REF] Hashimoto | On some 3-dimensional CR submanifolds in S 6[END_REF] these examples were only defined for λ = 0 and λ = -1. However, it is easy to check that also for λ ∈ {0, -1}, the resulting immersion is a CR immersion with the same properties. Namely, it was shown that all of these examples satisfy:

1. the immersion is minimal 2. the immersion is contained in a totally geodesic hypersphere 3. the immersion is D 1 totally geodesic 4. the immersion is D 2 totally geodesic.

In Sections 4 and 5 we will show that for a CR submanifold the first and last two conditions in the above list are equivalent.

Another example of a minimal CR submanifold contained in a totally geodesic hypersphere of S 6 (1) is the CR submanifold which satisfy Chen's basic equality obtained in [START_REF] Djorić | Three dimensional minimal CR submanifolds in S 6 satisfying Chen's equality[END_REF].

Also, the four-dimensional, minimal, CR submanifolds which are not linearly full were classified in [START_REF] Antić | 4-dimensional minimal CR submanifolds of the sphere S 6 contained in a totally geodesic sphere S 5[END_REF]. In Section 5, we moreover investigate the threedimensional minimal proper CR submanifolds which are not linearly full and obtain a complete classification. In particular we further generalise the class of examples obtained by Sekigawa, Hashimoto and Mashimo and show that this class can be charaterised by either of the following two conditions 1. the CR submanifold is minimal and contained in a totally geodesic hypersphere 2. the CR submanifold is D 1 and D 2 totally geodesic.

Theorem 1.1. Let M be a minimal three-dimensional CR submanifold of S 6 (1) which is not linearly full in S 6 (1). Then M is locally congruent to the immersion

F (s, x 1 , x 2 ) = cos x 1 cos x 2 (cos(µ 1 )e 1 + sin(µ 1 )e 5 ) + sin x 1 cos x 2 (cos(µ 2 )e 2 + sin(µ 2 )e 6 ) + sin x 2 (cos(µ 3 )e 3 + sin(µ 3 )e 7 ), µ 1 + µ 2 + µ 3 = 0, µ 2 1 + µ 2 2 + µ 2 3 = 0,
where e 1 , . . . , e 7 is a standard G 2 basis of the space R 7 .

Preliminaries

We give a brief exposition of how the standard nearly Kähler structure on S 6 (1) arises in a natural manner from the Cayley multiplication. For further details about the Cayley numbers and their automorphism group G 2 , we refer the reader to [START_REF] Wood | Framing the exceptional Lie group G 2[END_REF] and [START_REF] Harvey | Calibrated Geometries[END_REF].

The multiplication on the Cayley numbers O may be used to define a vector cross product × on the purely imaginary Cayley numbers R 7 using the formula

u × v = 1 2 (uv -vu), (1) 
while the standard inner product on R 7 is given by

(u, v) = - 1 2 (uv + vu). (2) 
It is now elementary [START_REF] Harvey | Calibrated Geometries[END_REF] to show that

u × (v × w) + (u × v) × w = 2(u, w)v -(u, v)w -(w, v)u, (3) 
and that the triple scalar product (u × v, w) is skew symmetric in u, v, w. From this it also follows that

< u × v, u × w >=< u, u >< v, w > -< u, v >< u, w > (4) 
The Cayley multiplication on O is given in terms of the vector cross product and the inner product by

(r +u)(s+v) = rs-(u, v)+rv +su+(u×v), r, s ∈ Re(O), u, v ∈ Im(O). (5) 
In view of (1), ( 2) and ( 5), it is clear that the group G 2 of automorphisms of O is precisely the group of isometries of R 7 preserving the vector cross product.

An ordered basis e 1 , ..., e 7 is said to be a G 2 -frame if 

e 3 =
e i × (e j × e k ) + (e i × e j ) × e k = 2δ ik e j -δ ij e k -δ jk e i . (7) 
Therefore, for any G 2 -frame, we have the following very useful multiplication table [START_REF] Wood | Framing the exceptional Lie group G 2[END_REF] : The standard nearly Kähler structure on S 6 (1) is then obtained as follows :

x
Ju = x × u, u ∈ T x S 6 (1), x ∈ S 6 (1).
It is clear that J is an orthogonal almost complex structure on S 6 (1). In fact J is a nearly Kähler structure in the sense that the (2, 1)-tensor field G on S 6 (1) defined by

G(X, Y ) = ( ∇X J)Y,
where ∇ is the Levi-Civita connection on S 6 (1) is skew-symmetric. If we denote by , the metric of the space R 7 , a straightforward computation also shows that

G(X, Y ) = X × Y -x × X, Y x, X, Y ∈ T x S 6 (1).
Let M be a Riemannian submanifold of M . If we denote by , , D and D metric and Levi Civita connections on M and M , respectively, and by D ⊥ the corresponding normal connection of the immersion M → M then the formulas of Gauss and Weingarten are given by

D X Y = D X Y + h(X, Y ), (8) 
D X ξ = -A ξ X + D ⊥ X ξ, (9) 
where X and Y are vector fields on M and ξ is a normal vector field on M , and h and A are the second fundamental form and the shape operator, respectively. The second fundamental form and the shape operator are related by

h(X, Y ), ξ = A ξ X, Y . (10) 
Let us denote by ∇, ∇ and D the Levi-Civita connections on M, S 6 (1) and R 7 , respectively. Let h and h be the second fundamental forms corresponding to the immersions M → S 6 (1) and S 6 (1) → R 7 , respectively. Let p be the position vector field of the immersion of M into R 7 . Then the following equations hold

h(X, Y ) = -X, Y p, (11) 
D X p = X, (12) 
where X, Y ∈ T M . Considering ( 8), ( 9) and ( 11) we get for X, Y ∈ T M and ξ ∈ T ⊥ M, ξ ∈ T S 6 (1)

D X Y = ∇ X Y + h(X, Y ) = ∇ X Y + h(X, Y ) -X, Y p, (13) 
D X ξ = ∇ X ξ + h(X, ξ) = ∇ X ξ -X, ξ p = -A ξ X + ∇ ⊥ X ξ, (14) 
where ∇ ⊥ denotes the normal connection corresponding to the immersion of M into S 6 (1). Also, we can denote

(∇h)(X, Y, Z) = ∇ ⊥ X h(Y, Z) -h(∇ X Y, Z) -h(Y, ∇ X Z), (15) 
for X, Y, Z ∈ T (M ). Then Gauss, Codazzi and Ricci equations state that

R(X, Y, Z, W ) = X, W Y, Z -X, Z Y, W + + h(X, W ), h(Y, Z) -h(X, Z), h(Y, W ) , (16) 
(∇h)(X, Y, Z) = (∇h)(Y, X, Z), (17) 
R ⊥ (X, Y )ξ, µ = [A ξ , A µ ]X, Y , (18) 
Also the following lemma holds

Lemma 2.1. D X (Y × Z) = D X Y × Z + Y × D X Z.
3 Three-dimensional CR submanifolds of the sphere S 6 (1)

From now on we consider M to be a three-dimensional orientable CR submanifold of the sphere S 6 (1). Then, there exist the following local orthonormal vector fields: the position vector field p, E 1 and E 2 = JE 1 which span the almost complex distribution, E 3 which spans the totally real distribution, and the normal vector fields

E 4 = JE 3 , E 5 = E 1 × E 3 and E 6 = E 2 × E 3 .
Note, that by assuming that E 1 , E 2 and E 3 are positively oriented, we have that the choice of E 3 is unique. Nevertheless, we still have the following freedom:

Ẽ1 = cos θE 1 + sin θE 2 , Ẽ2 = J Ẽ1 = -sin θE 2 + cos θE 1 , Ẽ3 = E 3 , Ẽ4 = E 4 ,
Ẽ5 = (cos θE 5 + sin θE 6 ), Ẽ6 = (-sin θE 5 + cos θE 6 ).

