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SURFACES IN A PSEUDO-SPHERE WITH HARMONIC OR 1-TYPE

PSEUDO-SPHERICAL GAUSS MAP

BURCU BEKTAŞ, JOERI VAN DER VEKEN, AND LUC VRANCKEN

Abstract. We give a complete classification of Riemannian and Lorentzian surfaces of arbi-

trary codimension in a pseudo-sphere whose pseudo-spherical Gauss maps are of 1-type or, in
particular, harmonic. In some cases a concrete global classification is obtained, while in other

cases the solutions are described by an explicit system of partial differential equations.

1. Introduction

In the late 1970’s, B.-Y. Chen introduced the concept of finite type submanifolds in Euclidean
space. Since then, finite type theory became an active research field of which the first results and
fundamental notions were collected in the book [2]. Later, the definition of finite type submanifolds
was extended to differentiable maps on Riemannian manifolds, in particular to Gauss maps of
Euclidean submanifolds, which are useful tools in their study, see [9]. The generalization to more
general maps attracted the interest of people working in analysis to finite type theory and it is
now considered an important field with several open conjectures. For a current state of the art,
see the report [4] and the very recent second edition of Chen’s above mentioned book [6].

A smooth map φ : M −→ Em from a Riemannian manifold M into a Euclidean space Em is
said to be of finite type if it has a finite spectral decomposition, i.e., if it can be written as

φ = φ1 + φ2 + . . .+ φk,

where each φi satisfies ∆φi = λiφi for a constant λi ∈ R, where ∆ is the Laplacian of M acting
on each component of φi. If λ1, λ2, . . . , λk are all distinct, φ is said to be of k-type.

Let x : M −→ Em be an isometric immersion of an oriented n-dimensional Riemannian manifold
M into a Euclidean space Em. Let G(n,m) denote the Grassmannian manifold consisting of all
oriented n-planes through the origin of Em. The classical Gauss map ν : M −→ G(n,m) is a
smooth map which carries each point p ∈ M to the oriented n-plane in Em obtained by parallel
translation of the tangent space to x(M) at x(p) in Em to the origin. Note that since G(n,m) is
canonically embedded into a Euclidean space EN , where N =

(
m
n

)
, the notion of finite type map

can be defined for the classical Gauss map. The classical Gauss map associated with a pseudo-
Riemannian submanifold of a pseudo-Euclidean space was given in a similar way in [14].

Chen and Piccinni gave a characterization theorem for submanifolds of Em with 1-type Gauss
map in [9], a result which is closely related to the well-known characterization of parallel mean
curvature submanfolds of Em by the harmonicity of their Gauss map ν : M −→ G(n,m) by Ruh
and Vilms given in [18].

An isometric immersion of an n-dimensional Riemannian manifold M into a sphere Sm can
also be seen as an isometric immersion into a Euclidean space Em+1, and therefore the Gauss
map associated with such an immersion can be determined in the classical sense as above. On
the other hand, Obata modified the definition of the Gauss map to better capture the properties
of the immersion into the sphere, rather than into the Euclidean space, in [17] as follows. Let

x : M −→ M̃ be an isometric immersion from an n-dimensional Riemannian manifold M into an
m-dimensional real space form M̃ . The generalized Gauss map in Obata’s sense is a map which
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assigns to each p ∈ M the totally geodesic n-dimensional submanifold of M̃ tangent to x(M) at

x(p). In the case M̃ = Sm, Obata’s map carries p ∈M to a totally geodesic n-sphere of Sm and this
is of course uniquely determined by a linear (n+1)-dimensional subspace of Em+1, by intersecting
this subspace with Sm. Hence, this map can be seen as a map from M to G(n+ 1,m+ 1), called
the spherical Gauss map.

For Riemannian submanifolds of a sphere with 1-type or harmonic spherical Gauss map, Chen
and Lue gave a characterization theorem in [7].

