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CLASSIFICATION OF δ(2,n−2)-IDEAL LAGRANGIAN SUBMANIFOLDS IN

n-DIMENSIONAL COMPLEX SPACE FORMS

BANG-YEN CHEN, FRANKI DILLEN, JOERI VAN DER VEKEN, AND LUC VRANCKEN

Abstract. It was proven in [13] that every Lagrangian submanifold M of a complex space form

M̃n(4c) of constant holomorphic sectional curvature 4c satisfies the following optimal inequality:

δ(2, n−2) ≤
n2(n− 2)

4(n− 1)
H2 + 2(n− 2)c,

where H2 is the squared mean curvature and δ(2, n− 2) is a δ-invariant on M . In this paper

we classify Lagrangian submanifolds of complex space forms M̃n(4c), n ≥ 5, which satisfy the
equality case of this improved inequality at every point.

1. Introduction

Let M be an n-dimensional Riemannian manifold and denote for all p ∈ M and for all plane
sections π ⊆ TpM , the sectional curvature ofM associated with π byK(π). If L is an r-dimensional
subspace of TpM with 2 ≤ r ≤ n and {e1, . . . , er} is an orthonormal basis of L, the scalar curvature
of L is defined by

τ(L) =

r∑
α,β=1
α<β

K(eα ∧ eβ). (1.1)

It is easily checked that this definition does not depend on the chosen orthonormal basis of L. In
particular, the scalar curvature τ of M at p is defined to be τ(p) = τ(TpM).

For given integers n ≥ 3 and k ≥ 1, we denote by S(n, k) the finite set consisting of all k-tuples
(n1, . . . , nk) of integers satisfying 2 ≤ n1 ≤ · · · ≤ nk ≤ n − 1 and n1 + · · · + nk ≤ n. Denote the
union

⋃
k≥1 S(n, k) by S(n). For each (n1, . . . , nk) ∈ S(n), the first author introduced in [7] the

Riemannian invariant δ(n1, . . . , nk) defined by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)} (1.2)

for any p ∈Mn, where L1, . . . , Lk run over all k-tuples of mutually orthogonal subspaces of TpM
n

such that dimLj = nj for j = 1, . . . , k. For any submanifold of a real space form of constant
sectional curvature c, we have the following sharp general inequality relating intrinsic data of the
submanifold (the δ-invariant) with extrinsic data of the immersion (the mean curvature). We refer
to [7, 9] for more details.

Theorem 1.1. Let M be an n-dimensional submanifold of a real space form of constant sectional
curvature c. Then for each k-tuple (n1, . . . , nk) ∈ S(n) and at any point p ∈ M , the following
inequality holds:

δ(n1, . . . , nk) ≤
n2(n+ k − 1−

∑k
j=1 nj)

2(n+ k −
∑k
j=1 nj)

H2 + b(n1, . . . , nk)c,
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where H2 is the squared mean curvature of M at p and b(n1, . . . , nk) is defined by

b(n1, . . . , nk) =
n(n− 1)

2
−

k∑
j=1

nj(nj − 1)

2
.

The same inequality holds for Lagrangian submanifolds of a complex space form M̃n(4c), but
it is not optimal in that case. Recall that a submanifold of a Kähler manifold is called Lagrangian
if the almost complex structure J induces an isomorphism between the tangent space and the
normal space at every point or, equivalently, if the Kähler 2-form restricted to the submanifold
vanishes. An optimal result was obtained in [13], where a distinction needed to be made between
the cases n1 + . . .+nk < n and n1 + . . .+nk = n. In particular, we obtained the following results.

Theorem 1.2. Let M be a Lagrangian submanifold of a complex space form M̃n(4c). Then for
each k-tuple (n1, . . . , nk) ∈ S(n) with n1 + . . . + nk < n, and at any point of Mn, the following
inequality holds:

δ(n1, . . . , nk) ≤
n2
(
n−

∑k
j=1 nj + 3k − 1− 6

∑k
j=1

1
2+nj

)
2
(
n−

∑k
j=1 nj + 3k + 2− 6

∑k
j=1

1
2+nj

) H2 + b(n1, . . . , nk)c,

where b(n1, . . . , nk) is as in Theorem 1.1.

Theorem 1.3. Let M be a Lagrangian submanifold of a complex space form M̃n(4c). Then for
each k-tuple (n1, . . . , nk) ∈ S(n) with n1 + . . . + nk = n, and at any point of Mn, the following
inequality holds:

δ(n1, . . . , nk) ≤
n2
(
k − 1− 2

∑k
j=2

1
nj+2

)
2
(
k − 2

∑k
j=2

1
nj+2

) H2 + b(n1, . . . , nk)c,

where b(n1, . . . , nk) is as in Theorem 1.1.

In both cases, a (different) full description of the second fundamental form of those submanifolds
realizing equality in the inequality at any of their points is also given in [13]. We call such
a Lagrangian submanifold δ(n1, . . . , nk)-ideal. Since the mean curvature is a measure for the
tension a submanifold experiences from its shape in the ambient space, the submanifolds are
shaped ideally in the sense that they experience the least amount of tension, given their intrinsic
geometry. The full descriptions of the second fundamental forms would require us to introduce a
lot of new notation, so we will restrict to the case treated in this paper, which is a special case of
Theorem 1.3.

Theorem 1.4. For a Lagrangian submanifold M of a complex space form M̃n(4c) with n ≥ 5,
we have

δ(2, n−2) ≤ n2(n− 2)

4(n− 1)
H2 + 2(n− 2)c. (1.3)

If the equality sign in (1.3) holds at a point p, then there exists an orthonormal basis {e1, . . . , en}
of TpM such that the components of the second fundamental form, hCAB = 〈h(eA, eB), JeC〉, satisfy

hk11 = hk22 = hk33 + · · ·+ hknn = 0 for k ≥ 3, (1.4)

hi11 + hi22 = nhi33 = · · · = nhinn for i ∈ {1, 2}, (1.5)

h1
k` = h2

k` = hk12 = 0 for k, ` ≥ 3, k 6= `. (1.6)

The purpose of this paper is to classify δ(2, n− 2)-ideal Lagrangian submanifolds in complex
space forms for n ≥ 5. Remark that the latter condition is necessary: for δ(2, 2)-ideal Lagrangians

in M̃4(4c), the description of the second fundamental form is different (cfr. [13]).
The paper is organised as follows. Section 2 contains some preliminaries on submanifold theory

and in particular on Lagrangian submanifolds of complex space forms. In Section 3, the second
fundamental form of δ(2, n− 2)-ideal Lagrangian submanifolds of complex space forms with com-
plex dimension n ≥ 5 is determined, along with some additional information. It turns out that,
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apart from the minimal case, case (I), there are two other cases to consider: case (II) is completely
solved in Section 4, by reducing it to a special case of a family of Lagrangians studied in [15].
Case (III) is more involved and is treated in Section 5. Section 6 contains the final conclusions of
the paper.

2. Preliminaries

2.1. Basic formulas. If M̃n(4c) is a complete simply connected Kähler n-manifold with constant

holomorphic sectional curvature 4c, then M̃n(4c) is holomorphically isometric to the complex
Euclidean n-space Cn, the complex projective n-space CPn(4c), or the complex hyperbolic n-
space CHn(−4c) according to c = 0, c > 0 or c < 0 respectively. These manifolds are known as
complex space forms.

Let M be a Lagrangian submanifold of M̃n(4c). Denote the Levi-Civita connections of M and

M̃n(4c) by ∇ and ∇̃, respectively. The formulas of Gauss and Weingarten are given respectively
by (cf. [9])

∇̃XY = ∇XY + h(X,Y ), ∇̃Xξ = −AξX +∇⊥Xξ (2.1)

for tangent vector fields X and Y and normal vector fields ξ, where h is the second fundamental
form, A is the shape operator and ∇⊥ is the normal connection. The second fundamental form
and the shape operator are related by 〈h(X,Y ), ξ〉 = 〈AξX,Y 〉. The mean curvature vector field
of M is defined by H = (traceh)/n and the squared mean curvature is given by H2 = 〈H,H〉.