As M is a CR submanifold we already have that T M = D 1 ⊕ D 2 , where D 1 and D 2 are respectively the almost complex and the totally real distribution.

Using the standard symmetries for a connection and for the second fundamental form, we find that

D E1 E 1 = -p + a 1 E 2 + a 2 E 3 + α 1 E 4 + α 2 E 5 + α 3 E 6 , D E1 E 2 = -a 1 E 1 + a 3 E 3 + β 1 E 4 + β 2 E + β 3 E 6 , D E1 E 3 = -a 2 E 1 -a 3 E 2 + γ 1 E 4 + γ 2 E 5 + γ 3 E 6 , D E1 E 4 = -α 1 E 1 -β 1 E 2 -γ 1 E 3 + g 1 E + g 2 E 6 , D E1 E 5 = -α 2 E 1 -β 2 E 2 -γ 2 E 3 -g 1 E 4 + g 3 E 6 , D E1 E 6 = -α 3 E 1 -β 3 E 2 -γ 3 E 3 -g 2 E -g 3 E 5 , D E2 E 1 = b 1 E 2 + b 2 E 3 + β 1 E 4 + β 2 E 5 + β 3 E 6 , D E2 E 2 = -p -b 1 E 1 + b 3 E 3 +δ 1 E 4 +δ 2 E 5 + δ 3 E 6 , D E2 E 3 = -b 2 E 1 -b 3 E 2 + µ 1 E 4 + µ 2 E 5 + µ 3 E 6 , D E2 E 4 = -β 1 E 1 -δ 1 E 2 -µ 1 E 3 + h 1 E + h 2 E 6 , D E2 E 5 = -β 2 E 1 -δ 2 E 2 -µ 2 E 3 -h 1 E 4 + h 3 E 6 , D E2 E 6 = -β 3 E 1 -δ 3 E 2 -µ 3 E 3 -h 2 E -h 3 E 5 , D E3 E 1 = c 1 E 2 + c 2 E 3 + γ 1 E 4 + γ 2 E 5 + γ 3 E 6 , D E3 E 2 = -c 1 E 1 + c 3 E 3 + µ 1 E 4 + µ 2 E 5 + µ 3 E 6 , D E3 E 3 = -p -c 2 E 1 -c 3 E 2 + ν 1 E 4 + ν 2 E 5 + ν 3 E 6 , D E3 E 4 = -γ 1 E 1 -µ 1 E 2 -ν 1 E 3 + k 1 E + k 2 E 6 , D E3 E 5 = -γ 2 E 1 -µ 2 E 2 -ν 2 E 3 -k 1 E 4 + k 3 E 6 , D E3 E 6 = -γ 3 E 1 -µ 3 E 2 -ν 3 E 3 -k 2 E -k 3 E 5 ,
for some local functions. Straightforward computation, taking in Lemma 1,

X ∈ {E 1 , E 2 , E 3 } and Y, Z ∈ {p, E 1 , .
. . , E 6 } we get the following lemma.

Lemma 3.1. For the previously defined coefficient the following equations hold

g 2 = -γ 2 , g 1 = 1 + γ 3 , α 1 = -a 3 , β 1 = a 2 , h 2 = 1 -µ 2 , h 1 = µ 3 , δ 1 = b 2 , b 3 = -a 2 , k 1 = ν 3 , k 2 = -ν 2 , µ 1 = c 2 , γ 1 = -c 3 , α 3 = β 2 , α 2 = -β 3 , δ 2 = β 3 , δ 3 = -β 2 , µ 2 = γ 3 -1, µ 3 = -γ 2 , g 3 = a 1 -c 3 , h 3 = b 1 + c 2 , k 3 = c 1 + ν 1 .

D 1 and D 2 -geodesic CR submanifolds

Since there are no three-dimensional, proper CR, totally geodesic submanifolds of the sphere S 6 , it is natural to investigate submanifolds that in some sense approach this quality. Namely, we investigate three-dimensional CR submanifolds for which corresponding second fundamental form vanishes on D 1 and D 2 . Such submanifolds are called, respectively, D 1 -geodesic and D 2 -geodesic. If the submanifold is both D 1 and D 2 -geodesic it is trivially minimal. One example of such submanifold was given in [START_REF] Sekigawa | Some CR submanifolds in a 6-dimensional sphere[END_REF]. In this section we assume that M is both D 1 and D 2 -geodesic. It follows

a 3 = β 3 = β 2 = a 2 = b 2 = ν 1 = ν 2 = ν 3 = 0.
This also immediately implies that M is a minimal submanifold.

Note that the vector field E 3 is uniquely determined up to a sign. That also means that the vector field D E 3 E 3 is independent of the choice of the basis. Therefore, we can choose vector field

E 1 such that D E 3 E 3 is orthogo- nal to E 1 , meaning c 2 = 0. Can ∇ E 3 E 3 be totally real? Suppose it is pos- sible, meaning that c 3 = 0. Than from R(E 2 , E 3 , E 1 , E 3 ) = 0 we obtain E 2 (c 2 ) = b 1 c 3 -2c 2 c 3 -γ 2 = 0 which implies γ 2 = 0. From R(E 1 , E 3 , E 1 , E 3 ) = 0 we get E 1 (c 2 ) = γ 2 3 -1 = 0 and further γ 2 3 = 1. From R(E 1 , E 2 , E 3 , E 5 ) = E 2 (c 3 ) -(γ 3 -2)γ 3 = 0 we obtain a contradiction with γ 2 3 = 1.
Gauss and Codazzi equations give now, some new relations among the coefficients.

Lemma 4.1.

