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NULL PSEUDO-ISOTROPIC LAGRANGIAN SURFACES

ALFONSO CARRIAZO, VERÓNICA MARTÍN-MOLINA,
AND LUC VRANCKEN

Abstract. In this paper we will show that a Lagrangian, Lorentzian

surface M2
1 in a complex pseudo space form M̃2

1 (4c) is pseudo-
isotropic if and only if M is minimal. Next we will obtain a com-
plete classification of all Lagrangian, Lorentzian surfaces which are
lightlike pseudo-isotropic but not pseudo-isotropic.

Key words: Lagrangian submanifold, complex projective space,
isotropic submanifold, Lorentzian submanifold.

Subject class: 53B25, 53B20.

1. Introduction

The notion of isotropic submanifold was first introduced in [7] by
O’Neill for immersions of Riemannian manifolds and recently extended
by Cabrerizo, Fernández and Gómez in [2] to the pseudo-Riemannian
case. A submanifold is called pseudo-isotropic if, for any point p and
any tangent vector v at a point p, we have that

(1.1) 〈h(v, v), h(v, v)〉 = λ̃(p) 〈v, v〉2 ,

where h denotes the second fundamental form of the immersion and λ̃
is a smooth function on the submanifold.

Note that since the induced metric is pseudo-Riemannian it is natural
to distinguish between timelike, spacelike and lightlike (or null) vectors.
This leads in a natural way to the notions of

(i) Timelike pseudo-isotropic if, for any point p and any timelike tan-
gent vector v at a point p, equation (1.1) is satisfied,

(ii) Spacelike pseudo-isotropic if, for any point p and any spacelike
tangent vector v at a point p, equation (1.1) is satisfied,

(iii) Lightlike isotropic if, for every lightlike vector v at the point p, we
have that h(v, v) is again a lightlike vector.

The first two authors are partially supported by the MINECO-FEDER grant
MTM2014-52197-P. They also belong to the PAIDI groups FQM-327 and FQM-
226 (Junta de Andalućıa, Spain), respectively.
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It was shown in [2] that the notions of pseudo-isotropic, timelike
pseudo-isotropic and spacelike pseudo-isotropic are equivalent. In the
same paper they also included an example of an immersion which is
lightlike pseudo-isotropic but not pseudo-isotropic.

Here we are particularly interested in Lagrangian immersions of com-
plex space forms. In the positive definite case, isotropic Lagrangian
immersions have been studied in [3], [4], [5], [6] and [9]. In this pa-
per we will consider pseudo-isotropic and lightlike pseudo-isotropic
Lagrangian, Lorentzian surfaces M2

1 in a complex pseudo space form

M̃2
1 (4c). We will assume that the space form is not definite and hence

has real signature 2. By changing the sign of the metric if necessary, it
is sufficient to deal with the cases c = 0 or c = 1.

We will first show in Section 3 that

Theorem 1.1. Let M be a Lagrangian, Lorentzian surface in a complex
space form. Then M is pseudo-isotropic if and only if M is minimal.

Next we will obtain a complete classification of all Lagrangian,
Lorentzian surfaces which are lightlike pseudo-isotropic but not pseudo-
isotropic. To do so, we will first show in Section 4 that such a surface
can be seen as the union of two surfaces that we will call of Type I and
of Type II. These will be classified, case by case, in Sections 5 and 6,
respectively.

2. Preliminaries

Throughout this paper we will assume that M is a Lagrangian,

Lorentzian submanifold M of a complex space form M̃ . We use the
standard formulas of Gauss and Weingarten for a submanifold, intro-
ducing the second fundamental form h and the shape operators A by

∇̃XY = ∇XY + h(X, Y ),

∇̃Xξ = −AξX +∇⊥Xξ,
where X and Y are tangent vector fields and ξ is normal. Here, as

usual, ∇̃ denotes the Levi-Civita connection on the ambient space and,
if no confusion is possible, we will always identify M with its image in

M̃ .
Since M is Lagrangian, we have that the complex structure J in-

terchanges the tangent and the normal spaces. Using the formulas of
Gauss and Codazzi this implies that

∇⊥XJY = J∇XY,

AJXY = −Jh(X, Y ) = AJYX.
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The latter formula implies that the cubic form < h(X, Y ), JZ > is
totally symmetric in all components.

