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Three-dimensional minimal CR submanifolds of the
sphere S9(1) contained in a hyperplane

MIROSLAVA ANTIC* AND LUC VRANCKEN

Abstract

It is well known that the sphere S%(1) admits an almost complex struc-
ture .J, constructed using the Cayley algebra, which is nearly Kaehler.
Let M be a Riemannian submanifold of a manifold M with an almost
complex structure J. It is called a CR submanifold if there exists a C'°°-
differentiable holomorphic distribution D; in the tangent bundle such that
its orthogonal complement D5 in the tangent bundle is totally real. If the
second fundamental form vanishes on D;, the submanifold is D;-geodesic.
The first example of a 3-dimensional CR-submanifold was constructed by
Sekigawa in [12]. This example was later generalised by Hashimoto and
Mashimo in [11]. Note that both the original example as its generalisa-
tions are D; geodesic.

Here, we investigate the class of the three-dimensional minimal CR sub-
manifolds M of the nearly Kaehler 6-sphere S®(1) which are not linearly
full. We show that this class coincides with the class of D; and D, geodesic
CR submanifolds and we obtain a complete classification of such subman-
ifolds.

1 Introduction

Considering R” as the imaginary Cayley numbers, it is possible to introduce
a vector cross product x on R7, which in its turn induces an almost complex
structure J on the standard unit sphere S%(1) in R” which is compatible with
the standard metric. It was shown by Calabi and Gluck, see [4], that this struc-
ture, from a geometric viewpoint, is the best possible almost complex structure
on S5(1). Details about this construction are recalled in Section 2.

With respect to the almost complex structure J, it is natural to study subman-
ifolds for which J maps the tangent space into the tangent space (and hence
also the normal space into the normal space) and those for which J maps the
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tangent into the normal space. The first class are called almost complex sub-
manifolds and the second class of submanifolds mentioned are called totally real
submanifolds.

One of the natural generalization of almost complex and totally real submani-
folds are CR submanifolds and there are two different notions of this therm. By
the first one, if the dimension of the holomorphic tangent space, the maximal
J-invariant subspace H, M = JT, M NT,.M,x € M is independent on the choice
of x € M then the submanifold M is called the Cauchy-Riemann submanifold,
or briefly CR submanifold with the CR dimension being the constant complex
dimension of H,M. By the definition of Bejancu, see [2], a submanifold M
is called a CR submanifold if there exists on M a differentiable holomorphic
distribution H such that its orthogonal complement H+ C TM is a totally
real distribution. It is clear that the CR submanifold by Bejancu’s definition is
also CR by the other definition. The converse is true for submanifolds of the

maximal CR dimension , where m is the dimension of the submanifold.

A CR submanifold is called proper if it is neither totally real (i.e. H+ = TM)
nor almost complex (i.e. H =TM).

CR submanifolds have been previously studied amongst others by K. Mashimo,
H. Hashimoto and K. Sekigawa in [12] and [11]. In particular, in [11], the
following one-parameter family of immersions of S? x R was introduced:

Fx((y1,92,93), ) = y1(cos seq + sin ses)
+ y2(cos Asea + sin Ases) + y3(cos(1 + N)sesz — sin(1 + N)ser),

where y? +y3 +y2 =1 and {e1,...,e7} is a Go frame. Note that in [11] these
examples were only defined for A # 0 and A # —1. However, it is easy to check
that also for A € {0, —1}, the resulting immersion is a CR immersion with the
same properties. Namely, it was shown that all of these examples satisfy:

1. the immersion is minimal

2. the immersion is contained in a totally geodesic hypersphere
3. the immersion is D; totally geodesic

4. the immersion is Dy totally geodesic.

In Sections 4 and 5 we will show that for a CR submanifold the first and last
two conditions in the above list are equivalent.

Another example of a minimal CR submanifold contained in a totally geodesic
hypersphere of S®(1) is the CR submanifold which satisfy Chen’s basic equality
obtained in [7].

Also, the four-dimensional, minimal, CR submanifolds which are not linearly
full were classified in [1]. In Section 5, we moreover investigate the three-
dimensional minimal proper CR submanifolds which are not linearly full and
obtain a complete classification. In particular we further generalise the class of



examples obtained by Sekigawa, Hashimoto and Mashimo and show that this
class can be charaterised by either of the following two conditions

1. the CR submanifold is minimal and contained in a totally geodesic hy-
persphere

2. the CR submanifold is D; and D, totally geodesic.

THEOREM 1.1. Let M be a minimal three-dimensional CR submanifold of
S6(1) which is not linearly full in S®(1). Then M is locally congruent to the
1Mmersion

F(s,x1,29) = cosx cos xa(cos(u1)er + sin(u)es) + sinxy cos xa(cos(pug)es + sin(puz)eg)

+sinwa(cos(us)es + sin(g)er), i1+ iz + iz = 0, + 3+ i £ 0,

where ey, ..., e7 is a standard Gy basis of the space R”.

2 Preliminaries

We give a brief exposition of how the standard nearly Kihler structure on S®(1)
arises in a natural manner from the Cayley multiplication. For further details
about the Cayley numbers and their automorphism group Ga, we refer the
reader to [14] and [10].

The multiplication on the Cayley numbers O may be used to define a vector
cross product x on the purely imaginary Cayley numbers R” using the formula

uxv:§(uv—vu), (1)
while the standard inner product on R7 is given by
1
(u,v) = —§(uv + vu). (2)
It is now elementary [10] to show that
ux (vxXw)+ (uxv)xw=2u,w)v— (u,v)w—(w,v)u, (3)

and that the triple scalar product (u X v, w) is skew symmetric in u, v, w. From
this it also follows that

<UXV,UXWS=< U, U > V,Ww > — < UV > UW D> (4)

The Cayley multiplication on O is given in terms of the vector cross product
and the inner product by

(r+u)(s+v) =rs—(u,v)+rv+su+(uxv), r,s€ Re(O),u,v e Im(O). (5)



In view of (1), (2) and (5), it is clear that the group G2 of automorphisms of O
is precisely the group of isometries of R” preserving the vector cross product.