In [1], the first author, Canfes and Dursun introduced the notion of pseudo-spherical Gauss map
associated with an immersion of a (pseudo-)Riemannian manifold into a pseudo-sphere and also
obtained some characterization and classification theorems. Note however that, in [13], Ishihara
studied the Gauss map in a generalized sense for (pseudo-)Riemannian submanifolds of (pseudo-)
Riemannian manifolds, also extending the Gauss map in Obata’s sense to the pseudo-Riemannian
setting. Some of the classification results in [1] deal with Lorentzian surfaces in S4

1 and S4
2 with

harmonic pseudo-spherical Gauss map and with Riemannian and Lorentzian surfaces in S4
1 with

1-type pseudo-spherical Gauss map. In this paper we unify and extend these results to arbitrary
codimension and index, i.e., we completely classify all Riemannian and Lorentzian surfaces in
Sms with 1-type Gauss map and in particular with harmonic Gauss map. The main theorems are
Theorem 3, 4, 5 and 6.

2. Preliminaries

2.1. Pseudo-Riemannian real space forms. Let Ems denote the pseudo-Euclidean space of
dimension m and index s, i.e., Rm = {(x1, . . . , xm) | x1, . . . , xm ∈ R} equipped with the metric

(1) ds2 =

m−s∑
i=1

dx2
i −

m∑
j=m−s+1

dx2
j .

Then Ems has constant sectional curvature c = 0. If 〈·, ·〉 is the inner product associated with ds2,
we define for any real number c 6= 0

Sms (c) =
{
x ∈ Em+1

s | 〈x, x〉 = c−1
}

if c > 0,

Hms (c) =
{
x ∈ Em+1

s+1 | 〈x, x〉 = c−1
}

if c < 0.

When equipped with the induced metric from ds2, these manifolds have constant sectional cur-
vature c and are called pseudo-sphere, respectively pseudo-hyperbolic space, of dimension m and
index s. A vector v tangent to one of these spaces is called spacelike if 〈v, v〉 > 0 or v = 0, timelike
if 〈v, v〉 < 0, and lightlike (or null) if 〈v, v〉 = 0 and v 6= 0. This terminology is inspired by general
relativity, where Em1 , Sm−1

1 (c) and Hm−1
1 (c) are known as the Minkowski, de Sitter, and anti-de

Sitter spaces, respectively.

2.2. Basics of submanifold theory. Let M be an n-dimensional (pseudo-)Riemannian subman-

ifold of a (pseudo-)Riemannian manifold M̃ . We denote the Levi-Civita connections of M̃ and M

by ∇̃ and ∇ respectively. Then the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX +DXξ

for any vector fields X and Y tangent to M and any vector field ξ normal to M . Here, h is the
second fundamental form, a symmetric tensor field taking values in the normal bundle, Aξ stands
for the shape operator with respect to the normal direction ξ and D is a connection in the normal
bundle. The shape operators and the second fundamental form are related by

(2) 〈AξX,Y 〉 = 〈h(X,Y ), ξ〉
for any X and Y tangent to M and any ξ normal to M , where 〈·, ·〉 denotes the metric both on

M and on M̃ . The mean curvature vector field is defined as

H =
1

n
trh.
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If the ambient manifold M̃ has constant sectional curvature c, the equations of Gauss, Codazzi
and Ricci are given respectively by

〈R(X,Y )Z,W 〉 = c(〈X,W 〉〈Y,Z〉−〈X,Z〉〈Y,W 〉)+〈h(X,W ), h(Y,Z)〉−〈h(Y,W ), h(X,Z)〉,(3)

(∇h)(X,Y, Z) = (∇h)(Y,X,Z),(4)

〈RD(X,Y )ξ, η〉 = 〈[Aξ, Aη]X,Y 〉(5)

for any X, Y , Z and W tangent to M and any ξ and η normal to M . Here, R is the curvature
tensor of M , RD is the curvature tensor associated with D and the covariant derivative ∇h is
defined by

(∇h)(X,Y, Z) = DXh(Y, Z)− h(∇XY,Z)− h(Y,∇XZ)(6)

for any X, Y and Z tangent to M . If {e1, . . . , en} is a local frame on M satisfying 〈ei, ej〉 = εiδij ,
with εi ∈ {−1, 1} for all i and j, the scalar curvature of M is given by

S =

n∑
i,j=1

εiεj〈R(ei, ej)ej , ei〉.