We denote the curvature tensors of ∇ and ∇⊥ by R and R⊥, respec-
tively. The first covariant derivative of h is defined by

(2.1) (∇h)(X, Y, Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(∇XZ, Y ),

where X, Y , Z and W are tangent vector fields.
The equations of Gauss, Codazzi and Ricci for a Lagrangian sub-

manifold of M̃n(4c) are given by

〈R(X, Y )Z,W 〉 = 〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉(2.2)

+ c(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉),
(∇h)(X, Y, Z) = (∇h)(Y,X,Z),(2.3)

〈R⊥(X, Y )JZ, JW 〉 = 〈[AJZ , AJW ]X, Y 〉(2.4)

+ c(〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉),

where X, Y Z and W are tangent vector fields. Note that for a La-
grangian submanifold the equations of Gauss and Ricci are mutually
equivalent.

We refer to [1] for the construction of the standard models of indef-
inite complex space forms CP n

s (4c) when c > 0, CHn
s (4c) when c < 0

and Cn
s . For our purposes, it is sufficient to know that there exist

pseudo-Riemannian submersions, called Hopf fibrations, given by

Π : S2n+1
2s (c)→ CP n

s (4c) : z 7→ z · C?

if c > 0, and by

Π : H2n+1
2s+1 (c)→ CHn

s (4c) : z 7→ z · C?,

if c < 0, where

S2n+1
2s (c) = {z ∈ Cn+1|bs,n+1(z, z) = 1

c
},

H2n+1
s+1 (c) = {z ∈ Cn+1|bs+1,n+1(z, z) = 1

c
}

and bs,q is the standard Hermitian form with index s on Cq. For our
convenience, we will assume that we have chosen an orthonormal basis
such that the first s odd terms appear with a minus sign.

In [1] it is shown that locally any indefinite complex space form is
holomorphically isometric to either Cn

s , CP n
s (4c), or CHn

s (4c). Remark
that, by replacing the metric < ., . > by − < ., . >, we have that
CHn

s (4c) is holomorphically anti-isometric to CP n
n−s(−4c). For that

purpose, as in our case n = 2 and s = 1, we only need to consider C2
1

and CP 2
1 (4).
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In order to study or explicitly obtain examples of Lagrangian sub-
manifolds, it is usually more convenient to work with horizontal sub-
manifolds. In that aspect, we first recall some basic facts from [8]
which relate Lagrangian submanifolds of CP n

s (4c) to horizontal im-
mersions in S2n+1

2s (c). Here, a horizontal immersion f : Mn
s → S2n+1

2s (c)
is an immersion which satisfies if(p) ⊥ f∗(TpM

n
s ) for all p ∈Mn

s , where
i =
√
−1.

Theorem 2.1 ([8]). Let Π : S2n+1
2s (1)→ CP n

s (4) be the Hopf fibration.
If f : Mn

s → S2n+1
2s (c) is a horizontal immersion, then F = Π ◦ f :

Mn
s → CP n

s (4c) is a Lagrangian immersion.
Conversely, let Mn

s be a simply connected manifold and let F : Mn
s →

CP n
s (4) be a Lagrangian immersion. Then there exists a 1-parameter

family of horizontal lifts f : Mn
s → S2n+1

2s (1) such that F = Π ◦ f . Any
two such lifts f1 and f2 are related by f1 = eiθf2, where θ is a constant.

Remark that both immersions have the same induced metric and
that the second fundamental forms of both immersions are also closely
related. For more details, see [8].

3. Minimality and Pseudo-Isotropy

In this section we will prove Theorem 1.1. Let us suppose that M2
1

is a Lagrangian, Lorentzian surface of a complex space form M̃ . We

will assume that either M̃ = C2
1 or CP 2

1 (4).
Let p ∈ M . We say that {e1, e2} is a null frame at a point p if it

satisfies
< ei, ej >= (1− δij), i, j ∈ {1, 2}.

In terms of a null frame, it is then clear that a Lagrangian immersion
is minimal if and only if

h(e1, e2) = 0.

In view of the symmetries of the second fundamental form, this implies
that there exist numbers λ and µ such that

h(e1, e1) = λJe2,

h(e2, e2) = µJe1.