An ordered basis eq, ..., e7 is said to be a Ga-frame if
€3 =e€1 X €3, €5=e€1 X €4, €5=¢eyXey e7=e3Xe,4. (6)

For example, the standard basis e1, ..., ey of R7 is a Go-frame. Two Go-frames
are related by a unique element of G3. Moreover, if ey, es, eq4 are mutually
orthogonal unit vectors with e4 orthogonal to e; X es, then ey, es, e4 determine
a unique Ga-frame ey, ..., e; and (R”, x) is generated by e1, e2, 4 subject to the
relations :

e; X (ej X er) + (e; X ej) X e = 20;kej — djjer — 0 ie;. (7)

Therefore, for any Go-frame, we have the following very useful multiplication
table [14] :

X el €9 es €4 €5 €6 €7
€1 0 €3 —€9 €5 —€y —e7 €6
€9 —e3 0 el e er —ey —es
€3 €2 —€1 0 €7 —€g €5 —€4
eq —es —eg —er7 0 el es es
€5 €4 —e7 €6 —€1 0 —e3 €9
€g er eq4 —es —eo es 0 —eq
(&4 —€g €5 €4 —es3 —€9 €1 0

The standard nearly Kihler structure on S°(1) is then obtained as follows :

Ju=xxu, ucT,S%1), =zcS551).

It is clear that J is an orthogonal almost complex structure on S°(1). In fact J
is a nearly Kihler structure in the sense that the (2,1)-tensor field G on S®(1)
defined by

GX,Y) = (VxJ)Y,

where V is the Levi-Civita connection on S%(1) is skew-symmetric. If we denote
by (, ) the metric of the space R, a straightforward computation also shows
that
GX,Y)=XxY - (zxX,Y)z, X,YeT,S%1).

Let M be a Riemannian submanifold of M. If we denote by (, ), D and D
metric and Levi Civita connections on M and M , respectively, and by D+ the
corresponding normal connection of the immersion M — M then the formulas
of Gauss and Weingarten are given by

DxY =DxY + h(X,Y), (8)
Dx¢ = —A¢X + Dx¢, 9)
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where X and Y are vector fields on M and £ is a normal vector field on M, and
h and A are the second fundamental form and the shape operator, respectively.
The second fundamental form and the shape operator are related by

(h(X,Y),€) = (AeX,Y). (10)

Let us denote by V, v and D the Levi-Civita connections on M, S6(1) and R,
respectively. Let h and h be the second fundamental forms corresponding to
the immersions M — S5(1) and S%(1) — R7, respectively. Let p be the position
vector field of the immersion of M into R”. Then the following equations hold

h(X,Y)=—(X,Y)p, (11)

Dxp=X, (12)
where X, Y € TM. Considering (8), (9) and (11) we get for X, Y € TM and
E€THM, £ eTS%(1)

DxY =VxY +h(X,Y) =VxY +h(X,Y) — (X,Y)p, (13)
Dx& = Vx€+h(X,€) = Vx& — (X, &)p = —AeX + Vx{, (14)

where V1 denotes the normal connection corresponding to the immersion of M
into S%(1). Also, we can denote

(Vh)(X,Y,Z) = Vxh(Y,Z) = MVxY,Z) = h(Y,Vx Z), (15)
for X,Y,Z € T(M). Then Gauss, Codazzi and Ricci equations state that
(Vh)(X,Y,Z) = (Vh)(Y, X, Z), (17)
<RJ_(X,Y)§”U,> = <[A£7AH}X7Y>7 (18)
Also the following lemma holds

LEMMA 2.1. Dx(Y x Z)=DxY xZ+Y x DxZ.

3 Three-dimensional CR submanifolds of the sphere
S°(1)

From now on we consider M to be a three-dimensional orientable CR subman-
ifold of the sphere S®(1). Then, there exist the following local orthonormal
vector fields: the position vector field p, Fy and Ey; = JE; which span the
almost complex distribution, F5 which spans the totally real distribution, and
the normal vector fields £y = JE3, Bs = E; X E5 and Fg = Fy X Ej3.



Note, that by assuming that F, F» and E3 are positively oriented, we have that
the choice of Fs3 is unique. Nevertheless, we still have the following freedom:

El = cosOE + sin0FE, EQ = JEl = —sinfFsy + cosOFq,
B3 = B, E, = Ey,
FEs = (cosOE5 + sin O Eg), Fg = (—sinOFs5 + cos 0Fg).

As M is a CR submanifold we already have that TM = Dy & D,, where Dy and

Dy are respectively the almost complex and the totally real distribution.
Using the standard symmetries for a connection and for the second fundamental
form, we find that

Dp By = —p+aiBEy + asBs + a1 By + asEs + azEg, Dp, By = —a1Ey + asE3 + 1By + foEs + f3Es,

Dg, E3 = —a2Ey — a3Es + 1 Ey + 2 Es + 13 E, Dp By = —onEy — B1Ey — y1 B3 + g1 Es + g2 B,
Dg, Es = —agEy — BBy — v E3 — g1 Ey + g3 Fg, Dg Es = —a3Ey — B3l — y3l3 — go By — g3 B,
Dg,Ey = b1 Es + by s + B1Ey + B2 Es + B3 Eg, Dg,Ey = —p —b1 E1+ b3 E3+01 By + 63 Es+ 03 Eg,
Dg,E3 = —byEy — b3Ea + p1 By + paBs + 3 B, Dg,Ey = —p1Ey — 01 Ey — p1 B3 + hi Es + ha Eg,
Dp,Es = =2 — 62855 — a5 — hi Ey + haEs, Dp,Es = =335, — 03F3 — puzlis — ho By — haEs,
Dg, By = c1Ey + coE3 + 1 Ey + v2 E5 + v3Es, Dg,Ey = —c1Ey + c3E3 + p1 By + poFs + pzEg,

Dp,Es = —p —coEy — csBy +vi By + 1 Fs +v3Fs, Dp, By = —yE1 — By — v B3 + k1 Es + ko Eg,
Dp,Es = — By — paEy — 9 B3 — k1 Ey + k3 Eg, Dg,Es = —v3E) — p3by — v3E3 — ko By — k3 Es,

for some local functions.
Straightforward computation, taking in Lemma 1, X € {E1, Fy, Es} and Y, Z €
{p, E1,..., Eg} we get the following lemma.