γ 2 = b 1 c 3 , 0 = -1 + a 1 c 3 + c 2 3 + γ 2 2 + γ 2 3 , c 1 = 0, E 2 (γ 3 ) = -2c 3 (-1 + b 2 1 + γ 3 ), E 3 (b 1 ) = 0, E 1 (c 3 ) = -b 1 c 3 , E 1 (γ 3 ) = 2b 1 (-1 + (1 + b 2 1 )c 2 3 + γ 2 3 ), E 3 (c 3 ) = 0, E 3 (γ 3 ) = 0, E 2 (c 3 ) = (-1 + b 2 1 )c 2 3 + (-2 + γ 3 )γ 3 , E 2 (b 1 ) = - b 1 (1 + c 2 3 + b 2 1 c 2 3 -4γ 3 + γ 2 3 ) c 3 , E 1 (b 1 ) = - (-1 + γ 3 )(-1 + 2c 2 3 + 2b 2 1 c 2 3 + γ 3 + 2γ 2 3 ) c 2 3 . Proof. Gauss equation for R(E 2 , E 3 , E 1 , E 3 ) yields γ 2 = b 1 c 3 . Further from R(E 1 , E 3 , E 1 , E 3 ) = 0 we obtain 0 = -1 + a 1 c 3 + c 2 3 + γ 2 2 + γ 2 3 . Also, R(E 2 , E 3 , E 3 , E 4 ) = c 1 c 3 = 0 gives c 1 = 0. Directly from the Gauss equa- tion for R(E 1 , E 3 , E 1 , E 2 ) we now get E 3 (b 1 ) = 0, while R(E 2 , E 3 , E 6 , E 1 ) = 0 gives E 2 (γ 3 ) = -2c 3 (-1+b 2 1 +γ 3 ). Similarly, Codazzi equations for R(E 1 , E 3 , E 1 , E 4 ) = 0, R(E 1 , E 3 , E 1 , E 6 ) = 0, R(E 1 , E 3 , E 3 , E 4 ) = 0, R(E 1 , E 3 , E 3 , E 6 ) = 0, R(E 2 , E 3 , E 1 , E 4 ) = 0 and R(E 2 , E 3 , E 1 , E 5 ) = 0, respectively give E 1 (c 3 ) = -b 1 c 3 , E 1 (γ 3 ) = 2b 1 (-1 + (1 + b 2 1 )c 2 3 + γ 2 3 ), E 3 (c 3 ) = 0, E 3 (γ 3 ) = 0, E 2 (c 3 ) = (-1 + b 2 1 )c 2 3 + (-2 + γ 3 )γ 3 , E 2 (b 1 ) = - b 1 (1 + c 2 3 + b 2 1 c 2 3 -4γ 3 + γ 2 3 ) c 3 . Finally, from Gauss equation for R(E 1 , E 2 , E 1 , E 2 ) we obtain E 1 (b 1 ) = - (-1 + γ 3 )(-1 + 2c 2 3 + 2b 2 1 c 2 3 + γ 3 + 2γ 2 3 ) c 2 3 .
Straightforward computation shows that other Gauss, Codazzi and Ricci equations don't yield any new relations. Also, these relations satisfy integrability conditions. Proof. As D 1 and D 2 are totally geodesic it immediately follows that m is mininal and that the first normal space of the submanifold M is spanned by vector fields

n 1 = h(E 1 , E 3 ) = -c 3 E 4 + b 1 c 3 E 5 + γ 3 E 6 , n 2 = h(E 2 , E 3 ) = (-1 + γ 3 )E 5 -b 1 c 3 E 6 .
Then straightforward computation shows that

∇ ⊥ E 1 n 1 = - -1 + (1 + b 2 1 )c 2 3 + γ 2 3 c 3 n 2 , ∇ ⊥ E 2 n 1 = -c 3 n 1 + b 1 n 2 , ∇ ⊥ E 3 n 1 = 0.
Similarly,

∇ ⊥ E 1 n 2 = - 1 -b 2 1 c 2 3 -γ 2 3 c 3 n 1 , ∇ ⊥ E 2 n 2 = -2c 3 n 2 -b 1 n 1 , ∇ ⊥ E 3 n 2 = 0.
We conclude that the first normal space of the submanifold is invariant under parallel translations with respect to the connection in the normal bundle and by the Erbacher's theorem it follows that the submanifold M is not linearly full.

In the Section 5 we will conclude that the converse also holds, i.e. a minimal CR submanifold contained in a totally geodesic S 5 is D 1 and D 2 totally geodesic and therefore satisfies the conditions of Lemma 4.2.

The proof of the Main Theorem

From now on we will assume that M minimal, three-dimensional CR submanifold contained in a totally geodesic S 5 in S 6 (1). As a totally geodesic hypersphere is obtained by taking the intersection of S 6 (1) with a hyperplane through the origin, it follows that there exists a constant unit length vector field V , namely the unit normal to that plane, which is normal to the submanifold M and tangent to the sphere S 6 (1). Therefore we can write V = ρE 4 + τ E 5 + σE 6 .

And using the rotation freedom in our basis we can moreover assume that τ = 0. As V is unit length, we also have that

ρ 2 + σ 2 = 1.
Moreover, as M is also a minimal submanifold, we have

-a 3 + b 2 + ν 1 = ν 2 = ν 3 = 0.
Using the fact that V is constant, we have the following lemma which gives additional relations between the unknown local functions.

Lemma 5.1. Let ρ and σ be previously defined coefficients. Then we have

ν 1 = 0, b 2 = a 3 , c 1 = 0, β 2 = a 3 ρ σ , β 3 = -a 2 ρ σ , c 3 = σ(-ρ + a 1 σ) ρ 2 + σ 2 , γ 2 = - b 1 ρσ ρ 2 + σ 2 , c 2 = - b 1 σ 2 ρ 2 + σ 2 , γ 3 = ρ(-ρ + a 1 σ) ρ 2 + σ 2 , E 1 (ρ) = b 1 ρσ 2 ρ 2 + σ 2 , E 1 (σ) = - b 1 ρ 2 σ ρ 2 + σ 2 , E 2 (ρ) = σ(2 - ρ(-ρ + a 1 σ) ρ 2 + σ 2 ), E 2 (σ) = ρ(-2 + ρ(-ρ + a 1 σ) ρ 2 + σ 2 ), E 3 (ρ) = 0, E 3 (σ) = 0.
Proof. Since the vector field V is constant it follows D X V = 0 for any vector field X. Then

D E 1 V = (a 3 ρ -β 2 σ)E 1 + (-a 2 ρ -β 3 σ)E 2 + (c 3 ρ -γ 3 σ)E 3 + (γ 2 σ + E 1 (ρ))E 4 + ((1 + γ 3 )ρ + (-a 1 + c 3 )σ)E 5 + (-γ 2 ρ + E 1 (σ))E 6 , D E 2 V = (-a 2 ρ -β 3 σ)E 1 + (-b 2 ρ + β 2 σ)E 2 + (-c 2 ρ + γ 2 σ)E 3 + (-2 + γ 3 )σ + E 2 (ρ))E 4 + (-γ 2 ρ + (-b 1 -c 2 )σ))E 5 + ((2 -γ 3 )ρ + E 2 (σ))E 6 , D E 3 V = (c 3 ρ -γ 3 σ)E 1 + (-c 2 ρ + γ 2 σ)E 2 + (-a 3 + b 2 )ρE 3 + E 3 (ρ)E 4 + (-a 3 + b 2 -c 1 )σE 5 + E 3 (σ)E 6 .
Suppose ρ = 0. Then σ = 0 since V is nonzero. From D E 1 V, E 3 = 0 we get γ 3 = 0, and from D E 2 V, E 4 = 0 we get a contradiction γ 3 = 2. Therefore ρ = 0 and considering D E 3 V, E 3 = 0 we get a 3 = b 2 and ν 1 = 0. Similarly σ = 0, since otherwise

D E 1 V, E 5 = 0 contradicts D E 2 V, E 6 = 0. Then from D E 3 V, E 5 = 0 we get c 1 = 0. Other equalities follow directly.
Note that from the proof of the previous lemma it follows that both σ and ρ cannot vanish on an open subset. We therefore restrict to the open dense subset of M on which there are non vanishing. Hence we can write σ = ρt, where t is a local non zero function. As V is unit length, we also deduce that ρ 2 (t 2 + 1) = 1.

From the previous proof it now follows that

E 1 (t) = -tb 1 , E 2 (t) = -3 + a 1 t -2t 2 , E 3 (t) = 0. ( 19 
)
Now we will use the Gauss and Codazzi equations to obtain further relations between the coefficients.