In particular, if n = 2, the scalar curvature equals twice the Gaussian curvatureK of the surfaceM .
It follows from the equation of Gauss (3) that

(7) S = cn(n− 1) + n2〈H,H〉 − Sh,
where

Sh =

n∑
i,j=1

εiεj〈h(ei, ej), h(ei, ej)〉.

2.3. Finite type maps. Following [3], we define finite type maps from a pseudo-Riemannian
manifold to a pseudo-sphere or a pseudo-hyperbolic space as follows.

Definition 1. A smooth map φ : M −→ Sms (c) ⊂ Em+1
s (resp. φ : M −→ Hms (c) ⊂ Em+1

s+1 ), from
a (pseudo-)Riemannian manifold into a pseudo-sphere (resp. a pseudo-hyperbolic space) is called
of finite type in Sms (c) (resp. in Hms (c)) if it has a finite spectral decomposition

(8) φ = φ1 + φ2 + · · ·+ φk,

where each φi satisfies ∆φi = λiφi for some constant λi ∈ R, where ∆ is the Laplacian of M
acting on each of the m+ 1 component functions of φi. If the spectral decomposition (8) contains
exactly k terms with different values for λi, then the map φ is called of k-type.

Remark 1. In particular, φ : M −→ Sms (c) ⊂ Em+1
s (resp. φ : M −→ Hms (c) ⊂ Em+1

s+1 ) is of 1-type
in Sms (c) (resp. in Hms (c)) if and only if ∆φ = λφ for some λ ∈ R. As is well-known, if λ = 0, the
map φ is a harmonic map. More about harmonic maps can be found in Remark 2 below.

2.4. The pseudo-spherical Gauss map. Let us first recall some basics about Grassmannian
manifolds. If G(n + 1,m + 1) is the set of all oriented non-degenerate (n + 1)-dimensional linear

subspaces of Em+1
s , we can construct a natural inclusion of G(n + 1,m + 1) into

∧n+1 Em+1
s by

identifying L ∈ G(n + 1,m + 1) with e0 ∧ . . . ∧ en, where {e0, . . . , en} is a positively oriented

orthonormal basis for L. Furthermore, we can identify
∧n+1 Em+1

s with a pseudo-Euclidean space
ENq for some non-negative integer q and N =

(
m+1
n+1

)
. Here, the pseudo-Euclidean metric is defined

as follows: if {f1, f2, . . . , fm+1} and {g1, g2, . . . , gm+1} are orthonormal bases of Em+1
s , the inner

product of fi1 ∧ . . . ∧ fin+1 and gj1 ∧ . . . ∧ gjn+1 in
∧n+1 Em+1

s is given by

(9)
〈〈
fi1 ∧ . . . ∧ fin+1

, gj1 ∧ . . . ∧ gjn+1

〉〉
= det(〈fi` , gjk〉).

In this way, G(n+ 1,m+ 1) can be seen as a submanifold of ENq .

Now, let x : Mn
t −→ Sms (1) ⊂ Em+1

s be an isometric immersion from an oriented n-dimensional
(pseudo-)Riemannian manifold of index t into a pseudo-sphere. As usual, we will locally identify
Mn
t with x(Mn

t ). The pseudo-spherical Gauss map ν in the sense of Obata [17], assigns to each
point p ∈ Mn

t the great pseudo-subsphere Snt (1) of Sms (1) tangent to Mn
t at p. Since Snt (1) is
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uniquely determined as the intersection of Sms (1) with an (n+1)-plane through the center of Sms (1)
in Em+1

s , one can look at ν as a map from Mn
t to G(n+ 1,m+ 1). In particular, if {e1, . . . , en} is

a positively oriented orthonormal basis of TpM
n
t , then

ν(p) = x(p) ∧ e1 ∧ . . . ∧ en ∈ G(n+ 1,m+ 1) ⊂ ENq .