If we now write v = v1e1 + v2e2, it follows that

h(v, v) = µv22Je1 + λv21Je2,

< h(v, v), h(v, v) > = 2λµv21v
2
2 = 1

2
λµ < v, v >2,

which shows that a minimal surface is indeed pseudo-isotropic.
In order to show the converse, we will use the following lemma of [2]:
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Lemma 3.1. Let F : M → M̃ be an isometric pseudo-Riemannian
immersion. Then the immersion is (pseudo)-isotropic if and only if
for any tangent vectors x, y, z, w ∈ TpM , we have that

< h(x, y), h(z, w) > + < h(y, z), h(x,w) > + < h(z, x), h(y, w) >=

= λ̃(p){< x, y >< z,w > + < y, z >< x,w > + < z, x >< y,w >}.

Note that in [2] the above lemma was formulated only for immersions
into pseudo-Euclidean spaces. However, it is clear that it remains valid
for arbitrary immersions in pseudo-Riemannian spaces.

Let us assume now that M is a pseudo-isotropic surface. Then it
follows from the previous lemma that

(i) h(e1, e1) is a lightlike vector, by taking x = y = z = w = e1,
(ii) h(e2, e2) is a lightlike vector, by taking x = y = z = w = e2,

(iii) h(e1, e2) is orthogonal to h(e1, e1), by taking x = y = z = e1 and
w = e2,

(iv) h(e1, e2) is orthogonal to h(e2, e2), by taking x = y = z = e2 and
w = e1.

We now write

h(e1, e2) = v1Je1 + v2Je2.

The fact that the immersion is Lagrangian then implies that

h(e1, e1) = v2Je1 + v3Je2,

h(e2, e2) = v4Je1 + v1Je2.

Let us now assume that M is not minimal. Then, by interchanging e1
and e2 if necessary, we may assume that v2 6= 0. As h(e1, e1) is lightlike
by (i), this implies that v3 = 0. It then follows from (iii) that v2 = 0
which is a contradiction. This completes the proof of Theorem 1.

4. Lightlike isotropic Lagrangian, Lorentzian surfaces

In this section we will assume that M2
1 is a Lagrangian, Lorentzian

lightlike pseudo-isotropic surface of a complex space form M̃ . We will

assume that either M̃ = C2
1 or CP 2

1 (4). We will also assume that M
is not pseudo-isotropic, i.e. in view of the previous section we will
assume that the immersion is not minimal. We call a surface which
is lightlike pseudo-isotropic without minimal points a proper lightlike
pseudo-isotropic surface.

We again take a null frame at a point p, i.e. a frame {e1, e2} such
that

< ei, ej >= (1− δij), i, j ∈ {1, 2}.
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Note that if both h(e1, e1) = h(e2, e2) = 0, then it follows from the fact
that M is Lagrangian that also h(e1, e2) = 0 and therefore that M is
pseudo-isotropic.

We say that M is proper lightlike pseudo-isotropic of Type 1 at the
point p if there exists a lightlike vector v such that h(v, v) and Jv are
independent. This means, after changing e1 and e2 if necessary, that
we may assume that

h(e1, e1) = Je2,

h(e2, e2) = µJe1 + λJe2.

Since M is Lagrangian, we deduce from this that

h(e1, e2) = λJe1.

Since M is proper, we have that λ 6= 0. Hence, since h(e2, e2) is
lightlike, we deduce that µ = 0 and so h(e2, e2) = λJe2.

We say that M is proper lightlike pseudo-isotropic of Type 2 if, for
every lightlike vector v, h(v, v) and Jv are dependent. This means,
after changing e1 and e2 if necessary, that we may assume that

h(e1, e1) = Je1,

h(e2, e2) = λJe2.

As M is Lagrangian, we deduce from this that

h(e1, e2) = λJe1 + Je2.

We see that M is indeed not minimal and the immersion is therefore
proper lightlike pseudo-isotropic.

Note that a point which belongs to the closure of Type 2 points
needs to be a minimal point automatically. Therefore, it follows from
the fact that M is proper that M can be seen as the union of a Type 1
lightlike proper pseudo-isotropic surface and a Type 2 lightlike proper
pseudo-isotropic surface. In both cases, it is immediately clear that the
null frame can be extended to a neighborhood of the point p.

5. Proper Lightlike isotropic Lagrangian, Lorentzian
surfaces of Type 1

We take a null frame in a neighborhood of the point p as constructed
in the previous section. So we have a frame {E1, E2} such that

< Ei, Ej >= (1− δij), i, j ∈ {1, 2},
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and

h(E1, E1) = JE2,

h(E2, E2) = λJE2,

h(E1, E2) = λJE1,

where λ is a nowhere vanishing function. We write

∇E1E1 = αE1, ∇E1E2 = −αE2,

∇E2E1 = −βE1, ∇E2E2 = βE2,

where α and β are functions.