LEMMA 3.1. For the previously defined coefficient the following equations
hold

g2e=-72, g1=1+73, o1=—a3, Pr=az, ha=1—p2, hy=ups,
01 =by, bg=—as, ki=v3, ko=—-1o, u1=cy, Y =—Cs

az =2, qe=—Lf3, 02=f3, 03=—L2, pa=73—1, pz=—2,
gs=a1 —c3, hs=b+c, ks=c1+uv.

4 D, and D,-geodesic CR submanifolds

Since there are no three-dimensional, proper CR, totally geodesic submanifolds
of the sphere S°, it is natural to investigate submanifolds that in some sense
approach this quality. Namely, we investigate three-dimensional CR submani-
folds for which corresponding second fundamental form vanishes on D; and Ds.
Such submanifolds are called, respectively, Di-geodesic and Ds-geodesic. If the
submanifold is both D; and Ds-geodesic it is trivially minimal. One example
of such submanifold was given in [12].

In this section we assume that M is both D; and Ds-geodesic. It follows

az=pP3=Pr=ay=by=v1 =1y =13 =0.

This also immediately implies that M is a minimal submanifold.



Note that the vector field Fs is uniquely determined up to a sign. That
also means that the vector field Dp,E3 is independent of the choice of the
basis. Therefore, we can choose vector field E; such that Dpg, E3 is orthogo-
nal to Eq, meaning ca = 0. Can Vg, EF3 be totally real? Suppose it is pos-
sible, meaning that c3 = 0. Than from R(Es, Fs, F1,E3) = 0 we obtain
Es(c2) = byes—2cac3—72 = 0 which implies 45 = 0. From R(E1, E3, Eq1, E3) =0
we get Ei(c2) = 73 — 1 = 0 and further v3 = 1. From R(Ei, Es, F3, E5) =
Es(c3) — (73 — 2)y3 = 0 we obtain a contradiction with 73 = 1.

Gauss and Codazzi equations give now, some new relations among the coeffi-
cients.

LEMMA 4.1.

Yo =bicz, 0=—1+aics+c53+7+735, c1=0, Ex(y3)=—2c35(—1+ b7 +3),
E3(b1) =0, FEi(cs) = —bics, Ei(y3) =2b1(=1+ (L+b7)c5+13), Eslcs) =0,
b1+ G+ — 43 +13)

Eg(’yg) = 0, EQ(Cg) = (—1 + b%)cg + (—2 + "}/3)")/3, Eg(bl) = s

(—1+73) (=1 +2¢3 + 2633 + 73 + 273)
2
€3

Ei(by) = —

PROOF. Gauss equation for R(Esq, E3, F1, E3) yields v2 = bics. Further
from R(E1, Es, E1, E3) = 0 we obtain

0=—1+aics+c+s ++3.

Also, R(Es, E3, E3, Ey) = c1c3 = 0 gives ¢; = 0. Directly from the Gauss equa-
tion for R(El, FEs, Eq, Eg) we now get Eg(bl) = 0, while R(EQ, FEs, Eg, El) =0

gives Eo(73) = —2c3(—1+b2+~3). Similarly, Codazzi equations for R(E, E3, E1, Ey) =
0, R(E1, B3, By, Eg) = 0, R(Eh, B3, B3, Ey) = 0, R(EY, E3, E3, Eg) =0, R(E2, E3, 1, Ey) =

0 and R(FEs, E3, E1, E5) = 0, respectively give

E(c3) = —bics, E1(y3) = 2b1(—1+ (14 b])c3 +13),
Fs3(c3) =0, E3(v3) =0,
bi(1+4 ¢+ b3c3 — 4y3 +~3)

Eg(Cg) = (—1 + b%)cg + (—2 —l—’Yg)"}/g, Eg(bl) = — o .

Finally, from Gauss equation for R(FE1, E2, E1, F3) we obtain

(=1 +73) (=1 +2c% + 2b3c2 + 43 + 273)
2
C3

Ei(b) = —

Straightforward computation shows that other Gauss, Codazzi and Ricci equa-
tions don’t yield any new relations. O

Also, these relations satisfy integrability conditions.

LEMMA 4.2. Let M be three-dimensional connected C'R submanifold of the
sphere S% and TM = Dy ® Dy where D; and Dsy are corresponding almost
complex and totally real distribution. Let h(D1,D1) = h(Da,D2) =0. Then M
1s minimal and contained in a totally geodesic hypersphere.

)



PrROOF. As Dy and Dy are totally geodesic it immediately follows that m
is mininal and that the first normal space of the submanifold M is spanned by
vector fields

n1 = h(E1, E3) = —c3Ey + bicg Es + 73 Eg,
ng = h(Ey, E3) = (=1 + v3)Es — bicsEs.
Then straightforward computation shows that

—1+ (1+b2)c2 + 2

1 1 1
VElnl = — o na, VE2n1 = —cgny + bins, VE3n1 =0.
Similarly,
1—b2¢2 — A2
L 163 — 73 L L
VElng =N, VE2712 = —2c3ng — bing, VE3n2 =0.

€3
We conclude that the first normal space of the submanifold is invariant under
parallel translations with respect to the connection in the normal bundle and
by the Erbacher’s theorem it follows that the submanifold M is not linearly
full. O

In the Section 5 we will conclude that the converse also holds, i.e. a minimal
CR submanifold contained in a totally geodesic S° is Dy and Dy totally geodesic
and therefore satisfies the conditions of Lemma 4.2.

5 The proof of the Main Theorem

From now on we will assume that M minimal, three-dimensional CR subman-
ifold contained in a totally geodesic S® in S%(1). As a totally geodesic hy-
persphere is obtained by taking the intersection of S®(1) with a hyperplane
through the origin, it follows that there exists a constant unit length vector
field V', namely the unit normal to that plane, which is normal to the subman-
ifold M and tangent to the sphere S®(1).
Therefore we can write

V =pFE4+ T7E5 + o Eg.
And using the rotation freedom in our basis we can moreover assume that 7 = 0.
As V is unit length, we also have that p? + o2 = 1.
Moreover, as M is also a minimal submanifold, we have

—a3 +by+11 =10 =1v3=0.

Using the fact that V is constant, we have the following lemma which gives
additional relations between the unknown local functions.