From (9) we see 〈〈ν, ν〉〉 = (−1)t, and hence ν is a map from Mn
t to SN−1

q (1) if t is even and a

map from Mn
t to HN−1

q−1 (−1) if t is odd. It is therefore natural to investigate for which submanifolds

Mt of Sms (1) the pseudo-spherical Gauss map is of finite type in the sense of Definition 1. The
following results were obtained in [1].

Lemma 1. [1] Let Mn
t be an n-dimensional oriented (pseudo-)Riemannian submanifold of index t

of Sms (1). Then the Laplacian of the pseudo-spherical Gauss map ν : Mn
t → G(n+ 1,m+ 1) ⊂ ENq

is given by

∆ν =Shν + nH ∧ e1 ∧ · · · ∧ en − n
n∑
k=1

x ∧ e1 ∧ · · · ∧DekH︸ ︷︷ ︸
k−th

∧ · · · ∧ en

+

n∑
j,k=1
j 6=k

m∑
r,s=n+1,
r<s

εrεsR
r
sjk x ∧ e1 ∧ · · · ∧ er︸︷︷︸

j−th

∧ · · · ∧ es︸︷︷︸
k−th

∧ · · · ∧ en,
(10)

where {e1, . . . , en} is a local positively oriented orthonormal tangent frame to Mn
t , {en+1, . . . , em}

is a local orthonormal normal frame to Mn
t in Sms (1), satisfying 〈er, es〉 = εrδrs, with εr ∈ {−1, 1},

and Rrsjk = 〈RD(ej , ek)er, es〉.

The following results are direct consequences of Remark 1, Lemma 1 and formula (7).

Theorem 1. [1] A (pseudo-)Riemannian submanifold M of Sms (1) has 1-type pseudo-spherical
Gauss map if and only if M has zero mean curvature vector field and flat normal connection in
Sms (1), and constant scalar curvature.

Theorem 2. [1] An n-dimensional (pseudo-)Riemannian submanifold M of Sms (1) has harmonic
pseudo-spherical Gauss map if and only if M has zero mean curvature vector field and flat normal
connection in Sms (1), and constant scalar curvature S = n(n− 1).

Remark 2. In Theorem 2, harmonicity of ν is interpreted as the vanishing of ∆ν as computed
in (10). This means that ν is harmonic as a map between the (pseudo-)Riemannian manifolds M
and ENq . However, it is also natural to study when ν is harmonic as a map from M to G(n+1,m+1)

(with the induced metric from ENq ). This happens if and only if the terms tangent to G(n+1,m+1)
in (10) vanish, i.e., if and only if M has zero mean curvature vector in Sms (1).

3. Classification results for Riemannian surfaces

Consider a spacelike (i.e. Riemannian) surface with arbitrary codimension in a pseudo-sphere
Sms (1). For the Riemannian case s = 0, we refer to [7]. The next two results give a classification of
those surfaces with 1-type pseudo-spherical Gauss map, first for the non-harmonic case, then for
the harmonic case.

Theorem 3. A spacelike surface M in Sms (1) has non-harmonic 1-type pseudo-spherical Gauss
map if and only if it is an open part of the Clifford torus lying fully in a totally geodesic 3-sphere
S3(1) ⊂ Sms (1).

Proof. Assume that x : M −→ Sms (1) is an immersion of a spacelike surface with 1-type pseudo-
spherical Gauss map. It follows from Theorem 1 that M has zero mean curvature vector, flat
normal connection in Sms (1) and constant scalar curvature. The equation of Ricci (5) implies that
[Aξ, Aη] = 0 for any normal vector fields ξ and η. Since M has a positive definite metric, Aξ and
Aη are simultaneously diagonalizable. Let us choose {e1, e2} to be a local orthonormal tangent
frame such that h(e1, e2) = 0 and {e3, . . . , em, em+1 = x} to be a local orthonormal normal frame
along M in Em+1

s . The connection form ω12 on M is defined as usual by ∇Xe1 = ω12(X)e2 for
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any X tangent to M . Since the mean curvature vector field is zero, we have h(e1, e1) = −h(e2, e2).
Putting ξ = h(e1, e1), it follows from the Gauss equation (3) that the constant Gaussian curvature
of M is K = 1− 〈ξ, ξ〉. Hence, 〈ξ, ξ〉 is constant and there are three possibilities according to the
casual character of ξ.