Lemma 5.1. We have that β = 0 and λ satisfies the following system
of differential equations:

E1(λ) = −αλ,
E2(λ) = 0.

Proof. We have that

(∇h)(E2, E1, E1) = ∇⊥E2
JE2 − 2h(∇E2E1, E1)

= βJE2 + 2βJE2 = 3βJE2.

On the other hand, we have that

(∇h)(E1, E2, E1) = ∇⊥E1
λJE1 − h(∇E1E2, E1)− h(E2,∇E1E1)

= (E1(λ) + αλ)JE1 + αh(E2, E1)− αh(E2, E1)

= (E1(λ) + αλ)JE1.

From the Codazzi equation, we therefore obtain that β = 0 and
E1(λ) = −αλ. Similarly from the Codazzi equation (∇h)(E1, E2, E2) =
(∇h)(E2, E1, E2), we now deduce that E2(λ) = 0. �

Lemma 5.2. We have that c = 0 and α satisfies

E2(α) = 0.

Proof. We compute [E1, E2](λ) in two different ways. We have that

[E1, E2](λ) = E1(E2(λ))− E2(E1(λ))

= E2(αλ)

= E2(α)λ

and

[E1, E2](λ) = (∇E1E2 −∇E2E1)(λ))

= −αE2(λ) = 0.

Since λ 6= 0, we deduce that E2(α) = 0.
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A direct computation then yields that

R(E1, E2)E1 = −∇E2∇E1E1 −∇∇E1
E2E1

= −∇E2(αE1) + α∇E2E1

= −E2(α)E1 = 0.

So from the Gauss equation we obtain that

0 = cE1 + Ah(E1,E2)e1 − Ah(E1,E1)E2

= cE1 + λAJE1E1 − AJE2E2

= cE1.

Hence the ambient space must be flat. �

The previous lemma immediately implies:

Theorem 5.3. There does not exist a proper lightlike isotropic La-
grangian, Lorentzian surface of Type 1 in CP 2

1 (4).

Moreover, we can also show that

Theorem 5.4. Let M be a proper lightlike isotropic Lagrangian,
Lorentzian surface of Type 1 in C2

1. Then M is locally congruent with

(α(x) 1√
2
(−i,−i) + β(x) 1√

2
(1,−1))eiv,

where α′(x)β(x)− α(x)β′(x) 6= 0.

Proof. We introduce vector fields λE1 and 1
λ
E2. We have that

[λE1,
1
λ
E2] = −E1(λ)

λ
E2 + [E1, E2]

= αE2 − αE2 = 0.

Therefore, there exist coordinates u and v such that ∂u = λE1 and
∂v = 1

λ
E2. If we denote the immersion by f , it follows that

fvv = ifv,

fuv = ifu,

fuu = λE1(λ)E1 + λ2∇E1E1 + λ2h(E1, E1)

= −λ2α + λ2α + λ2iE2

= λ3ifv,

where λ is a function depending only on u. Integrating the first two
equations it follows that

f(u, v) = A1(u)eiv + A2,
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where A1 is a vector valued function and A2 is a constant. Of course,
we may assume that A2 vanishes by applying a translation of C2

1. The
third equation then tells us that

A′′1 = −λ3A1.

Note that this is precisely the expression of a curve lying in the plane
spanned by A1(0) and A′1(0) parametrised in such a way that |A1A

′
1| is

constant. Given that M is a Lagrangian surface we must have that A1

and A′1 are linearly independent (over C) and that the plane spanned
by A1 and iA′1 is real. Therefore, the constant is non-vanishing. Since
fu = λE1 and fv = 1

λ
E2, by choosing the initial conditions we may

assume that A1(0) = 1√
2
(−i,−i) and A′1(0) = 1√

2
(1,−1).