Lemma 5.2. Let a 1 , b 1 and t be the previously defined coefficients. Then we have

a 2 = 0, a 3 = 0, E 1 (a 1 ) = 3a 1 b 1 , E 1 (b 1 ) = 3a 1 1 t + 1 -2a 2 1 + b 2 1 , E 2 (a 1 ) = 2 -a 2 1 + 2b 2 1 + 3a 1 1 t , E 2 (b 1 ) = 6b 1 1 t -3a 1 b 1 , E 3 (a 1 ) = 0, E 3 (b 1 ) = 0.
Proof. The Gauss equations for R(E

1 , E 3 , E 1 , E 2 ) and R(E 2 , E 3 , E 1 , E 2 ), the Ricci equation for R(E 1 , E 3 , E 6 , E 4
) and the Codazzi equation for R(E 2 , E 3 )E 3 directly imply that the following expressions, respectively, equal zero:

y 1 = 3a 1 a 2 + 3a 3 b 1 - 3a 2 t -E 3 (a 1 )
,

z 1 = 3a 1 a 3 -3a 2 b 1 - 3a 3 t -E 3 (b 1 ), y 4 = -a 2 b 1 ρ 2 t + a 3 (-3ρ 2 + a 1 ρ 2 t -2ρ 2 t 2 ) + ρ 2 tE 3 (b 1 ), z 2 = 3a 2 ρ 2 -a 1 a 2 ρ 2 t -a 3 b 1 ρ 2 t + 2a 2 ρ 2 t 2 -ρ 2 tE 3 (a 1 ).
Let us denote x = -4b 1 ρ 2 t and y = 3ρ 2 -2a 1 ρ 2 t + ρ 2 t 2 . Then the equations z 2 -ρ 2 ty 1 = 0, y 4 + ρ 2 tz 1 = 0 simplify to the system a 3 x + a 2 y = 0, a 2 x -a 3 y = 0. Suppose first that a 2 2 + a 2 3 = 0. Then x = 0, y = 0, i.e. b 1 = 0 and a 1 = 3+t 2 2t . Also a 3 y + y 4 = 0 implies -a 1 a 3 = a 3 t and z 1 = 0 implies a 1 a 3 t = a 3 which reduces to a 3 = 0. Now, E 3 (t) = 0 and

0 = y 1 = 9 + 3t 2 2t a 2 - 3 t a 2 -E 3 ( 3 + t 2 2t ) = 3 + 3t 2 t a 2
directly implies a 2 = 0, which is a contradiction. Hence we must have a 2 = a 3 = 0. Consequently also E 3 (a 1 ) = E 3 (b 1 ) = 0. The other equalities follow in a similar way.

Summarizing the previous lemmas, we have the following theorem.

Theorem 5.3. Let M be a minimal three-dimensional CR submanifold of S 6 (1) which is not linearly full in S 6 (1). Then, restricting to an open dense subset, there exist tangent vector fields E 1 , E 2 , E 3 to M , normal vector fields E 4 , E 5 , E 6 and local functions a 1 , b 1 and t such that the induced connection is given by

∇ E 1 E 1 = a 1 E 2 , ∇ E 1 E 2 = -a 1 E 1 , ∇ E 1 E 3 = 0, ∇ E 2 E 1 = b 1 E 2 , ∇ E 2 E 2 = -b 1 E 1 , ∇ E 2 E 3 = 0, ∇ E 3 E 1 = - b 1 t 2 1 + t 2 E 3 , ∇ E 3 E 2 = t(a 1 t -1) 1 + t 2 E 3 , ∇ E 3 E 3 = b 1 t 2 1 + t 2 E 1 + t -a 1 t 2 1 + t 2 E 2 (20) 
and the second fundamental form is given by

h(E 1 , E 1 ) = 0, h(E 1 , E 2 ) = 0, h(E 1 , E 3 ) = t -a 1 t 2 1 + t 2 E 4 - b 1 t 1 + t 2 E 5 + -1 + a 1 t 1 + t 2 E 6 , h(E 2 , E 2 ) = 0, h(E 2 , E 3 ) = - b 1 t 2 1 + t 2 E 4 + -2 + a 1 t -t 2 1 + t 2 E 5 + b 1 t 1 + t 2 E 6 , h(E 3 , E 3 ) = 0.
Moreover, the functions a 1 , b 1 , t satisfy the following system of differential equations:

E 1 (a 1 ) = 3a 1 b 1 , E 2 (a 1 ) = 2 -a 2 1 + 2b 2 1 + 3a 1 1 t , E 3 (a 1 ) = 0, E 1 (b 1 ) = 3 a 1 t + 1 -2a 2 1 + b 2 1 , E 2 (b 1 ) = 6 b 1 t -3a 1 b 1 , E 3 (b 1 ) = 0, E 1 (t) = -tb 1 , E 2 (t) = -3 + a 1 t -2t 2 , E 3 (t) = 0.
Using the previous expressions for the connection coefficients, we conclude that

[E 1 , E 2 ] = -a 1 E 1 -b 1 E 2 , [E 1 , E 3 ] = b 1 t 2 1 + t 2 E 3 , [E 2 , E 3 ] = - t(-1 + a 1 t) 1 + t 2 E 3 .
In particular, we remark that these vector fields do not define local coordinates.

Example 5.4. Let us recall the basic inequality, discovered by B. Y. Chen in [START_REF] Chen | Some pinching and classification theorems for minimal submanifolds[END_REF] for arbitrary n-dimensional submanifold M of a real space form of a constant sectional curvature c. This inequality relates a basic intrinsic invariant δ M , with the length of the mean curvature vector H. Namely, if we denote by inf K at the point p infimum of the sectional curvature K(π) of planes π in T p M and scalar curvature by τ = i<j K(e i ∧ e j ) where {e 1 , . . . , e n } is an orthonormal basis of the tangent space T p M then δ M is given by δ M (p) = τ (p) -inf K(p), and it satisfies

δ M ≤ n 2 (n -2) 2(n -1) H 2 + 1 2 (n + 1)(n -2)c.
If submanifold satisfies the equality case of this inequality there exists a canonical distribution

D(p) = {X ∈ T p M |(n -1)h(X, Y ) = n X, Y H, ∀Y ∈ T p M }.
We recall here the following result from [START_REF] Chen | Some pinching and classification theorems for minimal submanifolds[END_REF] which is here formulated for the three-dimensional submanifolds of S 6 (1).

Lemma 5.5. Let M be a three-dimensional submanifold of the sphere S 6 (1). Then δ M ≤ 9 4 H 2 + 2 and equality holds at a point p if and only if the dimension of

D = {X ∈ T p M |(n -1)h(X, Y ) = n X, Y H, ∀Y ∈ T p M } is greater or equal to one.
Notice now, that the space of the second fundamental form for submanifold M is one-dimensional if and only if

x = 2 + a 2 1 t 2 + (1 + b 2 1 )t 2 -a 1 t(3 + t 2 ) vanishes.
In other words, in this case, a non-zero vector field V defined by

V = b 1 tE 1 -(-1 + a 1 t)E 2 satisfies h(V, E i ) = 0, i ∈ {1, 2, 3}. Since M is minimal, i.
e. H = 0 it follows that corresponding distribution D is at least onedimensional and M satisfies Chen's equality. We now refer to [START_REF] Djorić | Three dimensional minimal CR submanifolds in S 6 satisfying Chen's equality[END_REF] and conclude that M is locally congruent with the immersion f (s, x 1 , x 2 ) = cos x 1 cos x 2 (cos se 1 -sin se 5 )+sin x 2 e 2 +sin x 1 cos x 2 (cos se 3 +sin se 7 ), which satisfies the condition of the main theorem. It will be useful to notice that the function x = 2 + a 2 1 t 2 + (1 + b 2 1 )t 2 -a 1 t(3 + t 2 ) satisfies the following system of differential equations:

E 1 (x) = 0, E 2 (x) = -6tx, E 3 (x) = 0. (21) 
Now, we return to general case. Note that h(X, Y ) = 0, X, Y ∈ D 1 and h(E 3 , E 3 ) = 0, which means that for the minimal submanifolds the converse of the Lemma 4.2 holds. Also, the distribution D 1 is involutive with totally geodesic leaves both in M and in S 6 , so they are totally geodesic and almost complex spheres S 2 .