LEMMA 5.1. Let p and o be previously defined coefficients. Then we have

B B B _p B P _o(—p+ayo) _ bipo
vp =0, by=ua3, c1 =0, 52—003;7 53——662;, GBF T .z 0 T T
bio? p(—p+ aio) by po? bip’o
C2 p2 + o2’ Y3 p2 + o2 y 1(P) ,02 + o2’ 1(0) p2 T o2’
_ p(=p + a10) _ p(=p+ a10) _ _
Ey(p) =0(2— W)v Ey(0) = p(=2+ W)’ E3(p) =0, E3(0)=0.



PRrROOF. Since the vector field V' is constant it follows DxV = 0 for any
vector field X. Then

Dg,V = (a3p — p20)E1 + (—az2p — B30)E2 + (c3p — y30) B3
+ (v20 + E1(p)) Es + (1 +73)p + (a1 + ¢3)0) E5 + (—72p + Er(0)) E,
Dp,V = (—azp — B30)E1 + (=b2p + f20) E2 + (—c2p + 720) Es
+ (=2+73)0 + E2(p))Es + (—y2p + (=b1 — 2)0)) E5 + ((2 — 73)p + E2(0)) Eg,

D,V = (c3p — 730) E1 + (—c2p + 720) B2 + (—a3 + b2)pEs
+ E3(p)E4 + (—ag + by — c1)oE5 + Es(0) Eg.

Suppose p = 0. Then o # 0 since V' is nonzero. From (Dg,V, E3) = 0 we get
v3 = 0, and from (Dp,V,Es) = 0 we get a contradiction v3 = 2. Therefore
p # 0 and considering (Dg,V, E3) = 0 we get ag = by and v; = 0. Similarly
o # 0, since otherwise (Dp, V, E5) = 0 contradicts (Dg,V, Eg) = 0. Then from
(Dg,V, E5) = 0 we get ¢; = 0. Other equalities follow directly. O

Note that from the proof of the previous lemma it follows that both ¢ and p
cannot vanish on an open subset. We therefore restrict to the open dense subset
of M on which there are non vanishing. Hence we can write o = pt, where ¢ is a
local non zero function. As V is unit length, we also deduce that p?(t2 +1) = 1.
From the previous proof it now follows that

Ey(t) = —tby, Es(t) = =3 +ayt —2t%, E3(t) = 0. (19)

Now we will use the Gauss and Codazzi equations to obtain further relations
between the coefficients.

LEMMA 5.2. Let a1,b1 and t be the previously defined coefficients. Then we
have

1
a9 :0, as :O, El(al) :3a1b1, El(b1) :3a1¥+1—2a%+b%,
1 1
Eg(al) :2—a%+2b%+3a1¥, Eg(bl) :6b1¥ — 3a1bq, Eg(a1> =0, Eg(bl) =0.

ProOOF. The Gauss equations for R(F1, E3, Eq, E2) and R(Es, Es3, E1, Es),
the Ricci equation for R(E1, Es, Eg, E4) and the Codazzi equation for R(Esq, E3)Es3
directly imply that the following expressions, respectively, equal zero:

3a
y1 = 3ajas + 3agby — TQ — Es(a1),

3as
zZ1 = 3a1a3 — 3(12[)1 — % — Eg(bl),

Yy = —a2b1p2t + a3(—3p2 + a1p2t - 2p2t2) + pztEg(bl),
29 = 3agp?® — arasp’t — azbi p*t + 2a9p’t: — thEg(al).

Let us denote x = —4b1p?t and y = 3p? — 2a1p?t + p?t2. Then the equations
2y — pPtyr =0,
ys+ p*tz1 =0



simplify to the system asx 4+ asy = 0, aox — asy = 0. Suppose first that
a3 +a%#0. Thenz =0, y =0, ie by =0 and a; = % Also asy +y4 =0
implies —aja3 = ast and z; = 0 implies ajast = a3 which reduces to ag = 0.
Now, Es3(t) = 0 and

9 4 3t° 3 3+t 3+3t?
B ot

a2

directly implies a2 = 0, which is a contradiction. Hence we must have as =
a3 = 0. Consequently also F3(a;) = E3(b;) = 0. The other equalities follow in
a similar way. O

Summarizing the previous lemmas, we have the following theorem.

THEOREM 5.3. Let M be a minimal three-dimensional CR submanifold of
S6(1) which is not linearly full in S®(1). Then, restricting to an open dense
subset, there exist tangent vector fields Ev, FEo, E3 to M, normal vector fields
E4, Es, Eg and local functions a1, by and t such that the induced connection is

given by
Vg, E1 = a1 By, Vg F2 = —ai By, Vg B3 =0,
Vg, E1 = b1Es, Vg, B2 = —b1Ex, Vg, E3 =0,
bit? t(ait — 1) bit? t —ayt?
Ve, Bl = ——~ By, VpFEy= 2" g, VpE;= (B
BB == B VeE = T B Vs = s Bt 5500
and the second fundamental form is given by
t — ayt? bit —1+ayt
h(E1,E1) =0, h(E1,Ey) =0, h(Eq, E3) = — By 4+ ————
(Er, E1) , h(E1, E) , h(E1, E3) 112 1 5 1 112 6
by t? 2+ ait — t? byt
h(Es, Es) =0, h(Es, E3) = — E FEg, h(FE3,E3)=0.
(E2, E2) =0, h(E2, E3) et T2 5t 1 ple (E3, E3)

Moreover, the functions a1, b1,t satisfy the following system of differential equa-

tions:
Eq(a1) = 3a1b1, Es(ar) =2 —af +2b] + 3a13, Es(ar) =0,
El(bl) :3%—%1 —2a%+b%, EQ(bl) =6b71 — 3a1bq, E3(b1) =0,
B\ (t) = —tby, Es(t) = =3 + art — 2t2, Es(t) = 0.

Using the previous expressions for the connection coefficients, we conclude that

by t? t(—1 + ayt)

Ei. Ey]l = —a1 E1—b E FEi FEil=——F FEo, Es] = — FEs.
[En, Es] a1 E1—b1 Es, [E1, B3] el [E2, E3] e 3

In particular, we remark that these vector fields do not define local coordinates.