Case (i). ξ 6= 0 is spacelike. We can choose a unit spacelike vector field ξ′ such that ξ = λξ′ 6= 0.
Since K = 1 − λ2 is constant, λ is a nonzero constant. For X = e1 and Y = Z = e2, the
Codazzi equation (4) gives De1ξ

′ = −2ω12(e2)ξ′. Similarly, for X = Z = e1 and Y = e2 we
have De2ξ

′ = 2ω12(e1)ξ′. On the other hand, since ‖ξ′‖ = 1, 〈Deiξ
′, ξ′〉 = 0 for i = 1, 2. Thus,

ω12(e1) = ω12(e2) = 0, which implies that K = 0 and the first normal space Imh = Span{ξ′}
is parallel in the normal bundle. From the reduction theorem by Erbacher-Magid [10, 16], M is
contained in a totally geodesic S3(1) in Sms (1). It follow for example from [15] that a non-totally
geodesic maximal surface of S3(1) with constant Gaussian curvature is an open part of the Clifford
torus.

Case (ii). ξ is timelike. Now choose a unit timelike vector ξ′ with ξ = λξ′ 6= 0, then K = 1+λ2.
On the other hand, by a similar calculation as in Case (i), it can be shown that K = 0. This is a
contradiction.

Case (iii). ξ = 0 or ξ is lightlike. Now K = 1, that is S = 2. From Theorem 2, the pseudo-
spherical Gauss map is harmonic, which is a contradiction.

Conversely, suppose that M is an open part the Clifford torus in S3(1) ⊂ Sms (1). Then it
is easy to show that the pseudo-spherical Gauss map satisfies ∆ν = 2ν. Thus, M has 1-type
pseudo-spherical Gauss map and is not harmonic. �

Theorem 4. Let x : (M, g) −→ Sms (1) ⊂ Em+1
s be a non-totally geodesic isometric immersion

of a spacelike surface M in the pseudo-sphere Sms (1). The pseudo-spherical Gauss map of the
immersion is harmonic if and only if there exists a local isothermal coordinate system {u, v} on
M such that g = µ2(du2 + dv2) and x is a solution of the system

xuu =
µu
µ

xu −
µv
µ

xv − µ2x + c,

xuv =
µv
µ

xu +
µu
µ

xv,

xvv = −µu
µ

xu +
µv
µ

xv − µ2x− c,

(11)

where µ satisfies the equation (lnµ)uu + (lnµ)vv = −µ2 and c is a fixed lightlike vector in Em+1
s .

Remark 3. The equation for µ in the theorem can be rewritten as ∆(lnµ) = −1, where ∆ is the
Laplacian of the surface (M, g) or as ∆0(lnµ) = −µ2, where ∆0 is the Euclidean Laplacian in
dimension 2. This equation is known as Liouville’s equation and characterizes the conformal factor
of a surface of constant Gaussian curvature 1.

Proof. Assume that x : M −→ Sms (1) ⊂ Em+1
s is a non-totally geodesic isometric immersion of a

spacelike surface M in Sms (1) with a harmonic pseudo-spherical Gauss map. Theorem 2 implies
that M has a zero mean curvature vector and flat normal connection in Sms (1) and that K = 1.
As in the proof of Theorem 3 we can choose a local orthonormal frame {e1, e2} on M such
that h(e1, e2) = 0 and h(e1, e1) = −h(e2, e2) = ξ for a lightlike vector ξ. Define the functions
α = ω12(e1) and β = −ω12(e2). Then, the Levi-Civita connection of M is determined by

∇e1e1 = αe2, ∇e1e2 = −αe1, ∇e2e1 = −βe2, ∇e2e2 = βe1.