For a Lagrangian submanifold, we have (cf. [9, 14])

∇⊥XJY = J∇XY, (2.2)

AJXY = −Jh(X,Y ) = AJYX (2.3)

for all tangent vector fields X and Y . Formula (2.3) implies in particular that the so-called cubic
form (X,Y, Z) 7→ 〈h(X,Y ), JZ〉 is totally symmetric. For an orthonormal basis {e1, . . . , en} of
TpM , we put

hCAB = 〈h(eA, eB), JeC〉 . (2.4)

The equations of Gauss and Codazzi are given respectively by

〈R(X,Y )Z,W 〉 = c(〈X,W 〉 〈Y,Z〉 − 〈X,Z〉 〈Y,W 〉) (2.5)

+ 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉 ,
(∇Xh)(Y,Z) = (∇Y h)(X,Z), (2.6)

where R is the curvature tensor of M and ∇h is defined by

(∇Xh)(Y,Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.7)

2.2. Horizontal lifts of Lagrangian submanifolds. We recall the link between Legendre sub-
manifolds and Lagrangian submanifolds (cf. [9, 18]).

Case (i): CPn(4). Consider the Hopf fibration π : S2n+1 → CPn(4), where S2n+1 is the unit
sphere in Cn+1. For a given point u ∈ S2n+1, the horizontal space at u is the orthogonal comple-
ment of iu, i =

√
−1, with respect to the metric on S2n+1 induced from the metric on Cn+1. Let

L : M → CPn(4) be a Lagrangian isometric immersion. Then there is a covering map τ : M̂ →M

and a horizontal immersion L̃ : M̂ → S2n+1 such that L ◦ τ = π ◦ L̃. Thus each Lagrangian
immersion can be lifted locally (or globally if M is simply connected) to a Legendre immersion
of the same Riemannian manifold. In particular, a minimal Lagrangian submanifold of CPn(4) is
lifted to a minimal Legendre submanifold of the Sasakian manifold S2n+1.

Conversely, suppose that L̃ : M → S2n+1 is a Legendre isometric immersion. Then L =
π ◦ L̃ : M → CPn(4) is a Lagrangian isometric immersion. Under this correspondence the second

fundamental forms hL̃ and hL of L̃ and L satisfy π∗h
L̃ = hL. Moreover, hL̃ is horizontal with

respect to π.
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Case (ii): CHn(−4). We consider the complex number space Cn+1
1 equipped with the pseudo-

Euclidean metric g0 = −dz1dz̄1 + dz2dz̄2 + . . .+ dzn+1dz̄n+1 and look at

H2n+1
1 = {z ∈ Cn+1

1 | 〈z, z〉 = −1}

with the canonical Sasakian structure, where 〈 , 〉 is the induced inner product from g0. In
particular, H1

1 = {λ ∈ C | λλ̄ = 1}. Then there is an H1
1 -action on H2n+1

1 , given by z 7→ λz, and
at each point z ∈ H2n+1

1 , the vector ξ = iz is tangent to the flow of the action. Since the metric g0

is Hermitian, we have 〈ξ, ξ〉 = −1. The quotient space H2n+1
1 / ∼, under the identification induced

from the action, is the complex hyperbolic space CHn(−4) with constant holomorphic sectional
curvature −4 whose complex structure J is induced from the complex structure on Cn+1

1 via the
Hopf fibration π : H2n+1

1 → CHn(−4).
Just like in case (i), if L : M → CHn(−4) is a Lagrangian immersion, then there is an isometric

covering map τ : M̂ → M and a Legendre immersion L̃ : M̂ → H2n+1
1 such that L ◦ τ = π ◦ L̃.

Thus every Lagrangian immersion into CHn(−4) an be lifted locally (or globally if M is simply
connected) to a Legendre immersion into H2n+1

1 . In particular, minimal Lagrangian submanifolds

of CHn(−4) are lifted to minimal Legendre submanifolds of H2n+1
1 . Conversely, if L̃ : M̂ → H2n+1

1

is a Legendre immersion, then L = π ◦ L̃ : M → CHn(−4) is a Lagrangian immersion. Under this

correspondence the second fundamental forms hf and hL are related by π∗h
L̃ = hL. Also, hL̃ is

horizontal with respect to π.
Let h be the second fundamental form of M in S2n+1, respectively H2n+1

1 . Since S2n+1 and
H2n+1

1 are totally umbilical with mean curvature 1 in Cn+1, respectively Cn+1
1 , we have

DXY = ∇XY + h(X,Y )− εL̃, (2.8)

where ε = 1 if the ambient space is Cn+1 and ε = −1 if it is Cn+1
1 and D denotes the Levi-Civita

connection of Cn+1, respectively Cn+1
1 .

3. The second fundamental form of δ(2, n− 2)-ideal Lagrangian submanifolds

In this section, we prove two lemmas. The first one, Lemma 3.1, describes the second funda-
mental form of a δ(2, n− 2)-ideal Lagrangian submanifold of a complex space form pointwise and
follows from Theorem 1.4. The second one, Lemma 3.2, describes the second fundamental form
in terms of a local orthonormal frame.

Lemma 3.1. Let M be a Lagrangian submanifold of a complex space form M̃n(4c), n ≥ 5,
satisfying the equality case of (1.3) at a point p ∈ M . Then there exist an orthonormal basis
{e1, . . . , en} of TpM and real numbers γ, λ, µ and hkij (i, j, k ≥ 3), such that

h(e1, e1) = γJe1, h(e1, e2) = (nλ− γ)Je2,

h(e2, e2) = (nλ− γ)Je1 + nµJe2,

h(e1, ei) = λJei, h(e2, ei) = µJei,

h(ei, ej) = δij(λJe1 + µJe2) +

n∑
k=3

hkijJek

(3.1)

for i, j ≥ 3. The numbers hkij are symmetric in the three indices and satisfy hk33 + . . . + hknn = 0
for any k ≥ 3. Moreover,

γ ≥ 0, γ ≥ 2n

3
λ, (3.2)

if γ = 0, then also λ = µ = 0, (3.3)

if γ > 0, then also γ >
n

2
λ. (3.4)
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Proof. Choose an orthonormal basis {e1, . . . , en} of TpM such that (1.4)–(1.6) hold. This implies
that

h(e1, e1) = h1
11Je1 + h2

11Je2,

h(e1, e2) = h2
11Je1 + h1

22Je2,

h(e2, e2) = h1
22Je1 + h2

22Je2,

h(e1, ek) = h1
33Jek, h(e2, ek) = h2

33Jek,

h(ek, e`) = δk`(h
1
33Je1 + h2

33Je2) +

n∑
m=3

hmk`Jem,

with

h1
11 + h1

22 = nh1
33 (= nh1

44 = . . . = nh1
nn),

h2
11 + h2

22 = nh2
33 (= nh2

44 = . . . = nh2
nn),

hk33 + . . .+ hknn = 0 for k ≥ 3.

Remark that the conditions (1.4)–(1.6) remain true for any choice of orthonormal basis in
span{e1, e2}. In particular, we can assume that the following function, defined on a compact set,
attains its global maximum in e1:

φ : {u ∈ span{e1, e2} | ‖u‖ = 1} → R : u 7→ 〈h(u, u), Ju〉.

This implies that the function F : R → R : θ 7→ φ((cos θ)e1 + (sin θ)e2) attains a maximum at
θ = 0. Computing the first and second derivatives of F gives respectively h2

11 = 0 and h1
11 ≥ 2h1

22.
Since φ(−e1) = −φ(e1) and φ attains its maximum at e1, we have φ(e1) = h1

11 ≥ 0. Moreover, if
h1

11 = 0, then φ vanishes identically, which implies that also h1
22 = h2

22 = 0. Finally, if h1
11 > 0, it

is easy to see that h1
11 > h1

22.
We now obtain the result by putting γ = h1

11, λ = h1
33 and µ = h2

33. �

Remark that, under the assumptions of Lemma 3.1, the mean curvature vector at the point p
is given by

H(p) =
2(n− 1)

n
(λJe1 + µJe2). (3.5)

It is not clear whether the orthonormal bases given by Lemma 3.1 at every point of a δ(2, n−2)-
ideal Lagrangian submanifold of a complex space form can be pasted together to form a differen-
tiable orthonormal frame. However, we have the following local result.