EXAMPLE 5.4. Let us recall the basic inequality, discovered by B. Y. Chen in
[6] for arbitrary n—dimensional submanifold M of a real space form of a constant
sectional curvature c. This inequality relates a basic intrinsic invariant d57, with
the length of the mean curvature vector H. Namely, if we denote by inf K at
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the point p infimum of the sectional curvature K (m) of planes 7 in TPM and
scalar curvature by 7 =3, K(e; A e;) where {e1,...,en} is an orthonormal
basis of the tangent space TpM then d47 is given by d37(p) = 7(p) — inf K(p),
and it satisfies 2 )
n“(n — 2 1
67 < ——H*+ -(n+1)(n—2)c.
S 5m o) +2(n+ )(n )e

If submanifold satisfies the equality case of this inequality there exists a canon-
ical distribution D(p) = {X € T,M|(n — DA(X,Y) = n(X,Y)H,VY € T,M}.
We recall here the following result from [6] which is here formulated for the
three-dimensional submanifolds of S®(1).

LEMMA 5.5. Let M be a three-dimensional submanifold of the sphere S5(1).
Then d37 < %H2i2 and equality holds at a point p if andfgnly if the dimension
of D={X € T,M|(n—1)h(X,Y) =n(X,Y)H,VY € T,M} is greater or equal
to one.

Notice now, that the space of the second fundamental form for submanifold
M is one-dimensional if and only if z = 2 + a?t® + (1 + b2)t? — a1t(3 + t?)
vanishes. In other words, in this case, a non-zero vector field V' defined by
V = bitEr — (=1 + a1t) B> satisfies h(V, E;) = 0,7 € {1,2,3}. Since M is
minimal, i.e. H = 0 it follows that corresponding distribution D is at least one-
dimensional and M satisfies Chen’s equality. We now refer to [7] and conclude
that M is locally congruent with the immersion

f(s,21,22) = cosxy cos z2(cos se;—sin ses )+sin xoeg+sin 1 cos zo(cos sez+sin ser),

which satisfies the condition of the main theorem. It will be useful to notice
that the function z = 2 + a$t? + (1 + b2)t? — a1t(3 + t?) satisfies the following
system of differential equations:

Ei(z) =0, FEs(x)=—6tz, Es3(x)=0. (21)

Now, we return to general case. Note that h(X,Y) = 0,X,Y € D; and
h(E3, E3) = 0, which means that for the minimal submanifolds the converse
of the Lemma 4.2 holds. Also, the distribution D; is involutive with totally
geodesic leaves both in M and in S°, so they are totally geodesic and almost
complex spheres S2.

Note that we are working on an open dense subset U such that the constant
normal vector field V' has components in both the spaces JDy and Dy x Dy.

For a given point p of the open dense subset of the submanifold M con-
structed previously (such that the function ¢ is a non vanishing function) we
can assume that the coordinate system of the R is such that p has coordi-
nates e; = (1,0,...,0), E1(p) = (0,1,0,0,0,0,0) and such that the normal
vector to the totally geodesic S°(1) containing M? is given by e4. Note that we
still have the freedom to choose the sign of e4 appropriately. We parametrize
the corresponding leaf Sg by (cos 1 cosxa,cosz sinzg,sinz1,0,0,0,0),z; €
(—7/2,7/2), 22 € (—m,m). Let us denote by v : I — S the integral curve of
the vector field E5 with the initial condition that v(0) = p. For each point ~y(sq)
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there is a unique Ga-isometry, denoted by A(sg) of the sphere S® mapping the
S2 into the corresponding leaf through v(sg) defined by the conditions

A(so)(e1) = v(s0)
A(sp)(eq) = €4
A(s0)(e2) = E1(7(s0))-

Note that from the above conditions it follows that A depends differentiably
on the parameter s of the integral curve. Therefore, the manifold M is locally
given by

F(x1,x9,5) = A(s)(cos z1 cos xa,sin x1 cos xg, sin xa, 0,0, 0, O)t.

Let us denote by Aj(s), Aa(s), As(s) the first three columns of A(s). Then,
F(x1,29,8) = cosxycosxoAi(s) + sinxy cosxaAa(s) + sinxaAs(s). Since p is
mapped into the 7(s),Vs, Ai(s) is the coordinate representation of the inte-
gral curve . Moreover, as the matrix belongs to Gy we have that As(s) =
v(s) x Aa(s). Note that it is straightforward to check that any such surface is
a CR-surface for which the invariant distribution is totally geodesic.

As the constant vector field V' corresponds with ey, at points of y(s), i.e. at
the points where 1 = x93 = 0 we have y(s) x e4 = —0F3 + pE; x E3. Hence,
the vector field W(s) = (v X e4) x /' is collinear with A (s).

Note that the vector field W can vanish if and only if e4 is parallel with
v x 7'. As those points the constant normal e4 would only have a component
in the direction of JD;y. These are exactly the points which we excluded from
our open dense subset. Hence this case can not happen.

Therefore, choosing at the initial point the sign of e4 appropriately we have
Ay = —W/||W||. Now, at v(s) the vector fields 7, Ag, Az = yx Ag, v, yx~v', Aa X
v, Az x o' form the Gg basis, and further v (as well as all of its derivatives),
Ay, As are orthogonal to e4. Moreover, the following holds.

LEMMA 5.6. The integral curve v satisfies (v, v x ") = (¥",v x eq) = 0.

PROOF. From Theorem 5.3, we have " = Dpg,E3lys) = (7", A2)A2 +
(", A3)As — 7, so straightforwardly we get that the curve 7 has to satisfy

YAy ="y xy)y =", x+")y =", 43 x+") =0. (22)

Since, [|7'|| = 1 the first condition is trivially satisfied.
Further, as As||WW and (3) we get

("W x o) = (Y (v x eq) x ) x ') = (V" (v x ea),¥)7 —v xea) = =(7", 7 x eq)

from which we deduce the second equation. Finally, as A3 = v x Ay and

(VX W) x " =(yx((yxeq) x7)) xv = (=7 x (v xeq) x7 = (yxes,7)y) x
= (es x 7' — (v x e4,7)7) x 7' = —es — (y X ea,7 )y x 7/,
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we see that
(' (ry x W) x o) = (v x eq, v}y xv',7")
and therefore (7", A3 x 7') = 0 does not yield any additional condition. O

LEMMA 5.7. It holds <A2,A/2> = <A3,Ag> = <A2,Ag> = <A,2,A3> = <’}/,Al2> =
(v, A%) = 0. Moreover the vector field W has constant length.