Computing K from these we obtain

(12) e1(β) + e2(α)− α2 − β2 = 1.

For X = Z = e1 and Y = e2, respectively X = e1 and Y = Z = e2, the Codazzi equation (4) gives

(13) De2ξ = 2αξ, De1ξ = 2βξ.

Using (13), the fact that RD = 0 is equivalent to e1(α) = e2(β), which is precisely the integrability
condition for the system

(14) e1(lnµ) = −β, e2(lnµ) = −α.
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If µ is a solution to this system, one can easily check that [µe1, µe2] = 0, i.e., there exist local
coordinates {u, v} on M with ∂u = µe1 and ∂v = µe2. In these coordinates the metric reduces to
g = µ2(du2 + dv2) and equation (12) is equivalent to (lnµ)uu + (lnµ)vv = −µ2.

Denoting by ξu the Euclidean derivative of the vector field ξ in the direction of ∂u, the formula
of Gauss for the immersion Sms (1) → Em+1

s and the formula of Weingarten for the immersion
M → Sms (1) give ξu = −Aξ∂u +D∂uξ− 〈∂u, ξ〉x. Using equation (2) and the expressions for h, we
get Aξe1 = 0 and hence also Aξ∂u = 0. Since also 〈∂u, ξ〉 = 0, we find from (13) that ξu = 2βµξ.
Analogously, one can prove that ξv = 2αµξ. Hence, ξ is a solution to the system

ξu = 2βµξ, ξv = 2αµξ.

Using the fact that ∂u(lnµ) = −βµ and ∂v(lnµ) = −αµ from (14), we obtain ξ = c
µ2 where c is a

constant null vector.
With respect to the coordinate vector fields, the Levi-Civita connection and the second funda-

mental form of M in Sms (1) are then given by

∇∂u∂u =
1

µ
(µu∂u − µv∂v) , ∇∂v∂u =

1

µ
(µv∂u + µu∂v) ,(15)

∇∂v∂v =
1

µ
(µv∂v − µu∂u) , h(∂u, ∂u) = −h(∂v, ∂v) = c, h(∂u, ∂v) = 0.(16)

From the Gauss formula, both for the immersion Sms (1)→ Em+1
s and the immersion M → Sms (1),

we get the system (11).
By a straightforward calculation, the converse is obtained. �

4. Classification results for Lorentzian surfaces

In this section, we classify the Lorentzian surfaces in Sms (1) whose pseudo-spherical Gauss map
is of 1-type, first in the non-harmonic case, then in the harmonic case. We will need the following
classification of flat Lorentzian surfaces with zero mean curvature vector in S3

1(1) and S3
2(1).

Lemma 2. A flat Lorentzian surface with zero mean curvature vector in S3
s(1) ⊂ E4

s is congruent
to an open part of the image of

(i) x(u, v) =
1√
2

(cosu, sinu, cosh v, sinh v) if s = 1;

(ii) x(u, v) = (coshu cos v, coshu sin v, sinhu cos v, sinhu sin v) if s = 2.

Remark 4. The first surface in Lemma 2 is a Lorentzian version of the Clifford torus. The second
one is the tensor product of the unit circles c1(u) = (coshu, sinhu) in the Minkowski plane E2

1

and c2(v) = (cos v, sin v) in the Euclidean plane E2. It appears for example in the classification
of flat tensor products of plane curves in [11]. After a standard identification of E4

2 with C2, it
can also be seen as the complex curve c(z) = (cos z, sin z). A direct calculation shows that the
pseudo-spherical Gauss map ν of any of the two immersions satisfies ∆ν = 2ν, i.e., that it is of
1-type.