Note that we are working on an open dense subset U such that the constant normal vector field V has components in both the spaces JD 2 and D 2 × D 1 .

For a given point p of the open dense subset of the submanifold M constructed previously (such that the function t is a non vanishing function) we can assume that the coordinate system of the R 7 is such that p has coordinates e 1 = (1, 0, . . . , 0), E 1 (p) = (0, 1, 0, 0, 0, 0, 0) and such that the normal vector to the totally geodesic S 5 (1) containing M 3 is given by e 4 . Note that we still have the freedom to choose the sign of e 4 appropriately. We parametrize the corresponding leaf S 2 0 by (cos x 1 cos x 2 , cos x 1 sin x 2 , sin x 1 , 0, 0, 0, 0), x 1 ∈ (-π/2, π/2), x 2 ∈ (-π, π). Let us denote by γ : I → S 6 the integral curve of the vector field E 3 with the initial condition that γ(0) = p. For each point γ(s 0 ) there is a unique G 2 -isometry, denoted by A(s 0 ) of the sphere S 6 mapping the S 2 0 into the corresponding leaf through γ(s 0 ) defined by the conditions

A(s 0 )(e 1 ) = γ(s 0 ) A(s 0 )(e 4 ) = e 4 A(s 0 )(e 2 ) = E 1 (γ(s 0 )).
Note that from the above conditions it follows that A depends differentiably on the parameter s of the integral curve. Therefore, the manifold M is locally given by

F (x 1 , x 2 , s) = A(s)(cos x 1 cos x 2 , sin x 1 cos x 2 , sin x 2 , 0, 0, 0, 0) t .
Let us denote by A 1 (s), A 2 (s), A 3 (s) the first three columns of A(s). Then,

F (x 1 , x 2 , s) = cos x 1 cos x 2 A 1 (s) + sin x 1 cos x 2 A 2 (s) + sin x 2 A 3 (s).
Since p is mapped into the γ(s), ∀s, A 1 (s) is the coordinate representation of the integral curve γ. Moreover, as the matrix belongs to G 2 we have that A 3 (s) = γ(s) × A 2 (s). Note that it is straightforward to check that any such surface is a CR-surface for which the invariant distribution is totally geodesic.

As the constant vector field V corresponds with e 4 , at points of γ(s), i.e. at the points where x 1 = x 2 = 0 we have γ(s) × e 4 = -σE 3 + ρE 1 × E 3 . Hence, the vector field W (s) = (γ × e 4 ) × γ is collinear with A 2 (s).

Note that the vector field W can vanish if and only if e 4 is parallel with γ × γ . As those points the constant normal e 4 would only have a component in the direction of JD 2 . These are exactly the points which we excluded from our open dense subset. Hence this case can not happen.

Therefore, choosing at the initial point the sign of e 4 appropriately we have A 2 = -W/ W . Now, at γ(s) the vector fields γ, A 2 , A 3 = γ×A 2 , γ , γ×γ , A 2 × γ , A 3 × γ form the G 2 basis, and further γ (as well as all of its derivatives), A 2 , A 3 are orthogonal to e 4 . Moreover, the following holds.

Lemma 5.6. The integral curve γ satisfies γ , γ × γ = γ , γ × e 4 = 0.

Proof. From Theorem 5.3, we have γ

= D E 3 E 3 | γ(s) = γ , A 2 A 2 + γ , A 3 A 3 -γ,
so straightforwardly we get that the curve γ has to satisfy

γ , γ = γ , γ × γ = γ , A 2 × γ = γ , A 3 × γ = 0. ( 22 
)
Since, γ = 1 the first condition is trivially satisfied. Further, as A 2 ||W and (3) we get

γ , W × γ = γ , ((γ × e 4 ) × γ ) × γ = γ , (γ × e 4 ), γ γ -γ × e 4 = -γ , γ × e 4
from which we deduce the second equation. Finally, as

A 3 = γ × A 2 and (γ × W ) × γ = (γ × ((γ × e 4 ) × γ )) × γ = ((-γ × (γ × e 4 )) × γ -γ × e 4 , γ γ) × γ = (e 4 × γ -γ × e 4 , γ γ) × γ = -e 4 -γ × e 4 , γ γ × γ , we see that γ , (γ × W ) × γ = γ × e 4 , γ γ × γ , γ
and therefore γ , A 3 × γ = 0 does not yield any additional condition.

Lemma 5.7.

It holds A 2 , A 2 = A 3 , A 3 = A 2 , A 3 = A 2 , A 3 = γ, A 2 = γ, A 3 = 0. Moreover the vector field W has constant length. Proof. Since A 2 = A 3 = 1 we have A 2 , A 2 = A 3 , A 3 = 0. By deriving A 2 , γ = 0 we get A 2 , γ = -A 2 , γ = -E 1 (γ), E 3 (γ) = 0, and similarly A 3 , γ = 0. Also, by deriving A 2 , A 3 = 0 we get A 2 , A 3 = A 2 , A 3 .
Further, using ( 3) and ( 4) we find that

W = (γ × e 4 + 0) × γ + (γ × e 4 ) × γ = e 4 + (γ × e 4 ) × γ , W , W = (γ × e 4 ) × γ , (γ × e 4 ) × γ = -(γ × e 4 ) × ((γ × e 4 ) × γ ), γ = -γ × e 4 , γ γ × e 4 -γ × e 4 , γ × e 4 γ , γ = -γ × e 4 , γ γ × e 4 , γ = 0.
This last equation immediately implies that W has constant length and we get moreover that

A 2 , A 3 = - 1 W 2 W , γ × W = - 1 W 2 e 4 + (γ × e 4 ) × γ , e 4 × γ -γ × e 4 , γ γ = - 1 W 2 ( (γ × e 4 ) × γ , e 4 × γ -γ × e 4 , γ (γ × e 4 ) × γ , γ ) = - 1 W 2 (-(e 4 × γ) × γ , e 4 × γ -γ × e 4 , γ -γ × (e 4 × γ ) + 2 γ, γ e 4 , γ ) = 1 W 2 (e 4 × γ) × γ , e 4 × γ -0 = 1 W 2 -e 4 × (γ × γ ) -γ, γ e 4 , e 4 × γ = 1 W 2 -e 4 × (γ × γ ), e 4 × γ = - 1 W 2 γ × γ , γ = 0.
We know compute the tangent space to the immersion F . It is spanned by