PROOF. Since ||Az| = ||Asz|| = 1 we have (A, A5) = (A3, A5) = 0.
By deriving <A277> = 0 we get <A/277> = _<A2a71> = _<E1(7)7 E3(7)> =0, and
similarly (A%,~) = 0.
Also, by deriving (As, Az) = 0 we get (Ag, Aj) = (A5, A3).

Further, using (3) and (4) we find that

W= xes4+0)xv 4+ (yxeq) xv" =es+ (v x es) X",
(W' W) = (v xeq) x 7", (v x ea) x ') = —=((y x ea) X ((v X es) X 7),7")
= —((y X eq, )y x es — (v X ea,y X ea)y', ") = — (v X ea, V) (v x e4,7") = 0.

This last equation immediately implies that W has constant length and we get
moreover that

< /27A3> =

- _HWllP«(’V X eq) X 7" eq X ) = (7 x e, 7" ) (v x ea) x 7", 7))

1

= _W(_<(64 X)) x 7" ea x ) = (v x eq, ¥ ) (=7 x (ea X ") 4+ 2(7,7")es, 7))

1

1 /
—WU/VI;’Y x W) = _W<64 + (7 % eq) X v eq x o — (v x es,7')v)

((ea xv) x~"ea x~")y =0 (—eq x (v x4") = (v,7")es, ea x 7')

1
W2

1 1
= (e X (Y x7") ea x ) = — s
WJ> W J>

!
2

(v x99y =0.
O

We know compute the tangent space to the immersion F'. It is spanned by

F,, = —coszysinxyy + cos xa cos 1 As,

F,, = —sinxycosx1y — sinxa sinx1 Ag + cos z2 A3,

F, = cosx1 cos x97 + cos g sin xlA'Q + sin a:gAg,

Fy, .
and clearly, v X = F,, so D1 = Span(Fy,,F,,). Since (Fs, F,) =
COS L9
F,
(Fy, Fy,) = 0 it follows Dy = Span(Fy). Note |———|| = || Fy,|| = 1. Moreover,
COS X9

straightforward computation shows that

Frioy = Vou,0x1 + h(0x1,0x1) — (021, 0x1)F = sin g cos £ Fy, — cos® 2o F,
Frozy = Vg, 0xs + h(axg, 8332) — (Oxa, 8:(}2>F =—F,
Fy 2, = Vg, 0xa + h(0z1,0x2) — (021, 022) F = — tan xo Fy,,
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so h(0x1,0x1) = h(0x1, 0xa) = h(dx2,0x9) = 0, or h(D1,Dy) = 0.
Now,

Fys = cosxy cos way” + cos g sinxy A + sinzo A = Vps0s + h(0s, ds) — (0s, 0s) F,

Foy ) B,
cos Ty’ cos To
clude that h(Dg, D9) vanishes, or equivalently that M is minimal, and moreover
h(D2,Ds) = 0 if and only if Fss — B is collinear to Fs. A straightforward com-

putation shows

and if we denote by B = (Fs,

+ (Fss, Fyy) Fuy + (Fss, F) F we con-

Fys — B = cosmycosza[y" — (7', As) Ag — (7', A3) A3 + 1]
+ sinxq cos wa[Ay — (AY, Ag) Ag — (A3, Ag) As — (A3, 7)7]
+ SiIl.’EQ[Ag —{ g,A2>A2 —{ é’,A3>A§’ — (Az,7)7].

As the vector fields v, Aa, A3 = v x As, v,y x 7/, A2 x 7/, A3 x ' form a
G+ basis, we see from (22) that " lies in the space spanned by As, As and 7.
Therefore

Fys — B = sinxy cos zo[ A5 — (AY, Ag) Ay — (A5, Ag) Az — (A5, 7)7]
+sinxo[Af — (A5, Ag)Ag — (A%, As) A5 — (Asz,7)7].

If we denote the projections of Aj and A% on Span(vy',vx~', As x~', A3 x~') by
Al and A%t we have Fys — B = sin a1 cos 19 AL +sin 29 A4, Fys— B has to be
collinear to F at all points, in particular for z1 # 0,29 = 0, or 1 = 0,29 # 0
which implies

ASE || coszy +sinay Ay, ASL || cosaay + sinag A,

If we, for instance, assume A’Q’l = 0, since we can choose arbitrary xs, it follows
Al is collinear to 4. A similar property holds also for A%+. We now consider
4 subcases.

Case 1: AJt # 0 # A4t As the length of W is constant this implies that
both W’ and (y x W) = v/ x W 4+ v x W' are parallel to /. We can write
W' = f17/. Substituting this in the second equation we have that

(Yx W) =" x (W= fiy) | 7.

This can only happen if we can write

W = fiv+ fov'.

Given the definition of A, this contradicts that the vector fields v, Ay, Ag =
v x Ao,y v x v, Ag x v/, A3 x 4/ form a G2 basis. Therefore this case can not
occur.

Case 2: A4' #£ 0 and A4t = 0. In this case we know that A} is parallel with
7' but that Ay ¢ Span(v, A2, A3). Note that from the multiplication table it
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follows that Span(vy, Az, As) is closed under multiplication. Moreover, we have
that

A3z =y x Ay
ALy =+ x Ay + v x Aj
T=9"x Ay +29 x Ag +vx AY =+" x Ay + v x Aj.

This implies that v x A} € Span(~, A2, A3). Multiplying oncemore with =, it
follows from (3) that also Aj € Span(~, A2, A3) which is a contradiction.
Case 3: Ayt =0 and A4t # 0. A contradiction follows in a similar way as in
the previous case.

Case 4: Ayt =0 = A4t. As all the previous cases let to a contradiction, this
is the only possibility. In that case we get the following lemma:s:

LEMMA 5.8. The integral curve v satisfies
(v x ea) x9",9) = (ea x7",7) = 0.
Proor. We know that
b, A% € Span(y, As, A3). (23)
Note that
A =" x Ay + 29" x Ay, + v x AL,

and since 7" € Span(y, Az, As), the (23) is equivalent to 7' x A%, A) € Span(v, Az, As).
However, since AL||W' and using (4) we see that

(Y xW'.9') =0, (O X WA xy) = (0, W) =0,
(V' x W'~ x Ag) = (A, W) =0, (¥ x W' o x A3) = (A3, W') =0,

and therefore 7/ x A}, € Span(y, Az, A3) does not give any new conditions.
We have
n

W = (7 x eq) x "+ (7 x eq) xv".