Proof. For s = 1, the proof can be found in [12].
Now suppose that x : M1 −→ S3

2(1) is an isometric immersion of a flat Lorentzian surface
with zero mean curvature vector. Choose pseudo-Euclidean coordinates {u, v} on M1 such that
〈∂u, ∂u〉 = 〈∂v, ∂v〉 = 0 and 〈∂u, ∂v〉 = −1. Since H = −h(∂u, ∂v), we obtain h(∂u, ∂v) = 0. Also,
using the Gauss equation (3), flatness implies that 〈h(∂u, ∂u), h(∂v, ∂v)〉 = 1. Thus, there exist
a unit timelike vector field ξ and a function a on M1 with a 6= 0 such that h(∂u, ∂u) = aξ and
h(∂v, ∂v) = − 1

aξ. By changing the orientation of ξ if necessary, we may assume that a > 0. For
X = ∂u, Y = Z = ∂v and X = ∂v, Y = Z = ∂u in the Codazzi equation (4), we find au = av = 0,
which means that a is a positive constant.

From the Gauss formula, both for the immersions M1 −→ S3
2(1) and S3

2(1) −→ E4
2, we obtain

the following system of differential equations:

(17) xuu = aξ, xuv = x, xvv = −1

a
ξ.
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Also, by using the Gauss formula for S3
2(1) −→ E4

2 and the Weingarten formula for M1 −→ S3
2(1),

we get ξu = −axv and ξv = 1
axu. Using these, one can determine the solution of system (17)

straightforwardly to be

x(u, v) = eαu+ v
2α

(
cos
(
αu− v

2α

)
c1 + sin

(
αu− v

2α

)
c2

)
+ e−(αu+ v

2α )
(

cos
(
αu− v

2α

)
c3 + sin

(
αu− v

2α

)
c4

)
for α =

√
a/2 and some constant vectors c1, c2, c3, c4 ∈ E4

2. The conditions 〈x,x〉 = −〈xu,xv〉 = 1
and 〈xu,xu〉 = 〈xv,xv〉 = 0 reduce to

〈c1, c1〉 = 〈c2, c2〉 = 〈c3, c3〉 = 〈c4, c4〉 = 0,

〈c1, c2〉 = 〈c1, c4〉 = 〈c2, c3〉 = 〈c3, c4〉 = 0,

〈c1, c3〉 = 〈c2, c4〉 =
1

2
.

After an isometry of S3
2(1), i.e., an isometry of E4

2 leaving S3
2(1) globally invariant, we may assume

c1 =
1

2
(1, 0, 1, 0), c2 =

1

2
(0, 1, 0, 1), c3 =

1

2
(1, 0,−1, 0), c4 =

1

2
(0, 1, 0,−1).

The reparametrization αu+ v
2α 7→ u, αu− v

2α 7→ v now gives the result. �

Theorem 5. A Lorentzian surface in Sms (1) has non-harmonic 1-type pseudo-spherical Gauss
map if and only if it is congruent to an open part of the image of

x(u, v) =
1√
2

(cosu, sinu, cosh v, sinh v)

in a totally geodesic S3
1(1) ⊂ Sms (1), or of

x(u, v) = (coshu cos v, coshu sin v, sinhu cos v, sinhu sin v)

in a totally geodesic S3
2(1) ⊂ Sms (1).

Proof. Assume that M1 is a Lorentzian surface in Sms (1) with non-harmonic 1-type pseudo-
spherical Gauss map. Choose {e1, e2} to be a local tangent frame satisfying 〈e1, e1〉 = 〈e2, e2〉 = 0
and 〈e1, e2〉 = −1. Then, there exists functions α and β on M1 such that

∇e1e1 = αe1, ∇e1e2 = −αe2, ∇e2e1 = βe1, ∇e2e2 = −βe2.(18)

From Theorem 1, M1 has zero mean curvature vector and flat normal connection in Sms (1), and
constant scalar curvature. Since H = −h(e1, e2), we find h(e1, e2) = 0. Also, from the Gauss
equation (3) the constant Gaussian curvature of M1 is given by K = 1−〈h(e1, e1), h(e2, e2)〉. This
implies that 〈h(e1, e1), h(e2, e2)〉 = c is constant and since the pseudo-spherical Gauss map is not
harmonic, we know from Theorem 2 that c 6= 0. Put h(e1, e1) = ξ1 and h(e2, e2) = ξ2. Since M1

has flat normal connection, from the Ricci equation (5) we get that

(19) 〈ξ1, ξ〉〈ξ2, µ〉 = 〈ξ1, η〉〈ξ2, ξ〉
for all normal vector fields ξ and η, which implies that ξ1 is parallel to ξ2. To see this, let
{e3, . . . , em} be an orthonormal basis of the normal space of M1 in Sms (1) with 〈ei, ej〉 = εiδij ,
εi ∈ {1,−1}. We can express ξ1 and ξ2 in this basis as