Lemma 3.2. Let M be a δ(2, n−2)-ideal Lagrangian submanifold of a complex space form M̃n(4c),
n ≥ 5. Then there exists an open and dense subset V ⊆ M such that every point of V has a
neighborhood in which one of the following holds.

(I) H = 0.
(II) There exists a differentiable orthonormal frame {E1, . . . , En} such that the second funda-

mental form satisfies

h(E1, E1) = (n− 1)λJE1, h(E1, Ei) = λJEi,

h(Ei, Ej) = δijλJE1 +

n∑
k=2

hkijJEk
(3.6)

for i, j ≥ 2, where λ and hkij are differentiable functions, the latter being symmetric in the

three indices and satisfying hk22 + . . .+ hknn = 0 for all k ≥ 2.
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(III) There exists a differentiable orthonormal frame {E1, . . . , En} such that the second funda-
mental form satisfies

h(E1, E1) = γJE1, h(E1, E2) = (nλ− γ)JE2,

h(E2, E2) = (nλ− γ)JE1 + nµJE2,

h(E1, Ei) = λJEi, h(E2, Ei) = µJEi,

h(Ei, Ej) = δij(λJE1 + µJE2) +

n∑
k=3

hkijJEk

(3.7)

for i, j ≥ 3, where γ, λ, µ and hkij are differentiable functions, the latter being symmetric

in the three indices, satisfying γ > 0, γ > 2nλ/3 and hk33 + . . . + hknn = 0 for all k ≥ 3.
Moreover, at every point, λ 6= 0 or µ 6= 0, and also µ 6= 0 or γ 6= (n− 1)λ.

Proof. Define V1 = {p ∈ M | H(p) 6= 0} and V2 = {p ∈ M | H(p) = 0}int, where the superscript
“int” denotes the interior. Clearly, all points in V2 satisfy case (I).

On V1, we consider the (1, 1)-tensor field

K : D → D : X 7→ πDJh(JH,X), (3.8)

where D is the orthogonal complement of span{JH} in the tangent space to M and πD is the
orthogonal projection onto D at every point. Define further

V11 = {p ∈ V1 | h(JH(p), JH(p)) is no multiple of H(p) or Kp is no multiple of idDp},

V12 = {p ∈ V1 | h(JH(p), JH(p)) is a multiple of H(p) and Kp is a multiple of idDp}int.

If p ∈ V12 and {e1, . . . , en} is an orthonormal basis of TpM as in Lemma 3.1, it follows from the
definition of V12 and a straightforward computation using (3.1), (3.5) and (3.8) that γ = (n− 1)λ
and µ = 0. In particular, e1 lies in the direction of H(p). This means that we can extend
{e1, . . . , en} to an orthonormal frame {E1, . . . , En} on V12, where E1 lies in the direction of H at
every point, and we are in case (II).

Finally, let p ∈ V11 and consider an orthonormal basis {e1, . . . , en} of TpM as in Lemma 3.1.
Putting (D1)p = span{e1, e2} and (D2)p = span{e3, . . . , en}, we shall now prove that D1 and D2

are differentiable distributions on V11. If h(JH(p), JH(p)) is not parallel with H(p), then the same
holds in a neighborhood of p and it follows from (3.1) and (3.5) that D1 = span{JH, Jh(JH, JH)}
in this neighborhood. Hence, D1 is differentiable in this neighborhood. If, on the other hand,
h(JH(p), JH(p)) and H(p) are parallel, then, by the definition of V11, we have that Kp is not
a multiple of idDp and it follows from (3.1) and (3.8) that the matrix of Kp with respect to the

orthonormal basis
{

(µe1 − λe2)/
√
λ2 + µ2, e3, . . . , en

}
of Dp, is given by

2(n− 1)

n


α

λ2 + µ2

. . .

λ2 + µ2


for some real number α 6= λ2 + µ2. The same holds in a neighborhood of p and hence there is
a well-defined one-dimensional eigendistribution of the tensor field K, say span{X0}. Since K is
differentiable, the vector field X0 can be chosen to be differentiable and hence D1 = span{JH,X}
is differentiable in a neighborhood of p. In both cases, D2 is differentiable since it is the orthogonal
complement of D1 in TM .

Let {X1, X2} be differentiable orthonormal vector fields on V11 spanning D1 at every point and
{E3, . . . , En} differentiable orthonormal vector fields on V11 spanning D2 at every point. In order
to obtain case (III) of the lemma, we have to find a differentiable function θ on V11 such that
E1 = (cos θ)X1 + (sin θ)X2 maximizes φ : {X ∈ D1 | ‖X‖ = 1} → R : X 7→ 〈h(X,X), JX〉 at
every point. This implies that E2 = −(sin θ)X1 + (cos θ)X2 satisfies

〈h(E1, E1), JE2〉 = 0. (3.9)
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The latter equation has in general several differentiable solutions for θ. However, since we want
E1 = (cos θ)X1 + (sin θ)X2 to maximize φ, we have to restrict to points for which the number of
solutions, say in [0, 2π), does not change in a neighborhood to guarantee differentiability of θ. If
we define V111 as the set of those points in V11 for which the number of solutions for θ of (3.9) in
[0, 2π) does not change in a neighborhood of the point, we can construct an orthonormal frame on
V111 satisfying (3.7) as explained above. Remark that γ > 0 and γ > 2nλ/3 follow from the last
sentence of Lemma 3.1 and the fact that H is nowhere vanishing on V111. Moreover, the fact that
λ 6= 0 or µ 6= 0 also follows from the non-vanishing of H and the fact that µ 6= 0 or γ 6= (n− 1)λ
follows from the definition of V11 and the computation which led to case (II) above.

As a conclusion, the subset V ⊆M we are looking for is the disjoint union

V = V111 ∪ V12 ∪ V2,

which is open and dense in M by construction. �

We will proceed with the classification as follows. In Section 4, we give a classification in case
(II), based on results in [15]. In Section 5, we give a classification in case (III) and, finally, Section
6 contains the overall conclusions. We will not elaborate on case (I) in general, however, we remark
the following.

Remark 3.1. If M is a minimal δ(2, n− 2)-ideal Lagrangian submanifold of a complex space form

M̃n(4c), n ≥ 5, for which the orthonormal bases given in Lemma 3.1 can be pasted together to
form a differentiable orthonormal frame {E1, . . . , En}, then the second fundemental form is given
by

h(E1, E1) = γJE1, h(E1, E2) = −γJE2, h(E2, E2) = −γJE1,

h(E1, Ei) = h(E2, Ei) = 0, h(Ei, Ej) =

n∑
k=3

hkijJEk

for i, j, k ≥ 3 and some functions γ, λ, µ and hkij , satisfying hk33 + . . . hknn = 0 for every k ≥ 3.
If γ = 0, the Lagrangian submanifold is minimal δ(n − 2)-ideal. If γ > 0, a long argument, very
similar to the one we will give in Section 5.1, can be used to prove that there are three possibilities:
the Lagrangian submanifold is either minimal δ(2)-ideal, minimal δ(2, k)-ideal for some k satisfying
2 ≤ k < n − 2 or it is a direct product of a minimal δ(2)-ideal Lagrangian surface in C2 and a
minimal δ(n− 2)-ideal submanifold of Cn−2. The latter case only occurs for c = 0. The family of
minimal δ(2)-ideal Lagrangians is too large to classify. On the other hand, minimal δ(2, 2)-ideal
Lagrangians in dimension 5 were classified in [16].

4. Classification in case (II) of Lemma 3.2

Let M be a Lagrangian submanifold of a complex space form M̃n(4c), n ≥ 5, satisfying case
(II) of Lemma 3.2. It was proven in [15] that such a submanifold is a warped product I ×f N of
an open interval I and an (n − 1)-dimensional factor N . Moreover, E1 is tangent to I and the
Lagrangian immersion is constructed from a curve depending on a parameter t ∈ I, determined
by a system of ODEs and a Lagrangian immersion of the manifold N , for which the components
of the second fundamental form are, up to a factor depending on t, equal to the corresponding
components of h.