Conversely, if we define a surface by

f(x, v) = (α(x) 1√
2
(−i,−i) + β(x) 1√

2
(1,−1))eiv,

where α′(x)β(x)−α(x)β′(x) 6= 0, we see that just as for the Euclidean
arc length of a planar curve, it is possible to construct a parameter u
for the curve (α, β) such that α′(u)β(u)−α(u)β′(u) = 1. A straightfor-
ward computation then shows that the surface f(u, v) has the desired
properties. �

6. Proper Lightlike isotropic Lagrangian, Lorentzian
surfaces of Type 2

We take a null frame in a neighborhood of the point p as constructed
in the previous section. Then we have a frame {E1, E2} such that

< Ei, Ej >= (1− δij), i, j ∈ {1, 2},

and

h(E1, E1) = JE1,

h(E1, E2) = λJE1 + JE2,

h(E2, E2) = λJE2,

where λ is a function on M . We write

∇E1E1 = αE1, ∇E1E2 = −αE2,

∇E2E1 = −βE1, ∇E2E2 = βE2,

where α and β are functions.
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Lemma 6.1. We have that α = 0 and λ satisfies the following system
of differential equations:

E1(λ) = β,

E2(λ) = λβ.

Proof. We have that

(∇h)(E2, E1, E1) = ∇⊥E2
JE1 − 2h(∇E2E1, E1)

= −βJE1 + 2βJE1 = βJE1.

On the other hand, we have that

(∇h)(E1, E2, E1) = ∇⊥E1
(λJE1 + JE2)− h(∇E1E2, E1)− h(E2,∇E1E1

= (E1(λ) + αλ)JE1 − αJE2 + αh(E2, E1)− αh(E2, E1)

= (E1(λ) + αλ)JE1 − αJE2.

From the Codazzi equation, we therefore obtain that α = 0 and
E1(λ) = β. Similarly from the Codazzi equation (∇h)(E1, E2, E2) =
(∇h)(E2, E1, E2), we now deduce that E2(λ) = λβ. �

Lemma 6.2. We have that β satisfies

E1(β) = −c− λ,
E2(β) = λ(−c− λ).

Proof. A direct computation yields that

R(E1, E2)E1 = ∇E1∇E2E1 +∇∇E2
E1E1

= −∇E1(βE1)− β∇E1E1

= −E1(β)E1.

So from the Gauss equation we obtain that

−E1(β)E1 = cE1 + Ah(E1,E2)E1 − Ah(E1,E1)E2

= cE1 + λAJE1E1 + AJE2E1 − AJE1E2

= cE1 + λE1,

which reduces to E1(β) = −(c+λ). In order to obtain the E2 derivative
of β, we compute [E1, E2](λ) in two different ways. We have that

[E1, E2](λ) = E1(E2(λ))− E2(E1(λ))

= E1(λβ)− E2(β)

= β2 + λ(−c− λ)− E2(β)
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and

[E1, E2](λ) = (∇E1E2 −∇E2E1)(λ))

= βE1(λ) = β2,

which clearly concludes the proof. �

It follows by a direct computation that

Corollary 6.3. There exists a constant r such that

(λ+ c)2 + β2 = r2.

Lemma 6.4. There exist local coordinates u and v such that

∂
∂u

= E1,
∂
∂v

= E2 − λE1.

Proof. We define vector fields

U = E1,

V = E2 − λE1,

and compute

[U, V ] = [E1, E2 − λE1]

= [E1, E2]− E1(λ)E1

= βE1 − E1(λ)E1 = 0,

which proves the result. �

It then follows immediately from the previous systems of differen-
tial equations that β and λ do not depend on the variable v and are
determined by

∂λ
∂u

= β,
∂β
∂u

= −(c+ λ).

Therefore, note that, after a translation of the u coordinate if necessary,
we may suppose that

λ = −c+ r sinu,

β = r cosu.

In the above equations, the constant r is allowed to be zero. In that
case, we get the special solution β = 0 and λ = −c.

In view of the dimension, if necessary changing the sign of the metric
on the ambient space, we only have to consider the cases c = 0 or c = 1.
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6.1. Case c = 0: Lightlike isotropic Lagrangian, Lorentzian
surfaces in C2

1. We denote the immersion by f . It follows from the
previous equations that f is determined by the system of differential
equations:

fuu = ifu,

fuv = −re−iufu + ifv,

fvv = re−iufv + ir2(e−2iu − 1)fu.

It follows from the first equation that there exist vector valued functions
g1 and g2 such that

f(u, v) = g1(v)eiu + g2(v).

Substituting this into the second equation gives

g′2(v) = rg1(v),

and the final equation now reduces to

g′′1(v)eiu + g′′2(v) = re−iu(g′1(v)eiu + g′2(v))− r2(e−2iu − 1)eiug1(v).