The condition that A} € Span(v, Ag, A3) gives the following.

0= (W",7) = (=" x (ea x 7") +2(7,7")ea, ) + ((v x ea) x ", 7') = (v x ea) x v, ),
By deriving (v,7”) = —1 we get (y,7"”) = 0 and then

0= (W",vx~) == x(ea x "),y x )+ (—v x (ea x ¥") + (v,7")ea,y x 7"
= (ea x ", 7) = (ea X ¥, A"y + (7, ") (v x ', ea) = —(ea x 7", 4").
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Further,

0= <W”,A2 X 'y/> = <'y/ X (eq X 'y”),'y/ X Ag) + (7 X eq) X " Ay x 'y/>
= (Az,eq x ")+ ((v x ea) x 7", Ag x /)

1
- W(<(e4 X ) x v ea x ") = (v x eq) x 7", ((v x eq) x7) x 7))
1 / " mo_ ,
=~ e x (7 )ea ") 40 xea) X" 0y ealy =y xea)
1
= m(_<7//,7 X ’}//> - <’YI,’}/ X €4><(")/ X 64) % ,y///’/_y/>)
1
= —m<’7/,’7 X 64><(fy X 64) X 7///77/>7

and,

1
0= (W" A3 x9) = W((v’ x eq) X "+ (v x eq) x " ea + (v X eq, 7 )y x )

1
= W@ X (7 xA") +eq x (v xA"), ea+ (v X eq, )y x ')

v X eq,7
= D e ) o x4 e X2 3 X))

v X €4,
= Ut (ea x o) = (e x 2™

does not give any additional information. O
Therefore we have:

THEOREM 5.9. Let M be a minimal three-dimensional CR submanifold of
S6(1) which is not linearly full in SS(1). Then M is locally congruent to the
Immersion

F(z1,22,s) = cosxy cos x2y(s) + sinx cos xgAa(s) + sinxg A3(s) (24)
where v is a sphere curve that satisfies the following

vles, |Y]=1, (Vv xv)y=(",7xes) =0,
(v x eq) x ", ")y = (ea x ¥, 4) = 0, (25)

/
and Ay = — QX )XY
[(y > eq) x|
curve that satisfies conditions (25), then (24) is a minimal CR immersion into
the sphere S8 which is not linearly full.

and As = v x As. Conversely, if v is a sphere

Proor. We have already seen that on an open dense subset M can be
written as above. Also as at each stage we verified that there are no additional
conditions, a the straightforward computation shows that for a sphere curve
that satisfies (25), the immersion (24) satisfies the conditions of the theorem.

O
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REMARK 5.10. We will now see how the examples of Hashimoto and Mashimo
can be interpreted in the above framework. We write

Fx (Y1, 92, y3), 8) = y1(cos(A1s)er + sin(Ars)es)
+ y2(cos(Aa2s)ea + sin(Aas)es) + ys(cos((A1 + A2)s)es — sin((A1 + A2)s)er),

where y? +y3 +y3 = 1 and {ey,...,er} is a Go-frame.

Note that replacing (A1, A2) by a multiple of itself yields the same CR-
submanifold. Also it is easy to check that we can not apply the trivial choice.
Namely if we take y; = cosxjcosxe, yo = sinxjcosxo and y3 = sinzs and
work in the neighborhood of the point (0,0,0), it follows that

(€4, Fs(s,0,0) x Fy,(s,0,0)) = (eq, Fs(s,0,0) x F,,(s,0,0)) =0,

and therefore the point (0,0,0) does not belong to the open dense subset on
which we worked during the proof.

In order to overcome this problem and still be able to work at the point
(0,0,0), we take a different parametrization of the sphere. We take angles a
and b (at the moment arbitrary) and define

y1 = cos(a) cos(b) cos(xz) cos(x1) — cos(a) sin(b) sin(xz) — sin(a) sin(z) cos(x2),

)
)

y3 = sin(b) cos(x1) cos(xa) + cos(b) sin(xg).

y2 = sin(a) cos(b) cos(x1) cos(ze) — sin(a) sin(b) sin(x) + cos(a) sin(xq) cos(xz),

An elementary computation shows that

<F:Jc17Fac1> = cos® X2, <FIE27F2B2> =1,
Fy
<Fx1anz> =0, JCOSQISQ = Fa,.

We put £y = Fo1 and Ey = F,,. A straightforward computation shows that

COS T2

(Fs, Er) = (Fs, Eq) = 0.
As
(Fy(5,0,0), Fs(s,0,0)) = cos?(b) ()\12 cos®(a) + Ao? sin2(a)) + sin?(b) (A1 + A2)?

we see that we can rescale (A1, A2) such that (Fs(s,0,0), Fs(s,0,0)) = 1 and
therefore Fi(s,0,0) is the integral curve of E3 through (0,0,0).
A straightforward computation also shows that

(€4, F5(s,0,0) x Fy,(s,0,0)) = sin(a) cos(a) cos(b) (A2 — A1),
(€4, Fs(5,0,0) x Fy,(s,0,0)) = —i sin(2b)(cos(2a) (A1 — A2) + 3(A1 + A2)),

(e4, JFs(5,0,0)) = % (2cos(2a) cos?(B) (Aa — A1) — 3cos(2)(Ar + A2) + (A1 + As)) -

So we see that, in order to be consistent with our proof we have to choose a
and b in such a way that the first expression vanishes and the other two are not
zero. For example
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L. if 201 + A2 # 0 and A2 # 0, we can take a = 0 and b = 7,

2. if 202 + A1 # 0 and Ay # 0, we can take a = 5 and b= 7.