Combining this result with Lemma 3.1 yields that there exists an orthonormal basis {e2, . . . , en}
for every tangent space to N such that the components of the second fundamental form h̃ of the
Lagrangian immersion of N satisfy h̃2

k` = 0 for all k, ` ≥ 2 and h̃k22 + . . . + h̃knn = 0 for all k ≥ 2.
This means exactly that the Lagrangian immersion is δ(n − 2)-ideal and minimal. Hence, we
obtain the following results (remark the slight difference in notation compared to [15]).

Proposition 4.1. Let M be a δ(2, n− 2)-ideal Lagrangian submanifold of the complex Euclidean
space Cn (n ≥ 5) whose second fundamental form is given by case (II) of Lemma 3.2. Then M is
locally congruent to the image of

L(t, u2, . . . , un) =
eiθ

ϕ+ iλ
Φ(u2, . . . , un), (4.1)
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where θ, ϕ and λ are functions of t only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = −ϕ2 − (n− 2)λ2, θ′ = (n− 1)λ (4.2)

and Φ is a Legendre immersion into S2n−1(1) ⊂ Cn whose composition with the Hopf fibration is
a minimal δ(n− 2)-ideal Lagrangian immersion into CPn−1(4).

Remark that the system (4.2) allows us to express all three unknown functions in terms of λ.

Recall that λ > 0. It follows from the equations that λ
2

n−3 (λ2 + ϕ2) is a positive constant, say

r2 for some r > 0. Then ϕ = ±
√
r2λ−

2
n−3 − λ2. After replacing E1 by −E1 if necessary, we may

assume that ϕ > 0 and thus

ϕ =

√
1

c2 λ
2

n−3

− λ2, (4.3)

where we have put c = 1/r. Since

dθ

dλ
=

(n− 1)λ

(n− 3)λϕ
=
n− 1

n− 3

1

ϕ
,

direct integration using (4.3) yields

θ =
n− 1

n− 2
arcsin

(
c λ

n−2
n−3

)
. (4.4)

After a reparametrization t 7→ λ(t), the coefficient in front of Φ in (4.1) is completely determined
by (4.3) and (4.4).

Proposition 4.2. Let M be a δ(2, n− 2)-ideal Lagrangian submanifold of the complex projective
space CPn(4) (n ≥ 5) whose second fundamental form is given by case (II) of Lemma 3.2. Then
M is locally congruent to the image of π ◦ L, where π : S2n+1(1)→ CPn(4) is the Hopf fibration
and

L(t, u2, . . . , un) =

(
eiθΦ(u2, . . . , un)√

1 + λ2 + ϕ2
,
ei(n−2)θ(iλ− ϕ)√

1 + λ2 + ϕ2

)
, (4.5)

where θ, ϕ and λ are functions of t only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = −1− ϕ2 − (n− 2)λ2, θ′ = λ (4.6)

and Φ is a Legendre immersion into S2n−1(1) ⊂ Cn whose composition with the Hopf fibration is
a minimal δ(n− 2)-ideal Lagrangian immersion into CPn−1(4).

Proposition 4.3. Let M be a δ(2, n− 2)-ideal Lagrangian submanifold of the complex hyperbolic
space CHn(−4) (n ≥ 5) whose second fundamental form is given by case (II) of Lemma 3.2. Then
M is locally congruent to the image of π ◦ L, where π : H2n+1

1 (−1) → CHn(−4) is the Hopf
fibration and L is one of the following.

(a) L(t, u2, . . . , un) =

(
eiθΦ(u2, . . . , un)√

1− λ2 − ϕ2
,
ei(n−2)θ(iλ− ϕ)√

1− λ2 − ϕ2

)
, λ2 + ϕ2 < 1,

where λ, ϕ and θ are functions of t only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = 1− ϕ2 − (n− 2)λ2, θ′ = λ

and Φ is a Legendre immersion into H2n−1
1 (−1) whose composition with the Hopf fibration is a

minimal δ(n− 2)-ideal Lagrangian immersion into CHn−1(−4);

(b) L(t, u2, . . . , un) =

(
ei(n−2)θ(iλ− ϕ)√

λ2 + ϕ2 − 1
,
eiθΦ(u2, . . . , un)√

λ2 + ϕ2 − 1

)
, λ2 + ϕ2 > 1,

where λ, ϕ and θ are functions of t only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = 1− ϕ2 − (n− 2)λ2, θ′ = λ,

and Φ is a Legendre immersion into S2n−1(1) whose composition with the Hopf fibration is a
minimal δ(n− 2)-ideal Lagrangian immersion into CPn−1(4);
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(c)

L(t, u2, . . . , un) =
cosh

2
n−3

(
n−3

2 t
)

e
2i
n−3 arctan(tanh(n−3

2 t))

[(
w +

i

2
〈Φ,Φ〉+ i,Φ, w +

i

2
〈Φ,Φ〉

)
+

∫ t

0

e2i arctan(tanh(n−3
2 t))

cosh
2

n−3
(
n−3

2 t
) dt (1, 0, . . . , 0, 1)

]
,

where Φ = Φ(u2, . . . , un) parametrizes a minimal δ(n− 2)-ideal Lagrangian immersion into Cn−1

and w = w(u2, . . . , un) is the unique solution of the PDE system wuk = 〈Φ, iΦuk〉 for k = 2, . . . , n.

5. Classification in case (III) of Lemma 3.2

In this section we assume that M is a δ(2, n − 2)-ideal Lagrangian submanifold of a complex

space form M̃n(4c) (n ≥ 5), whose second fundamental form is given by case (III) of Lemma 3.2.

5.1. Proof that M is a warped product. We define the following two orthogonal distributions
on M in terms of the orthonormal frame {E1, . . . , En}:

D1 = span{E1, E2}, D2 = span{E3, . . . , En}. (5.1)

Lemma 5.1. Let M be a δ(2, n−2)-ideal Lagrangian submanifold of a complex space form M̃n(4c),
n ≥ 5, whose second fundamental form is given by case (III) of Lemma 3.2. Then D2 is integrable.

Proof. It follows from (3.7) that 〈(∇Eih)(Ej , E1), JE1〉 = (2λ − γ) 〈∇EiEj , E1〉 for all i, j ≥ 3,
which, in combination with Codazzi’s equation, yields (2λ− γ) 〈[Ei, Ej ], E1〉 = 0. The conditions
γ > 0 and γ > 2nλ/3 imply 2λ− γ 6= 0 and hence we obtain

〈[Ei, Ej ], E1〉 = 0. (5.2)

It also follows from (3.7) that 〈(∇Eih)(Ej , E1), JE2〉 = (γ−(n−1)λ) 〈∇EiEj , E2〉+µ 〈∇EiEj , E1〉
for all i, j ≥ 3, which, in combination with Codazzi’s equation and (5.2) gives

(γ − (n− 1)λ) 〈[Ei, Ej ], E2〉 = 0. (5.3)

Finally, (3.7) implies 〈(∇Eih)(Ej , E2), JE2〉 = (n− 2)µ 〈∇EiEj , E2〉− (nλ− γ) 〈∇EiEj , E1〉 for
all i, j ≥ 3, which, using Codazzi’s equation and (5.2), gives

µ 〈[Ei, Ej ], E2〉 = 0. (5.4)

Combining (5.3) and (5.4) with the fact that µ 6= 0 or γ 6= (n− 1)λ implies

〈[Ei, Ej ], E2〉 = 0. (5.5)

Equations (5.2) and (5.5) together imply that [Ei, Ej ] ∈ D2 for all i, j ≥ 3, which, by Frobenius’
theorem, implies that D2 is integrable. �

In order to write down the information obtained from the other Codazzi equations, we use the
following notations: the one-forms ωkj describing the Levi-Civita connection of M are defined as
usual by

ωkj (Ei) = 〈∇EiEj , Ek〉 (5.6)

Comparing the JE1-, JE2- and JEj-components (j = 3, . . . , n) of the Codazzi equation
(∇Eih)(E1, E1) = (∇E1

h)(E1, Ei) (i = 3, . . . , n) gives respectively

Eiγ = (γ − 2λ)ωi1(E1), (5.7)

(3γ − 2nλ)ω2
1(Ei) = (γ − (n− 1)λ)ω2

i (E1)− µωi1(E1), (5.8)