F x 1 = -cos x 2 sin x 1 γ + cos x 2 cos x 1 A 2 , F x 2 = -sin x 2 cos x 1 γ -sin x 2 sin x 1 A 2 + cos x 2 A 3 , F s = cos x 1 cos x 2 γ + cos x 2 sin x 1 A 2 + sin x 2 A 3 , and clearly, γ × F x 1 cos x 2 = F x 2 so D 1 = Span(F x 1 , F x 2 ). Since F s , F x 1 = F s , F x 2 = 0 it follows D 2 = Span(F s ). Note F x 1 cos x 2 = F x 2 = 1. Moreover,
straightforward computation shows that

F x 1 x 1 = ∇ ∂x 1 ∂x 1 + h(∂x 1 , ∂x 1 ) -∂x 1 , ∂x 1 F = sin x 2 cos x 2 F x 2 -cos 2 x 2 F, F x 2 x 2 = ∇ ∂x 2 ∂x 2 + h(∂x 2 , ∂x 2 ) -∂x 2 , ∂x 2 F = -F, F x 1 x 2 = ∇ ∂x 1 ∂x 2 + h(∂x 1 , ∂x 2 ) -∂x 1 , ∂x 2 F = -tan x 2 F x 1 , so h(∂x 1 , ∂x 1 ) = h(∂x 1 , ∂x 2 ) = h(∂x 2 , ∂x 2 ) = 0, or h(D 1 , D 1 ) = 0. Now, F ss = cos x 1 cos x 2 γ + cos x 2 sin x 1 A 2 + sin x 2 A 3 = ∇ ∂s ∂s + h(∂s, ∂s) -∂s, ∂s F,
and if we denote by

B = F ss , F x 1 cos x 2 F x 1 cos x 2 + F ss , F x 2 F x 2 + F ss , F F we con- clude that h(D 2 , D 2 )
vanishes, or equivalently that M is minimal, and moreover h(D 2 , D 2 ) = 0 if and only if F ss -B is collinear to F s . A straightforward computation shows

F ss -B = cos x 1 cos x 2 [γ -γ , A 2 A 2 -γ , A 3 A 3 + γ] + sin x 1 cos x 2 [A 2 -A 2 , A 2 A 2 -A 2 , A 3 A 3 -A 2 , γ γ] + sin x 2 [A 3 -A 3 , A 2 A 2 -A 3 , A 3 A 3 -A 3 , γ γ].
As the vector fields γ, A 22) that γ lies in the space spanned by A 2 , A 3 and γ. Therefore

2 , A 3 = γ × A 2 , γ , γ × γ , A 2 × γ , A 3 × γ form a G 2 basis, we see from (
F ss -B = sin x 1 cos x 2 [A 2 -A 2 , A 2 A 2 -A 2 , A 3 A 3 -A 2 , γ γ] + sin x 2 [A 3 -A 3 , A 2 A 2 -A 3 , A 3 A 3 -A 3 , γ γ].
If we denote the projections of A 2 and A 3 on Span(γ , γ ×γ , A 2 ×γ , A 3 ×γ ) by A ⊥ 2 and A ⊥ 3 we have F ss -B = sin x 1 cos x 2 A ⊥ 2 +sin x 2 A ⊥ 3 . F ss -B has to be collinear to F s at all points, in particular for x 1 = 0, x 2 = 0, or x 1 = 0, x 2 = 0 which implies

A ⊥ 2 || cos x 1 γ + sin x 1 A 2 , A ⊥ 3 || cos x 2 γ + sin x 2 A 3 .
If we, for instance, assume A ⊥ 2 = 0, since we can choose arbitrary x 2 , it follows A 2 is collinear to γ . A similar property holds also for A ⊥ 3 . We now consider 4 subcases. Case 1:

A ⊥ 2 = 0 = A ⊥ 3 .
As the length of W is constant this implies that both W and (γ × W ) = γ × W + γ × W are parallel to γ . We can write W = f 1 γ . Substituting this in the second equation we have that

(γ × W ) = γ × (W -f 1 γ) γ .

This can only happen if we can write

W = f 1 γ + f 2 γ .
Given the definition of A 2 , this contradicts that the vector fields γ, A 2 , A 3 = γ × A 2 , γ , γ × γ , A 2 × γ , A 3 × γ form a G 2 basis. Therefore this case can not occur. Case 2: A ⊥ 2 = 0 and A ⊥ 3 = 0. In this case we know that A 2 is parallel with γ but that A 2 / ∈ Span(γ, A 2 , A 3 ). Note that from the multiplication table it follows that Span(γ, A 2 , A 3 ) is closed under multiplication. Moreover, we have that

A 3 = γ × A 2 A 3 = γ × A 2 + γ × A 2 A 3 = γ × A 2 + 2γ × A 2 + γ × A 2 = γ × A 2 + γ × A 2 .
This implies that γ × A 2 ∈ Span(γ, A 2 , A 3 ). Multiplying oncemore with γ, it follows from (3) that also A 2 ∈ Span(γ, A 2 , A 3 ) which is a contradiction. Case 3: A ⊥ 2 = 0 and A ⊥ 3 = 0. A contradiction follows in a similar way as in the previous case. Case 4:

A ⊥ 2 = 0 = A ⊥ 3 .
As all the previous cases let to a contradiction, this is the only possibility. In that case we get the following lemma: Proof. We know that

A 2 , A 3 ∈ Span(γ, A 2 , A 3 ). ( 23 
)
Note that

A 3 = γ × A 2 + 2γ × A 2 + γ × A 2 ,
and since γ ∈ Span(γ, A 2 , A 3 ), the (23) is equivalent to γ ×A 2 , A 2 ∈ Span(γ, A 2 , A 3 ). However, since A 2 ||W and using [START_REF] Calabi | What are the best almost complex structures on the 6-sphere in Differential Geometry: geometry in mathematical physics and related topics[END_REF] we see that

γ × W , γ = 0, γ × W , γ × γ = γ, W = 0, γ × W , γ × A 2 = A 2 , W = 0, γ × W , γ × A 3 = A 3 , W = 0,
and therefore γ × A 2 ∈ Span(γ, A 2 , A 3 ) does not give any new conditions. We have

W = (γ × e 4 ) × γ + (γ × e 4 ) × γ .
The condition that A 2 ∈ Span(γ, A 2 , A 3 ) gives the following. Further,

0 = W , A 2 × γ = γ × (e 4 × γ ), γ × A 2 + (γ × e 4 ) × γ , A 2 × γ = A 2 , e 4 × γ + (γ × e 4 ) × γ , A 2 × γ = 1 W ( (e 4 × γ) × γ , e 4 × γ -(γ × e 4 ) × γ , ((γ × e 4 ) × γ ) × γ ) = - 1 W ( e 4 × (γ × γ ), e 4 × γ + (γ × e 4 ) × γ , γ , γ × e 4 γ -γ × e 4 ) = 1 W (-γ , γ × γ -γ , γ × e 4 (γ × e 4 ) × γ , γ ) = - 1 W γ , γ × e 4 (γ × e 4 ) × γ , γ ,
and,

0 = W , A 3 × γ = 1 W (γ × e 4 ) × γ + (γ × e 4 ) × γ , e 4 + γ × e 4 , γ γ × γ = 1 W e 4 × (γ × γ ) + e 4 × (γ × γ ), e 4 + γ × e 4 , γ γ × γ = γ × e 4 , γ W ( (e 4 × γ ) × γ , γ × γ + (e 4 × γ ) × γ, γ × γ ) = γ × e 4 , γ W ( γ, e 4 × γ -γ , e 4 × γ ),
does not give any additional information.