Looking at the different powers of eiu, we deduce that

g′′1(v) = r2g1(v),

g′′2(v) = rg′1(v),

0 = rg′2(v)− r2g1(v).

So the remaining equations are

g′2(v) = rg1(v),

g′′1(v) = r2g1(v).

The solution of the above system depends on the value of r.

6.1.1. Case r = 0. If r = 0 we have that g2(v) is a constant vector.
Hence by applying a translation we may assume that this vector van-
ishes. Therefore, we have that

f(u, v) = (vA1 + A2)e
iu,

for some constant vectorsA1 andA2. We take an initial point p = (0, 0).
Since λ(0, 0) = 0, it follows that

E1(0, 0) = ∂f
∂u

(0, 0) = iA2,

E2(0, 0) = ∂f
∂v

(0, 0) = A1.

It then follows from the choice of E1 and E2, together with the La-
grangian condition, that 1√

2
(A1 − iA2),

i√
2
(A1 − iA2),

1√
2
(A1 + iA2),
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i√
2
(A1 + iA2) can be identified with (1, 0), (i, 0), (0, 1), (0, i). This

implies that

A1 = (
√
2
2
,
√
2
2

),

A2 = (
√
2
2
i,−

√
2
2
i).

6.1.2. Case r 6= 0. In this case we have that

g1(v) = A1e
rv + A2e

−rv.

Therefore

g′2(v) = rA1e
rv + rA2e

−rv,

which implies that, after applying a suitable translation, we have that

g2(v) = A1e
rv − A2e

−rv.

So we find that

f(u, v) = (A1e
rv + A2e

−rv)eiu + (A1e
rv − A2e

−rv),

for some constant vectors A1 and A2. We take again as initial point
p = (0, 0). Since λ(0, 0) = 0, it follows that

E1(0, 0) = ∂f
∂u

(0, 0) = i(A1 + A2),

E2(0, 0) = ∂f
∂v

(0, 0) = 2rA1.

Or equivalently

A1 = 1
2r
E2,

A2 = −iE1 − 1
2r
E2.

It then follows from the choice of E1 and E2, together with the La-
grangian condition, that we may assume that E1 = ( 1√

2
, 1√

2
) and

E2 = (− 1√
2
, 1√

2
), which implies that

A1 = (−
√
2

4r
,
√
2

4r
),

A2 = ( (1−2ir)
2
√
2r
, (−1−2ir)√

22r)
).

6.1.3. Summary. Combining the previous results, we get

Theorem 6.5. Let M be a proper lightlike isotropic Lagrangian,
Lorentzian surface of Type 2 in C2

1. Then M is congruent with one
of the following surfaces:

(1) the surface

f(u, v) = (vA1 + A2)e
iu,

where A1 = (
√
2
2
,
√
2
2

) and A2 = (−
√
2
2
i,
√
2
2
i),
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(2) the surface

f(u, v) = (A1e
rv + A2e

−rv)eiu + (A1e
rv − A2e

−rv),

where r is a positive constant, and A1 = (−
√
2

4r
,
√
2

4r
) and A2 =

( (1−2ir)
2
√
2r
, (−1−2ir)√

22r)
).

6.2. Case c = 1: Lightlike isotropic Lagrangian, Lorentzian
surfaces in CP 2

1 (4). We denote the horizontal lift of the immersion
into S5

2(1) by f . It follows from the previous equations that f is deter-
mined by the system of differential equations:

fuu = ifu,

fuv = −(i+ re−iu)fu + ifv − f,
fvv = (i+ re−iu)(−2fu + fv + 2fur sin(u))− 2(1− r sin(u))f.

It follows from the first equation that there exists vector valued func-
tions a1 and a2 such that

f(u, v) = a1(v)eiu + a2(v).

Substituting this into the second equation gives

a′2(v) = −ia2(v) + ra1(v).

The final equation now reduces to

a′′1(v) = a1(v)r2 + i(a′1(v)− a2(v)r).

The solution of this differential equation depends on the value of r.