(γ − 2λ)ωj1(Ei) = δij(E1λ− µω2
1(E1))−

n∑
k=3

hkijω
k
1 (E1) (5.9)
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for all i, j ≥ 3. Analogously, (∇Eih)(E1, E2) = (∇E1
h)(Ei, E2) = (∇E2

h)(E1, Ei) gives

(3γ − 2nλ)ω2
1(Ei) = (γ−2λ)ωi1(E2) = (γ − (n−1)λ)ω2

i (E1)− µωi1(E1), (5.10)

nEiλ− (γ − 2λ)ωi1(E1)− nµω2
1(Ei) = (n− 2)µωi2(E1) + (nλ− γ)ωi1(E1)

= ((n− 1)λ− γ)ωi2(E2)− µωi1(E2), (5.11)

((n−1)λ−γ)ωj2(Ei)− µωj1(Ei) = (E1µ+λω2
1(E1))δij−

n∑
k=3

hkijω
k
2 (E1)

= (E2λ− µω2
1(E2))δij −

n∑
k=3

hkijω
k
1 (E2) (5.12)

for i, j ≥ 3. Finally, it follows from (∇Eih)(E2, E2) = (∇E2
h)(Ei, E2) that

nEiµ+ 3(nλ− γ)ω2
1(Ei) = (n− 2)µωi2(E2)− (γ − nλ)ωi1(E2), (5.13)

(nλ− γ)ωj1(Ei) + (n− 2)µωj2(Ei) = δij(E2µ− λω1
2(E2)) +

n∑
k=3

hkijω
k
2 (E2) (5.14)

for i, j ≥ 3.
By changing the orthonormal frame {E3, . . . , En} in D2 if necessary, we may assume that

ω4
1(E1) = · · · = ωn1 (E1) = 0 or, equivalently, that the orthogonal projection of ∇E1E1 onto D2 lies

in the direction of E3:

∇E1E1 = ω2
1(E1)E2 + ω3

1(E1)E3. (5.15)

Thus, we find from
∑n
i=3 〈(∇E3

h)(Ei, E1), JEi〉 =
∑n
i=3 〈(∇Eih)(E3, E1), JEi〉 that

(n− 3)(γ − 2λ)(E3λ− µω2
1(E3)) = ω3

1(E1)

n∑
i,j=3

(h3
ij)

2. (5.16)

On the other hand, it follows from (5.11) that

n(E3λ− µω2
1(E3)) = (n− 2)(µω3

2(E1) + λω3
1(E1)). (5.17)

By combining (5.16) and (5.17), we find

(n2 − 5n+ 6)(γ − 2λ)(µω3
2(E1) + λω3

1(E1)) = nω3
1(E1)

n∑
i,j=3

(h3
ij)

2. (5.18)

Similarly,
∑n
i=3 〈(∇E1h)(Ei, Ei), JE3〉 =

∑n
i=3 〈(∇Eih)(E1, Ei), JE3〉 yields

(n2 − n+ 2)(γ − 2λ)(µω3
2(E1) + λω3

1(E1)) = nω3
1(E1)

n∑
i,j=3

(h3
ij)

2 (5.19)

and
∑n
i=3 〈(∇E3

h)(Ei, E2), JEi〉 =
∑n
i=3 〈(∇Eih)(E2, E3), JEi〉 gives

E3µ = λω1
2(E3) +

1

n− 3

n∑
i,j=3

h3
ijω

2
i (Ej). (5.20)

From (5.18), (5.19) and the properties of γ, λ and µ in case (III) of Lemma 3.2, we obtain

λω3
1(E1) + µω3

2(E1) = 0 (5.21)

and we have either (a) h3
ij = 0 for all i, j ≥ 3 and ω3

1(E1) 6= 0 or (b) ω3
1(E1) = 0.

Case (a): h3
ij = 0 for all i, j ≥ 3 and ω3

1(E1) 6= 0. Since λ and µ cannot both be zero, (5.21)
implies that µ 6= 0 and

ω3
2(E1) = −λ

µ
ω3

1(E1). (5.22)
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Equation (5.20) and h3
ij = 0 imply

E3µ = λω1
2(E3). (5.23)

Also, it follows from (5.8) and (5.22) that

ω2
1(E3) =

λγ − (n− 1)λ2 − µ2

(3γ − 2nλ)µ
ω3

1(E1). (5.24)

By combining (5.23) and (5.24) we obtain

E3µ =
λ(λγ − (n− 1)λ2 − µ2)

(2nλ− 3γ)µ
ω3

1(E1). (5.25)

On the other hand, we find from (5.13) that

E3µ =
3(γ − nλ)

n
ω2

1(E3) +
(n− 2)µ

n
ω3

2(E2) +
nλ− γ
n

ω3
1(E2). (5.26)

From (5.24) and the first equality in (5.10) we find

ω3
1(E2) =

(n− 1)λ2 + µ2 − λγ
(2λ− γ)µ

ω3
1(E1). (5.27)

Now, (5.11), (5.27) and (5.22) yield

ω3
2(E2) =

(n+ 3)λ2 − 5λγ + γ2 + µ2

(2λ− γ)((n− 1)λ− γ)
ω3

1(E1). (5.28)

By substituting (5.24), (5.27) and (5.28) into (5.26) we find

E3µ =
3(γ − nλ)(λγ − (n− 1)λ2 − µ2)

n(3γ − 2nλ)µ
ω3

1(E1)

+
(n− 2)µ((n+ 3)λ2 − 5λγ + γ2 + µ2)

n(2λ− γ)((n− 1)λ− γ)
ω3

1(E1)

+
(nλ− γ)((n− 1)λ2 + µ2 − λγ)

n(2λ− γ)µ
ω3

1(E1).

(5.29)

Now, by comparing (5.25) and (5.29) we find

λ2((n− 1)λ− γ)2 + µ4 + µ2((γ − 3λ)2 + (2n− 7)λ2) = 0.

Thus µ = 0, which is a contradiction. Hence, case (a) cannot occur.

Case (b): ω3
1(E1) = 0. In this case, the choice of E3 we made before becomes arbitrary and

thus equation (5.21) gives ω3
1(E1) = µω3

2(E1) = 0 for arbitrary E3. Thus, we have

ωi1(E1) = µωi2(E1) = 0 (5.30)

for all i ≥ 3. We can now choose {E3, . . . , En} such that

∇E1
E2 = ω1

2(E1)E1 + ω3
2(E1)E3, (5.31)

i.e., such that ω4
2(E1) = · · · = ωn2 (E1) = 0. From (5.30) and (5.31) we find µω3

2(E1) = 0. Hence,
either (b.1) ω3

2(E1) 6= 0 and µ = 0 or (b.2) ω3
2(E1) = 0.

Case (b.1): µ = 0 and ω3
2(E1) 6= 0. We find from (5.8) and (5.10) that

0 6= ω3
2(E1) =

2nλ− 3γ

γ − (n− 1)λ
ω2

1(E3), (5.32)

ω3
1(E2) =

3γ − 2nλ

γ − 2λ
ω2

1(E3). (5.33)

In particular, (5.32) gives

3γ 6= 2nλ, ω2
1(E3) 6= 0. (5.34)

Also, from (5.8) and (5.10):

ω2
1(Ek) = 0, ωk1 (E2) = 0 (5.35)
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for k ≥ 4. Since µ = 0, (5.13) becomes

0 = 3(nλ− γ)ω2
1(E3) + (γ − nλ)ω3

1(E2). (5.36)

Now, by substituting (5.33) into (5.36), we find (γ−nλ)λω2
1(E3) = 0. Since ω2

1(E3) 6= 0 by (5.34)
and λ and µ cannot both be zero, this shows that λ 6= 0 and γ = nλ.

The second fundemental form (3.7) reduces to

h(E1, E1) = nλJE1, h(E1, E2) = h(E2, E2) = 0,

h(E1, Ei) = λJEi, h(E2, Ei) = 0, (5.37)

h(Ei, Ej) = δijλJE1 +

n∑
k=3

hkijJEk

for i, j ≥ 3, where hk33 + . . .+ hknn = 0 for all k ≥ 3. From (5.32) and (5.33) we find

ω1
2(E3) =

ω3
2(E1)

n
, ω3

1(E2) = −ω
3
2(E1)

n− 2
. (5.38)

Thus (5.12), (5.35) and (5.38) give

ω2
j (Ei) =

E2λ

λ
δij +

ω3
2(E1)

(n− 2)λ
h3
ij . (5.39)

Now, by using (5.20), (5.38) and (5.39), we find

ω3
2(E1)

λn

λ2 +
n

(n− 2)(3− n)

n∑
i,j=3

(h3
ij)

2

 = 0,

which is a contradiction. Therefore, this case is again impossible.