ξ1 =

m∑
i=3

εi〈ξ1, ei〉ei, ξ2 =

m∑
i=3

εi〈ξ2, ei〉ei.

For ξ = ei and µ = ej in (19), we have 〈ξ1, ei〉〈ξ2, ej〉 = 〈ξ1, ej〉〈ξ2, ei〉 for all i, j = 3, . . . ,m.
Thus, the rank of matrix with in its columns the coefficients of ξ1 and ξ2 is less than equal to 1,
that is, ξ1 and ξ2 are proportional to each other. Also, for ξ = ξ1 and η = ξ2 in (19) we get
〈ξ1, ξ1〉〈ξ2, ξ2〉 = c2 > 0, which implies that ξ1 and ξ2 are either both spacelike or both timelike.
Hence, there exist a unit normal vector field ξ′ and a function a on M1, with a > 0, such that

(20) ξ1 = aξ′, ξ2 = ε
c

a
ξ′,
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where ε = 〈ξ′, ξ′〉 ∈ {−1, 1}. For X = e1 and Y = Z = e2, respectively X = e2 and Y = Z = e1,
in the Codazzi equation (4), we obtain

(21) De1ξ2 = −2αξ2, De2ξ1 = 2βξ1.

On the other hand, we find from (20)

(22) De2ξ1 = e2(a)ξ′ + aDe2ξ
′, De1ξ2 = −εce1(a)

a2
ξ′ + ε

c

a
De1ξ

′.

Since ξ′ is a unit normal vector field, De1ξ
′ and De1ξ

′ are perpendicular to ξ′. Thus, by comparing
(21) and (22) and using (20), we find De1ξ

′ = De2ξ
′ = 0 and

(23) e1(ln a) = 2α, e2(ln a) = 2β.

We conclude that Imh = Span{ξ′} is parallel in the normal bundle and from the reduction
theorem by Erbarcher-Magid [10, 16], M1 is contained in a totally geodesic S3

1(1) or S3
2(1) of

Sms (1) depending on whether ε = 1 or ε = −1. The compatibility condition for system (23) reads
e1(β)− e2(α) + 2αβ = 0, which, by (18), is equivalent to K = 0. Lemma 2 now gives the result.

The converse can be straightforwardly verified. �

Theorem 6. A non-totally geodesic Lorentzian surface M1 in Sms (1) has harmonic pseudo spherical-
Gauss map if and only if the immersion x : M1 −→ Sms (1) ⊂ Em+1

s is given by

(24) x(u, v) =
z(u)

u+ v
− z′(u)

2
,

where z is a spacelike curve with constant speed 2 in the light cone {v ∈ Em+1
1 | 〈v, v〉 = 0},

satisfying 〈z′′, z′′〉 = 0 and z′′′ 6= 0.

Proof. By Theorem 2, the surface M1 is a minimal surface of constant Gaussian curvature 1 with
flat normal connection in Sms (1). Minimal Lorentzian surfaces with constant Gaussian curvature 1
were classified by Chen in Theorem 5.1 of [5]. The ones which are not totally geodesic but have
flat normal connection are exactly those described in the theorem. �

Example 1. We consider a spacelike curve

z(u) = (cos(
√

2u), sin(
√

2u), sinh(
√

2u), cosh(
√

2u))

lying the light cone of E4
1. Then, it can be shown that 〈z′, z′〉 = 4, 〈z′′, z′′〉 = 0 and z′′′ 6= 0. Thus,

from Theorem 6 the Lorentzian surface M1 in S3
1(1) given by the position vector x has harmonic

pseudo-spherical Gauss map.
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