Note that the above two cases cover all possibilities.
Case 1: a =0 and b = 7. We find

_ (cos(sA1) - cos(s(A1+A2)) o osin(sAr) o sin(s(A1 + Ag))

Moreover we also have that
1 1
Wi(s) = <O, —5(2)\1 + A2) cos(sA2),0,0,0, —5(2>\1 + A2) sin(sAg), O> ,

which determines (upto a choice of sign) the vector field As(s). However, if we
take
As(s) = (0,cos(sA2),0,0,0,sin(sA2),0),

and

_ sin((A1 + A2)s)
V2

cos(A1s) 0 cos((A1 + A2)s) 0 sin(A1s)

Ax(s) = (s)xAn(s) = (-7, 0, TRAZINT g, T

707 )

we deduce indeed that
F(s,x1,22) = y(s) cosx1 cos g + Aa(s) sinxy cos xy + Asz(s) sin xs.
Case 2: a =0 and b = 7. We find

B cos(sAg) cos(s(A1 + A2))
v(s) = ( R V2

Moreover we also have that

70707

sin(s\g) _sin(s(h + /\2))>
V2 V2

1 1
W(S) = <2()\1 + 2/\2) COS(S>\1), 0, 0, 0, 5()\1 + 2/\2) sin(s)\l), O, 0> s

which determines (upto a choice of sign) the vector field Ay(s). However, if we
take
As(s) = (—cos(sA1),0,0,0, —sin(sA1),0,0),

and therefore

cos(sA2) cos(s(A1+ A2))
VIR

70707_

Adﬁzv@ﬂAx@=<Q sm@&>_ﬂm4k+wﬁv

V2 V2
we deduce indeed that

F(s,x1,x2) = y(s)coszy cosza + Aa(s)sinxy cos xg + As(s) sinxs.
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Note that the above procedure already indicates that the same subman-
ifold can be written in many ways, using different curves -y, satisfying the
conditions of our theorem. Therefore in order to get a more explicit result
we are now going to determine the curves v more explicitly (and try to give
a less complicated expression for the immersion). We recall that the frame
v, Ay, A3 = v x Ao, v,y x v/, Ag x v, A3 x 4/ form a G4 basis. Moreover, we
have that W = (yxe4) x+/, from which we deduce that ||[W||2 = 1—(yx7/, e4)?.
Therefore, from the proof of the theorem and the choice of E; it follows that
we can write

eq = cosfy x v +sinfAs x +.

Moreover Lemma 5.4 implies that 6 is a constant. From (22) we see that we
can write
!

7' ==y + k1A + Ko As.

It follows now from Lemma 5.5 and Lemma 5.6 that x; and ko are both
constants. Therefore we can write down a system of ordinary differential
equations with constant coefficients for the derivatives of our frame. Writing
fi=vfa=As fs = A3 =yxAs, fa=7",f5 =vx7, fo = Ao xv', fr = A3 <9/,
and F' = (f1f2f3f4f5f6f7), we get that

0 0 0 -1 0 0 0
0 0 0 K1 —ka  Kipcot(f) Ko cot(6)
0 0 0 ke K1 kgcot(f)+1 —kqcot(f)
F'=F 1 —K1 —hR2 0 0 0 0
0 K9 —K1 0 0 0 0
0 —kicot(d) —racot(d)—1 0 0 0 0
0 —kacot(d) k1 cot(6) 0 0 0 0
Further, we have
b= k1y — csc? O(k? + K3) Ay — Ky cot O A3,
= K1y — k1 cot O Ay — (csc? O(k3 + K3) 4 2ka cot O + 1) A3, (26)
Let p1, o, 3 be the eigenvalues of the symmetric matrix
—cosf 0 —sinf
A= 0 —kKkgcscl K1 cscl ,
—sinf  kycscl  kocscl + cosf
and (ay;,a9i,as3;),i = 1,2,3 the corresponding scaled eigenvectors, so that

(aij) € SO(3). An eigenvalue can be zero, only if the det A = csc6(cot O(k? +
k3) + k2) = 0. Assume that it is the case. Then at the points 7(s) the first
normal space, which is spanned by the normal parts of Fis and Fbg, i.e. by the
normal parts of A5 and A%, which are respectively, k2 f5 — K1 cot 0 fg — k2 cot 0 f7
and —k1fs — (kecotf + 1) fs + K1 cot 0 f7, is one-dimensional, since they are
collinear. That means that along + the function = of the Example 5.4 is zero.
Since also Fj(z) = 0 we easily obtain that then = vanishes, and submanifold
satisfies the Chens equality. Therefore, from now on we may assume that non
of the eigenvalues of the matrix A is zero.
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Note that TraceA = 0 so pu1+p2+ps = 0. Then, (ay;, az;, as3;),i =1,2,3 are
eigenvectors for the matrix —A? and for the eigenvalues, respectively, —u?,i =
1,2, 3. Straightforward computation and (26) show that this further implies

a1y 4 agi Ay + a3 A = —p2(a1y + agiAg + aziAz),i = 1,2,3
and further
a1y + agiAg + asiAs = C;cos(u;s) + D;sin(u;s),i =1,2,3, (27)

where Cj, D;,i = 1,2,3 are constant vectors. Since the rows of matrix (a;;) are
unit it follows (C;, C;) = (D;, D;) = 1 and (C;, D;) = 0, and the orthogonality
of the rows implies (C;, C;) = (D;, Dj) = (Cs, Dj),i # j.

Note also that we have picked initial conditions such that v(0) = e1, A2(0) =
eg and A3(0) = e3 and eq = (cosfey + sinfes) x +/(0). This implies that

7'(0) = —(cos fey + sinfez) x eq = — cos fes — sin fer,
end further
AL(0) = —kg cscleg + K1 cscfer,
A%(0) = —sinfes + k1 cscleg + (kg cscl + cos B)er. (28)

Now,(27) and its derivative for s = 0 imply that C; = aj;e1 + ages + as;es and
wiD; = ay;(— cosfes — sinfer) + agi(—ka cscbeg + K1 csclber) + as;(—sinfes +
k1 cscleg + (ko cscl + cosf)er). But, (a1;, a9, as;) is an eigenvector for matrix
A and eigenvalue p; so along with (28) this implies D; = —ey X C; = ajies +
agiee + as;er.

Matrix A defines a reparametrization of the sphere S? : y%+y%+y§ = 1 given
by (y1y2y3)t = A(z12023)%, and also defines an isometry which maps e, s, e3
respectively into Cy = €1,y = €9, ('3 = €y that along with eq, D1 = €5, Dy =
€, D3 = €7 form a G2 basis. This transforms an immersion F(s,y1,y2,Yy3) =
y17(s) + y242(s) + ysAs(s) into

F(s, 21,22, 23) = (cos(u1)ey + sin(ug)es) 21 + (cos(ug)es + sin(ug)eg) 2o
+ (cos(u3)es + sin(ug)er)zs,  pa + p + pg = 0.
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