Case (b.2): ω3
2(E1) = 0. From this assumption, we have

∇E1
E1,∇E1

E2 ∈ D1. (5.40)

It follows from (5.10) that ωi1(E2) = 0 for i ≥ 3. Thus we also have

∇E2E1 ∈ D1. (5.41)

From the last equation in (5.11) we find ((n−1)λ−γ)ωi2(E2) = 0. Hence, either (b.2.1) γ = (n−1)λ
and ωi2(E2) 6= 0 for some i ≥ 3 or (b.2.2) ∇E2

E2 ∈ D1.

Case (b.2.i): γ = (n− 1)λ and ωi2(E2) 6= 0 for some i ≥ 3. In this case, (3.7) reduces to

h(E1, E1) = (n− 1)λJE1, h(E1, E2) = λJE2,

h(E2, E2) = λJE1 + nµJE2,

h(E1, Ei) = λJEi, h(E2, Ei) = µJEi,

h(Ei, Ej) = δij(λJE1 + µJE2) +

n∑
k=3

hkijJEk

(5.42)

for i, j ≥ 3 and hk33 + . . . hknn = 0 for all k ≥ 3. We may assume µ 6= 0, otherwise this case reduces
to case (II) of Lemma 3.2. Without loss of generality, we may assume

∇E2E2 = ω1
2(E2)E1 + ω3

2(E2)E3, (5.43)

or, equivalently, ω4
2(E2) = · · · = ωn2 (E2) = 0. From (5.7)–(5.9), (5.13) and (5.30), we find

Eiγ = Eiλ = ω2
1(Ei) = E4µ = · · · = Enµ = 0, (5.44)

ω1
i (Ej) = − δij

(n− 3)λ
(E1λ− µω2

1(E1)), (5.45)

E3µ =
(n− 2)µω3

2(E2)

n
, (5.46)
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for i, j ≥ 3. By applying (5.42)–(5.46), we find

n∑
i=3

〈(∇E3
h)(Ei, E2), JEi〉 = (n− 2)E3µ =

(n− 2)2µω3
2(E2)

n
. (5.47)

After long computation we also have
∑n
i=3 〈(∇E2

h)(Ei, E3), JEi〉 = nµω3
2(E2). By Codazzi’s equa-

tion and (5.47), this would imply ω3
2(E2) = 0 or n = 1, which are both contradictions. Therefore,

this case is impossible.

Case (b.2.2): ∇E2
E2 ∈ D1. In this case, we have

ωiα(Eβ) = 0 (5.48)

for any α, β = 1, 2 and i ≥ 3, i.e., D1 is a totally geodesic distribution. From (5.8) and (5.48) we
get

(3γ − 2nλ)ω2
1(Ei) = 0 (5.49)

for i ≥ 3. Consequently, either (b.2.2.1) 3γ = 2nλ and ω2
1(Ei) 6= 0 for some i ≥ 3 or (b.2.2.2)

ω2
1(Ei) = 0 for all i ≥ 3.

Case (b.2.2.1): 3γ = 2nλ and ω2
1(Ei) 6= 0 for some i ≥ 3. From (5.7), we obtain Eiγ = Eiλ = 0.

Hence, we have µ = 0 from (5.11). Also, we find (nλ− γ)ω2
1(Ei) = 0 from (5.13). Combining this

with (5.49) yields ω2
1(Ei) = 0, which is a contradiction. Consequently, this case cannot occur.

Case (b.2.2.2): ω2
1(Ei) = 0 for all i ≥ 3. From (5.7), (5.11) and (5.13), we get

Eiγ = Eiλ = Eiµ = 0 (5.50)

for i ≥ 3. Recall that γ 6= 2λ, which follows from γ > 0 and γ > 2nλ/3. We find from (5.9), (5.12)
and (5.14) that

ω1
i (Ej) =

δij
γ − 2λ

(µω2
1(E1)− E1λ), (5.51)

(n− 2)µω2
i (Ej) = (γ − nλ)ω1

i (Ej)− δij(E2µ+ λω2
1(E2)), (5.52)

((n− 1)λ− γ)ω2
i (Ej) = µω1

i (Ej)− δij(E1µ+ λω2
1(E1)), (5.53)

((n− 1)λ− γ)ω2
i (Ej) = µω1

i (Ej)− δij(E2λ− µω2
1(E2)) (5.54)

for i, j ≥ 3. Recall that D1 is totally geodesic and D2 is integrable. It now follows from (5.51)–
(5.54) that leaves of D2 are totally umbilical submanifolds of the Lagrangian submanifold M . In
particular, we may put

ω1
i (Ej) = pδij , ω2

i (Ej) = qδij (5.55)

for some functions p, q and all i ≥ 3. Since ω2
1(Ei) = 0 for all i ≥ 3, (5.55) implies

∇V E1 = −pV, ∇V E2 = −qV (5.56)

for all V ∈ D2. From (5.51)–(5.55) we get

E1λ = µω2
1(E1) + (2λ− γ)p,

E2λ = µω2
1(E2) + µp− ((n− 1)λ− γ)q,

E1µ = −λω2
1(E1) + µp− ((n− 1)λ− γ)q,

E2µ = −λω2
1(E2) + (γ − nλ)p− (n− 2)µq.

(5.57)

By applying (5.56), we find

〈R(Ei, Ej)E1, Ek〉 = (Ejp)δik − (Eip)δjk (5.58)

for all i, j, k ≥ 3. On the other hand, it follows from equation (2.5) of Gauss and (3.7) that

〈R(Ei, Ej)E1, Ek〉 = 0. (5.59)
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By combining (5.58) and (5.59) we get Ejp = 0 for j ≥ 3. Similarly, we find by computing
〈R(Ei, Ej)E2, Ek〉 and using (3.7), (5.56) and (5.57) that Ejq = 0. Thus

Ejp = Ejq = 0 (5.60)

for all j ≥ 3.
Now, by applying (3.7), (5.48), (5.56), and the equation of Gauss,

〈R(Eα, E3)Eβ , E3〉 = −cδαβ + 〈h(Eα, E3), h(Eβ , E3)〉 − 〈h(E3, E3), h(Eα, Eβ〉 , (5.61)

where α, β = 1, 2, we find

E1p = qω2
1(E1) + p2 − λ2 + λγ + c,

E2p = qω2
1(E2) + pq + (nλ− γ)µ− λµ,

E1q = −pω2
1(E1) + pq + (nλ− γ)µ− λµ,

E2q = −pω2
1(E2) + q2 + nλ2 + (n− 1)µ2 − λγ + c.

(5.62)

Also, by applying (3.7), (5.48) and (5.57), we find from the equation of Codazzi, (∇E2h)(E1, E1) =
(∇E1h)(E1, E2), that

E1γ = n(2λ− γ)p+ (2nλ− 3γ)ω2
1(E2),

E2γ = (3γ − 2nλ)ω2
1(E1).

(5.63)

By applying (5.57), (5.62) and (5.63), we obtain

E1(c+ λ2 + µ2 + p2 + q2) = 2p(c+ λ2 + µ2 + p2 + q2),

E2(c+ λ2 + µ2 + p2 + q2) = 2q(c+ λ2 + µ2 + p2 + q2).
(5.64)

If we put H̊ = pE1+qE2, then (5.56) and (5.60) yield∇V H̊ = −(p2+q2)V for all V ∈ D2, which
shows that the mean curvature vector of each leaf of D2 is parallel in the normal bundle of this leaf
in M . Therefore, D2 is a spherical distribution. Consequently, the Lagrangian submanifold M is
locally the warped product M2 ×f Mn−2 of a leaf M2 of D1 and a leaf Mn−2 of D2. Moreover,
all the leaves of D1 are totally geodesic surfaces in M and all the leaves of D2 are spherical
submanifolds of M .