Therefore we have:

Theorem 5.9. Let M be a minimal three-dimensional CR submanifold of S 6 (1) which is not linearly full in S 6 (1). Then M is locally congruent to the immersion

F (x 1 , x 2 , s) = cos x 1 cos x 2 γ(s) + sin x 1 cos x 2 A 2 (s) + sin x 2 A 3 (s) ( 24 
)
where γ is a sphere curve that satisfies the following

γ⊥e 4 , γ = 1, γ , γ × γ = γ , γ × e 4 = 0, (γ × e 4 ) × γ , γ = e 4 × γ , γ = 0, ( 25 
)
and

A 2 = - (γ × e 4 ) × γ (γ × e 4 ) × γ and A 3 = γ × A 2 .
Conversely, if γ is a sphere curve that satisfies conditions (25), then (24) is a minimal CR immersion into the sphere S 6 which is not linearly full.

Proof. We have already seen that on an open dense subset M can be written as above. Also as at each stage we verified that there are no additional conditions, a the straightforward computation shows that for a sphere curve γ that satisfies (25), the immersion (24) satisfies the conditions of the theorem.

Remark 5.10. We will now see how the examples of Hashimoto and Mashimo can be interpreted in the above framework. We write F λ 1 λ 2 ((y 1 , y 2 , y 3 ), s) = y 1 (cos(λ 1 s)e 1 + sin(λ 1 s)e 5 ) + y 2 (cos(λ 2 s)e 2 + sin(λ 2 s)e 5 ) + y 3 (cos((λ 1 + λ 2 )s)e 3 -sin((λ 1 + λ 2 )s)e 7 ), where y 2 1 + y 2 2 + y 2 3 = 1 and {e 1 , . . . , e 7 } is a G 2 -frame. Note that replacing (λ 1 , λ 2 ) by a multiple of itself yields the same CRsubmanifold. Also it is easy to check that we can not apply the trivial choice. Namely if we take y 1 = cos x 1 cos x 2 , y 2 = sin x 1 cos x 2 and y 3 = sin x 2 and work in the neighborhood of the point (0, 0, 0), it follows that e 4 , F s (s, 0, 0) × F x 1 (s, 0, 0) = e 4 , F s (s, 0, 0) × F x 2 (s, 0, 0) = 0, and therefore the point (0, 0, 0) does not belong to the open dense subset on which we worked during the proof.

In order to overcome this problem and still be able to work at the point (0, 0, 0), we take a different parametrization of the sphere. We take angles a and b (at the moment arbitrary) and define An elementary computation shows that

F x 1 , F x 1 = cos 2 x 2 , F x 2 , F x 2 = 1, F x 1 , F x 2 = 0, J Fx 1 cos x 2 = F x 2 .
We put

E 1 = Fx 1 cos x 2 and E 2 = F x 2 . A straightforward computation shows that F s , E 1 = F s , E 2 = 0. As F s (s, 0, 0), F s (s, 0, 0) = cos 2 (b) λ 1 2 cos 2 (a) + λ 2 2 sin 2 (a) + sin 2 (b)(λ 1 + λ 2 ) 2
we see that we can rescale (λ 1 , λ 2 ) such that F s (s, 0, 0), F s (s, 0, 0) = 1 and therefore F s (s, 0, 0) is the integral curve of E 3 through (0, 0, 0). A straightforward computation also shows that

e 4 , F s (s, 0, 0) × F x 1 (s, 0, 0) = sin(a) cos(a) cos(b)(λ 2 -λ 1 ), e 4 , F s (s, 0, 0) × F x 2 (s, 0, 0) = - 1 4 sin(2b)(cos(2a)(λ 1 -λ 2 ) + 3(λ 1 + λ 2 )), e 4 , JF s (s, 0, 0) = 1 4 2 cos(2a) cos 2 (b)(λ 2 -λ 1 ) -3 cos(2b)(λ 1 + λ 2 ) + (λ 1 + λ 2 ) .
So we see that, in order to be consistent with our proof we have to choose a and b in such a way that the first expression vanishes and the other two are not zero. For example 1. if 2λ 1 + λ 2 = 0 and λ 2 = 0, we can take a = 0 and b = π 4 , 2. if 2λ 2 + λ 1 = 0 and λ 1 = 0, we can take a = π 2 and b = π 4 .

Note that the above two cases cover all possibilities. Case 1: a = 0 and b = π 4 . We find

γ(s) = cos(sλ 1 ) √ 2 , 0, cos(s(λ 1 + λ 2 )) √ 2 , 0, sin(sλ 1 ) √ 2 , 0, - sin(s(λ 1 + λ 2 )) √ 2 .
Moreover we also have that

W (s) = 0, - 1 2 (2λ 1 + λ 2 ) cos(sλ 2 ), 0, 0, 0, - 1 2 
(2λ 1 + λ 2 ) sin(sλ 2 ), 0 , which determines (upto a choice of sign) the vector field A 2 (s). However, if we take A 2 (s) = (0, cos(sλ 2 ), 0, 0, 0, sin(sλ 2 ), 0) , and

A 3 (s) = γ(s)×A 2 (s) = (- cos(λ 1 s) √ 2 , 0, cos((λ 1 + λ 2 )s) √ 2 , 0, - sin(λ 1 s) √ 2 , 0, - sin((λ 1 + λ 2 )s) √ 2 )
we deduce indeed that F (s, x 1 , x 2 ) = γ(s) cos x 1 cos x 2 + A 2 (s) sin x 1 cos x 2 + A 3 (s) sin x 2 .

Case 2: a = 0 and b = π 4 . We find γ(s) = 0, cos(sλ 2 ) √ 2 , cos(s(λ 1 + λ 2 )) √ 2 , 0, 0, sin(sλ 2 ) √ 2 , -sin(s(λ 1 + λ 2 )) √ 2

Moreover we also have that W (s) = 1 2 (λ 1 + 2λ 2 ) cos(sλ 1 ), 0, 0, 0, 1 2 (λ 1 + 2λ 2 ) sin(sλ 1 ), 0, 0 , which determines (upto a choice of sign) the vector field A 2 (s). However, if we take A 2 (s) = (-cos(sλ 1 ), 0, 0, 0, -sin(sλ 1 ), 0, 0) , and therefore

A 3 (s) = γ(s)×A 2 (s) = 0, - cos(sλ 2 ) √ 2 , cos(s(λ 1 + λ 2 )) √ 2 , 0, 0, - sin(sλ 2 ) √ 2 , - sin(s(λ 1 + λ 2 )) √ 2
we deduce indeed that F (s, x 1 , x 2 ) = γ(s) cos x 1 cos x 2 + A 2 (s) sin x 1 cos x 2 + A 3 (s) sin x 2 .

Note that the above procedure already indicates that the same submanifold can be written in many ways, using different curves γ, satisfying the conditions of our theorem. Therefore in order to get a more explicit result we are now going to determine the curves γ more explicitly (and try to give a less complicated expression for the immersion). We recall that the frame γ, A 2 , A 3 = γ × A 2 , γ , γ × γ , A 2 × γ , A 3 × γ form a G 2 basis. Moreover, we have that W = (γ ×e 4 )×γ , from which we deduce that W 2 = 1-γ ×γ , e 4 2 . Therefore, from the proof of the theorem and the choice of E 1 it follows that we can write e 4 = cos θγ × γ + sin θA 3 × γ .

Moreover Lemma 5.4 implies that θ is a constant. From ( 22) we see that we can write γ = -γ + κ 1 A 2 + κ 2 A 3 .