6.2.1. Case 0 ≤ r < 1. In this case we can write r = cos(t), where
t ∈ ]0, π

2
]. We find that

a1(v) =− csc2(t) (−c3 sin(t) sin(v sin(t))

+
(
c1 cos2(t) + ic3

)
cos(v sin(t))

+2ic2 cos(t) sin2
(
1
2
v sin(t)

)
− c1 − ic3

)
(6.1)

a2(v) =− csc2(t) (cos(t) (−c1 sin(t) sin(v sin(t))

+ (c3 − ic1) (cos(v sin(t))− 1))

−c2(cos(v sin(t))− i sin(t) sin(v sin(t))) + c2 cos2(t)
)

(6.2)

We take again as initial point p = (0, 0). We have that λ(0, 0) = −1.
It follows that

f(0, 0) = c1 + c2,

E1(0, 0) = ∂f
∂u

(0, 0) = ic1,

E2(0, 0) = ∂f
∂v

(0, 0) + λ∂f
∂u

(0, 0) = −i(c1 + c2) + c3 + c1 cos t.



NULL PSEUDO-ISOTROPIC LAGRANGIAN SURFACES 15

So if we pick the initial conditions f(0, 0) = (0, 0, 1), E1(0, 0) =
( 1√

2
, 1√

2
, 0) and E2(0, 0) = (− 1√

2
, 1√

2
, 0), we find that

c1 =

(
− i√

2
,− i√

2
, 0

)
,(6.3)

c2 =

(
i√
2
,
i√
2
, 1

)
,(6.4)

c3 =

(
i

(
cos(t)√

2
+

i√
2

)
, i

(
cos(t)√

2
− i√

2

)
, i

)
.(6.5)

6.2.2. Case r = 1. We obtain as solution of the differential equation
that

a1(v) =
1

2

(
c1
(
v2 + 2

)
+ v (2c3 − i (c2 − c3) v)

)
,(6.6)

a2(v) =
1

2
(2c2 + v (c3v + (c1 − ic2) (2− iv))) .(6.7)

We take again as initial point p = (0, 0). We have that λ(0, 0) = −1.
It follows that

f(0, 0) = c1 + c2,

E1(0, 0) = ∂f
∂u

(0, 0) = ic1,

E2(0, 0) = (1− i)c1 − ic2 + c3.

So, if we pick the initial conditions f(0, 0) = (0, 0, 1), E1(0, 0) =
( 1√

2
, 1√

2
, 0) and E2 = (− 1√

2
, 1√

2
, 0), we find that

c1 =

(
− i√

2
,− i√

2
, 0

)
,(6.8)

c2 =

(
i√
2
,
i√
2
, 1

)
,(6.9)

c3 =

(
i− 1√

2
,
1 + i)√

2
, i

)
.(6.10)

6.2.3. Case r > 1. We obtain as solution of the differential equation
that

a1(v) =
c3
√
r2 − 1 sinh

(√
r2 − 1v

)
+

(
c1r2 − ic2r + ic3

)
cosh

(√
r2 − 1v

)
+ ic2r − c1 − ic3

r2 − 1
,

(6.11)

a2(v) =

√
r2 − 1 (c1r − ic2) sinh

(√
r2 − 1v

)
+ (−c2 + (c3 − ic1) r) cosh

(√
r2 − 1v

)
+ r (c2r + ic1 − c3)

r2 − 1
.

(6.12)
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We take again as initial point p = (0, 0). We have that λ(0, 0) = −1.
It follows that

f(0, 0) = c1 + c2,

E1(0, 0) = ∂f
∂u

(0, 0) = ic1,

E2(0, 0) = −i(c1 + c2) + c3 + c1r.

So, if we pick the initial conditions f(0, 0) = (0, 0, 1), E1(0, 0) =
( 1√

2
, 1√

2
, 0) and E2 = (− 1√

2
, 1√

2
, 0), we find that

c1 =

(
− i√

2
,− i√

2
, 0

)
,(6.13)

c2 =

(
i√
2
,
i√
2
, 1

)
,(6.14)

c3 =

(
i(i+ r)√

2
,
(1 + ir)√

2
, i

)
.(6.15)

6.2.4. Summary. Combining the previous results we get the following
theorem which finishes our classification.

Theorem 6.6. Let M be a proper lightlike isotropic Lagrangian,
Lorentzian surface in CP 2

1 (4). Then the Hopf lift of M is congru-
ent with one of the following immersions into S5

1(1) given by f(u, v) =
a1(v)eiu + a2(v), where either

(1) a1, a2, c1, c2, c3 are as described in (6.1)–(6.5), or
(2) a1, a2, c1, c2, c3 are as described in (6.6)–(6.10), or
(3) a1, a2, c1, c2, c3 are as described in (6.11)–(6.15).
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