It is well-known (see, for instance, [9, page 79]) that the warping function f of the warped
product M2 ×f Mn−2 satisfies

(∇V V )D1 = −grad(f)

f
, (5.65)

for any unit vector field V ∈ D2, where the superscript D1 denotes the D1-component. Together
with (5.56), this implies that

E1(f) = −pf, E2(f) = −qf. (5.66)

It follows from (5.56), (5.57) and (5.66) that the following two vector fields commute and hence
determine coordinates (x, y) on M2:

∂

∂x
=

1

λ2 + µ2
(λE1 + µE2),

∂

∂y
=

fn−2

λ2 + µ2
(−µE1 + λE2).

(5.67)

From (5.66) and (5.67), we find that the derivatives of f are

fx = − f

λ2 + µ2
(λp+ µq), fy =

fn−1

λ2 + µ2
(µp− λq). (5.68)

Remark that all functions appearing can now be explicitly expressed in terms of f . However,
since the expressions are complicated and we will not need them to state our final result, we omit
them here.

We can summarize this subsection as follows.
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Proposition 5.1. Let M be a δ(2, n − 2)-ideal Lagrangian submanifold of a complex space form

M̃n(4c), n ≥ 5, whose second fundamental form is given by case (III) of Lemma 3.2. Then M
is locally a warped product M2 ×f Mn−2, where M2 is an integral surface of the distribution
D1 = span{E1, E2} and Mn−2 is an integral submanifold of the distribution D2 = {E3, . . . , En}.
Moreover, M2 is totally geodesic in M and Mn−2 is spherical in M , in particular, there exist
functions p and q such that ∇V E1 = −pV and ∇V E2 = −qV for all V ∈ D2. The derivatives
of γ, λ, µ, p, q and f are given by (5.50), (5.57), (5.60), (5.62), (5.63) and (5.66). Finally, the
vector fields (5.67) are coordinate vector fields on M2.

In the next three subsections we will classify the δ(2, n−2)-ideal Lagrangian submanifolds whose
second fundamental form satisfies case (III) of Lemma 3.2 in the ambient spaces Cn, CPn(4) and
CHn(−4) respectively.

5.2. Classification in Cn.

Proposition 5.2. Let L : M → Cn (n ≥ 5) be a δ(2, n − 2)-ideal Lagrangian immersion whose
second fundamental form is given by case (III) of Lemma 3.2. Then L is locally congruent to

L(x, y, u1, . . . , un−2) =
(
f(x, y)eixΦ(u1, . . . , un−2), z(x, y)

)
, (5.69)

where Φ defines a minimal Legendre immersion in S2n−3(1) ⊂ Cn−1 and (feix, z) is a Lagrangian
surface in C2, where f is determined by

fyy
fn−2

− (n− 2)
f2
y

fn−1
+ (n− 1)fn−1 + (n− 2)fn−3f2

x + fn−2fxx = 0 (5.70)

and z by

zx = ei(n−1)x fy
fn−2

,

zy = ei(n−1)xfn−1

(
i− fx

f

)
.

(5.71)

Proof. Let L : M → Cn be a δ(2, n − 2)-ideal Lagrangian immersion whose second fundamental
form is given by case (III) of Lemma 3.2. It follows from Proposition 5.1 that M is locally a
warped product M2 ×f Mn−2 of a surface M2 and an (n− 2)-dimensional Riemannian manifold
Mn−2 with warping function f satisfying (5.66). Using (5.64) and also (5.50) and (5.60), which
imply that p, q, λ and µ are constant along D2, gives

f =
C√

λ2 + µ2 + p2 + q2
(5.72)

for some positive constant C. Now choose coordinates (x, y) as in (5.67) and consider the map Φ
defined by

Φ =
e−ix((p+ iλ)E1 + (q + iµ)E2)√

λ2 + µ2 + p2 + q2
. (5.73)

Remark that 〈Φ,Φ〉 = 1. Denote by D the Euclidean connection on Cn. From (3.1), (5.57), (5.62)
and (5.64) we obtain

DE1Φ = DE2Φ = 0. (5.74)

Also, by applying (3.1), (5.50), (5.56) and (5.60), we find

DEiΦ = −e−ix
√
λ2 + µ2 + p2 + q2Ei (5.75)

for all i ≥ 3. This implies that Φ is an immersion from Mn−2 into S2n−1(1) ⊆ Cn. We will show
that the image of Φ is contained in a linear subspace Cn−1 ⊆ Cn and hence in a unit sphere
S2n−3(1) ⊆ Cn−1. Therefore, consider for any point p ∈Mn−2 the complex linear subspace

span{Φ(p), (dΦ)p(E3), . . . , (dΦ)p(En)} ⊆ TΦ(p)C
n.
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To see that all these subspaces are in fact the same subspace of Cn, we remark that from (3.1),
(5.50), (5.55), (5.60) and (5.75)

DEj (dΦ)(Ei) = DEj

(
−e−ix

√
λ2 + µ2 + p2 + q2Ei

)
= −e−ix

√
λ2 + µ2 + p2 + q2DEjEi

=

n∑
k=3

(
ωki (Ej) + ihkij

)
(dΦ)(Ek)− δij(λ2 + µ2 + p2 + q2)Φ,

(5.76)

which belongs again to span{Φ, (dΦ)(E3), . . . , (dΦ)(En)} for any i, j ≥ 3. We conclude that Φ is
an immersion of Mn−2 into S2n−3(1) ⊆ Cn−1 ⊆ Cn. Moreover, it follows from the computation
above that the second fundamental form of the immersion Φ coincides with the second fundamental
form of L restricted to Mn−2, which implies that Φ is a minimal Legendre immersion of Mn−2

into S2n−3(1).
Let us put

Ψ =
(−q + iµ)E1 + (p− iλ)E2

ei(n−1)x
√
λ2 + µ2 + p2 + q2

. (5.77)

Then Ψ is orthogonal to Φ and

DEj

(
L+

eix√
λ2+µ2+p2+q2

Φ

)
= 0 if j ≥ 3,

DE1

(
L+

eix√
λ2+µ2+p2+q2

Φ

)
=
−ei(n−1)x(q + iµ)√
λ2+µ2+p2+q2

Ψ,

DE2

(
L+

eix√
λ2+µ2+p2+q2

Φ

)
=

ei(n−1)x(p+ iλ)√
λ2+µ2+p2+q2

Ψ.

(5.78)

Moreover, since DEAΨ = 0 for all A = 1, . . . , n, we can assume that, after a suitable isometry of
the ambient space, Ψ = (0, . . . , 0, 1). Consequently, L takes the form

L(x, y, u1, . . . , un−2) =

(
− 1

C
f(x, y)eixΦ(u1, . . . , un−2), z(x, y)

)
, (5.79)

where z is a complex valued function whose derivatives are essentially computed in (5.78). By
using (5.67), we obtain that z satisfies

zx =
1

C
ei(n−1)x fy

fn−2
,

zy =
1

C
ei(n−1)xfn−1

(
i− fx

f

)
.

The compatibility condition for this system is precisely (5.70).
Note that everything is invariant under a rescaling of f , if, at the same time, we rescale the

y-coordinate corresponding to (5.67). Hence, we may assume C = 1. Moreover, after an isometry
of Cn we may omit the minus signs in the first n− 1 components of L, obtaining (5.69).

Since L : M2
1 ×fMn−2

2 → Cn is Lagrangian, it follows from (5.79) that Φ is a Legendre minimal
immersion in S2n−3(1) ⊂ Cn−1. Note that (feix, z) is a Lagrangian surface in C2.

The converse can be verified by direct long computation. �

Example 5.1. Let us construct an explicit example in dimension n = 5 by assuming that fy = 0.
In that case, the general solution of (5.70) is given by

f(x) = c1(cos(4x− c2))1/4. (5.80)

It then follows from the system (5.71) that z is independent of x and

z(y) = ic41e
ic2y. (5.81)
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Note that c1 cannot be zero since (f(x)eix, z(y)) has to be an immersion. It is a product of two
plane curves and thus a Lagrangian surface in C2.