It follows now from Lemma 5.5 and Lemma 5.6 that κ 1 and κ 2 are both constants. Therefore we can write down a system of ordinary differential equations with constant coefficients for the derivatives of our frame. Writing f 1 = γ, f 2 = A 2 , f 3 = A 3 = γ×A 2 , f 4 = γ , f 5 = γ×γ , f 6 = A 2 ×γ , f 7 = A 3 ×γ , and F = (f 1 f 2 f 3 f 4 f 5 f 6 f 7 ), we get that

F = F           0 0 0 -1 0 0 0 0 0 0 κ 1 -κ 2 κ 1 cot(θ) κ 2 cot(θ) 0 0 0 κ 2 κ 1 κ 2 cot(θ) + 1 -κ 1 cot(θ) 1 -κ 1 -κ 2 0 0 0 0 0 κ 2 -κ 1 0 0 0 0 0 -κ 1 cot(θ) -κ 2 cot(θ) -1 0 0 0 0 0 -κ 2 cot(θ) κ 1 cot(θ) 0 0 0 0          
.

Further, we have

A 2 = κ 1 γ -csc 2 θ(κ 2 1 + κ 2 2 )A 2 -κ 1 cot θA 3 , A 3 = κ 1 γ -κ 1 cot θA 2 -(csc 2 θ(κ 2 1 + κ 2 2 ) + 2κ 2 cot θ + 1)A 3 . (26) 
Let µ 1 , µ 2 , µ 3 be the eigenvalues of the symmetric matrix

A =   -cos θ 0 -sin θ 0 -κ 2 csc θ κ 1 csc θ -sin θ κ 1 csc θ κ 2 csc θ + cos θ   ,
and (a 1i , a 2i , a 3i ), i = 1, 2, 3 the corresponding scaled eigenvectors, so that (a ij ) ∈ SO(3). An eigenvalue can be zero, only if the det A = csc θ(cot θ(κ 2 1 + κ 2

2 ) + κ 2 ) = 0. Assume that it is the case. Then at the points γ(s) the first normal space, which is spanned by the normal parts of F 1s and F 2s , i.e. by the normal parts of A 2 and A 3 , which are respectively, κ 2 f 5 -κ 1 cot θf 6 -κ 2 cot θf 7 and -κ 1 f 5 -(κ 2 cot θ + 1)f 6 + κ 1 cot θf 7 , is one-dimensional, since they are collinear. That means that along γ the function x of the Example 5.4 is zero.

Since also E 1 (x) = 0 we easily obtain that then x vanishes, and submanifold satisfies the Chens equality. Therefore, from now on we may assume that non of the eigenvalues of the matrix A is zero.

Lemma 4 . 2 .

 42 Let M be three-dimensional connected CR submanifold of the sphere S 6 and T M = D 1 ⊕ D 2 where D 1 and D 2 are corresponding almost complex and totally real distribution. Let h(D 1 , D 1 ) = h(D 2 , D 2 ) = 0. Then M is minimal and contained in a totally geodesic hypersphere.

Lemma 5 . 8 .

 58 The integral curve γ satisfies (γ × e 4 ) × γ , γ = e 4 × γ , γ = 0.

  0 = W , γ = -γ × (e 4 × γ ) + 2 γ, γ e 4 , γ + (γ × e 4 ) × γ , γ = (γ × e 4 ) × γ , γ , By deriving γ, γ = -1 we get γ, γ = 0 and then 0 = W , γ × γ = -γ × (e 4 × γ ), γ × γ + -γ × (e 4 × γ ) + γ, γ e 4 , γ × γ = e 4 × γ , γ -e 4 × γ , γ + γ, γ γ × γ , e 4 = -e 4 × γ , γ .

y 1 =

 1 cos(a) cos(b) cos(x 2 ) cos(x 1 ) -cos(a) sin(b) sin(x 2 ) -sin(a) sin(x 1 ) cos(x 2 ), y 2 = sin(a) cos(b) cos(x 1 ) cos(x 2 ) -sin(a) sin(b) sin(x 2 ) + cos(a) sin(x 1 ) cos(x 2 ), y 3 = sin(b) cos(x 1 ) cos(x 2 ) + cos(b) sin(x 2 ).

  e 1 × e 2 , e 5 = e 1 × e 4 , e 6 = e 2 × e 4 , e 7 = e 3 × e 4 . (6) For example, the standard basis e 1 , ..., e 7 of R 7 is a G 2 -frame. Two G 2 -frames are related by a unique element of G 2 . Moreover, if e 1 , e 2 , e 4 are mutually orthogonal unit vectors with e 4 orthogonal to e 1 × e 2 , then e 1 , e 2 , e 4 determine a unique G 2 -frame e 1 , ..., e 7 and (R 7 , ×) is generated by e 1 , e 2 , e 4 subject to the relations :

* Research partially supported by the Ministry of Science and Technological Development of Serbia, project 174012.

Note that T raceA = 0 so µ 1 +µ 2 +µ 3 = 0. Then, (a 1i , a 2i , a 3i ), i = 1, 2, 3 are eigenvectors for the matrix -A 2 and for the eigenvalues, respectively, -µ 2 i , i = 1, 2, 3. Straightforward computation and (26) show that this further implies

and further

where C i , D i , i = 1, 2, 3 are constant vectors. Since the rows of matrix (a ij ) are unit it follows C i , C i = D i , D i = 1 and C i , D i = 0, and the orthogonality of the rows implies

Note also that we have picked initial conditions such that γ(0) = e 1 , A 2 (0) = e 2 and A 3 (0) = e 3 and e 4 = (cos θe 1 + sin θe 3 ) × γ (0). This implies that γ (0) = -(cos θe 1 + sin θe 3 ) × e 4 = -cos θe 5 -sin θe 7 , end further

Now,(27) and its derivative for s = 0 imply that C i = a 1i e 1 + a 2i e 2 + a 3i e 3 and µ i D i = a 1i (-cos θe 5 -sin θe 7 ) + a 2i (-κ 2 csc θe 6 + κ 1 csc θe 7 ) + a 3i (-sin θe 5 + κ 1 csc θe 6 + (κ 2 csc θ + cos θ)e 7 ). But, (a 1i , a 2i , a 3i ) is an eigenvector for matrix A and eigenvalue µ i so along with (28) this implies D i = -e 4 × C i = a 1i e 5 + a 2i e 6 + a 3i e 7 .

Matrix A defines a reparametrization of the sphere S 2 : y 2 1 +y 2 2 +y 2 3 = 1 given by (y 1 y 2 y 3 ) t = A(z 1 z 2 z 3 ) t , and also defines an isometry which maps e 1 , e 2 , e 3 respectively into C 1 = e 1 , C 2 = e 2 , C 3 = e 2 that along with e 4 , D 1 = e 5 , D 2 = e 6 , D 3 = e 7 form a G 2 basis. This transforms an immersion F (s, y 1 , y 2 , y 3 ) = y 1 γ(s) + y 2 A 2 (s) + y 3 A 3 (s) into F (s, z 1 , z 2 , z 3 ) = (cos(µ 1 )e 1 + sin(µ 1 )e 5 )z 1 + (cos(µ 2 )e 2 + sin(µ 2 )e 6 )z 2 + (cos(µ 3 )e 3 + sin(µ 3 )e 7 )z 3 , µ 1 + µ 2 + µ 3 = 0.