5.3. Classification in CPn.

Proposition 5.3. Let L : M → CPn(4) (n ≥ 5) be a δ(2, n − 2)-ideal Lagrangian immersion
whose second fundamental form is given by case (III) of Lemma 3.2. Then the horizontal lift

L̃ : M → S2n+1(1) ⊆ Cn+1 of L is given by

L̃(x, y, u1, . . . , un−2) = eixf(x, y)Φ(u1, . . . , un−2) + ei(n−1)x
√

1− f(x, y)2 Θ2(x, y), (5.82)

where, with respect to a suitable orthogonal decomposition Cn+1 = Cn−1 ⊕ C2, the map Φ :
Mn−2 → S2n−3(1) ⊆ Cn−1 is a minimal Legendre immersion, the warping function f is deter-
mined by

(1− f2)f2n−3fxx + (1− f2)ffyy + ((n− 2)(1− f2) + 2f2)f2n−4f2
x

− ((n− 2)(1− f2)− 2f2)f2
y + ((n− 1)(1− f2) + 2f2)f2n−2 = 0 (5.83)

and Θ2 : M2 → S3(1) ⊆ C2 is a solution of the system

(Θ1)x =
1

1− f2

(
if2Θ1 −

fy
fn−2

Θ2

)
,

(Θ1)y =
1

1− f2
fn−2(fx + if)Θ2,

(Θ2)x =
1

1− f2

(
fy
fn−2

Θ1 + i((1− n)(1− f2)− f2)Θ2

)
,

(Θ2)y =
1

1− f2
fn−2(−fx + if)Θ1.

(5.84)

Proof. From (5.64) and (5.66), we obtain that

f =
C√

1 + λ2 + µ2 + p2 + q2
. (5.85)

Now define the following three maps:

Φ = e−ix
L̃− (p+ iλ)E1 − (q + iµ)E2√

1 + λ2 + µ2 + p2 + q2
,

Θ1 = e−i(n−1)x (−q + iµ)E1 + (p− iλ)E2√
1 + λ2 + µ2 + p2 + q2

,

Θ2 = e−i(n−1)x (λ2 + µ2 + p2 + q2)L̃+ (p+ iλ)E1 + (q + iµ)E2√
λ2 + µ2 + p2 + q2

√
1 + λ2 + µ2 + p2 + q2

,

(5.86)

where x is the coordinate on M2 defined in (5.67). Then 〈Φ,Φ〉 = 1 and, denoting by D the
Euclidean connection on Cn+1, one also has DE1

Φ = DE2
Φ = 0 and

DEjΦ = e−ix
√

1 + λ2 + µ2 + p2 + q2Ej (5.87)

for j ≥ 3. This implies that Φ is an immersion from Mn−2 into S2n+1(1) ⊆ Cn+1.
We will now show that the image of Φ is actually contained in a linear subspace Cn−1 of Cn+1

and, since it has length one, in S2n−3(1) ⊆ Cn−1. Therefore, consider for any point p ∈ Mn−2

the complex linear subspace

span{Φ(p), (dΦ)p(E3), . . . , (dΦ)p(En)} ⊆ TΦ(p)C
n+1.
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To see that all these subspaces are in fact the same subspace of Cn+1, we use (5.87) and the fact
that

DEj (dΦ)(Ek) = DEj

(
e−ix

√
1 + λ2 + µ2 + p2 + q2Ek

)
= e−ix

√
1 + λ2 + µ2 + p2 + q2

(
δjk((p+ iλ)E1 + (q + iµ)E2 − L̃)

+

n∑
`=3

(ω`k(Ei) + ih`jk)E`

)
= − δjk(1 + λ2 + µ2 + p2 + q2)Φ +

n∑
`=3

(ω`k(Ei) + ih`jk)(dΦ)(E`)

belongs again to span{Φ, (dΦ)(E3), . . . , (dΦ)(En)} for any j, k ≥ 3. We conclude that Φ is an
immersion of Mn−2 into S2n−3(1) ⊆ Cn−1 ⊆ Cn+1. Moreover, it follows from the computation
above that the second fundamental form of the immersion Φ coincides with the second fundamental
form of L̃ restricted to Mn−2, which implies that Φ is a minimal Legendre immersion of Mn−2

into S2n−3(1).
It is clear that Θ1 and Θ2 take values in the orthogonal complement C2 of Cn−1 in Cn+1.

Moreover, DEjΘ1 = DEjΘ2 = 0 for j ≥ 3 and the derivatives of Θ1 and Θ2 in the directions of E1

and E2 are linear combinations of Θ1 and Θ2. With respect to the coordinates (x, y) introduced
in (5.67), we have

(Θ1)x =
1

C2 − f2

(
if2Θ1 −

Cfy
fn−2

Θ2

)
,

(Θ1)y =
C

C2 − f2
fn−2(fx + if)Θ2,

(Θ2)x =
1

C2 − f2

(
Cfy
fn−2

Θ1 + i((1− n)(C2 − f2)− f2)Θ2

)
,

(Θ2)y =
C

C2 − f2
fn−2(−fx + if)Θ1.

(5.88)

The integrability condition for this system is

(C2 − f2)f2n−3fxx + (C2 − f2)ffyy + ((n− 2)(C2 − f2) + 2f2)f2n−4f2
x

− ((n− 2)(C2 − f2)− 2f2)f2
y + ((n− 1)(C2 − f2) + 2f2)f2n−2 = 0.

Since everything is invariant under a rescaling of f , if we rescale the y-coordinate accordingly, cfr.
(5.67), we may assume C = 1. This yields the equations for f , Θ1 and Θ2 given in the proposition.

The expression for L̃ follows directly from (5.86).
The converse can be verified by a long but straightforward computation. �

5.4. Classification in CHn.

Proposition 5.4. Let L : M → CHn(−4) (n ≥ 5) be a δ(2, n − 2)-ideal Lagrangian immersion
whose second fundamental form is given by case (III) of Lemma 3.2. Then the horizontal lift

L̃ : M → H2n+1
1 (−1) ⊆ Cn+1

1 of L is given by one of the following.

(a) With respect to a suitable orthogonal decomposition Cn+1
1 = Cn−1 ⊕C2

1,

L̃(x, y, u1, . . . , un−2) = −eixf(x, y)Φ(u1, . . . , un−2) + ei(n−1)x
√

1 + f(x, y)2 Θ2(x, y), (5.89)

where Φ : Mn−2 → S2n−3(1) ⊆ Cn−1 is a minimal Legendre immersion, the warping function f
is determined by

(1 + f2)f2n−3fxx + (1 + f2)ffyy + ((n− 2)(1 + f2)− 2f2)f2n−4f2
x

− ((n− 2)(1 + f2) + 2f2)f2
y + ((n− 1)(1 + f2)− 2f2)f2n−2 = 0 (5.90)
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and Θ2 : M2 → H3
1 (−1) ⊆ C2

1 is a solution of the system

(Θ1)x =
1

1 + f2

(
−if2Θ1 −

fy
fn−2

Θ2

)
,

(Θ1)y =
1

1 + f2
fn−2(fx + if)Θ2,

(Θ2)x =
1

1 + f2

(
− fy
fn−2

Θ1 − i((n− 1)(1 + f2)− f2)Θ2

)
,

(Θ2)y =
1

1 + f2
fn−2(fx − if)Θ1.

(5.91)

(b) With respect to a suitable orthogonal decomposition Cn+1
1 = Cn−1

1 ⊕C2,

L̃(x, y, u1, . . . , un−2) = eixf(x, y)Φ(u1, . . . , un−2)− ei(n−1)x
√
f(x, y)2 − 1 Θ2(x, y), (5.92)

where Φ : Mn−2 → H2n−3
1 (−1) ⊆ Cn−1

1 is a minimal Legendre immersion, the warping function
f is determined by

(f2 − 1)f2n−3fxx + (f2 − 1)ffyy + ((n− 2)(f2 − 1)− 2f2)f2n−4f2
x

− ((n− 2)(f2 − 1) + 2f2)f2
y + ((n− 1)(f2 − 1)− 2f2)f2n−2 = 0 (5.93)

and Θ2 : M2 → S3(1) ⊆ C2
1 is a solution of the system

(Θ1)x =
1

f2 − 1

(
−if2Θ1 −

fy
fn−2

Θ2

)
,

(Θ1)y =
1

f2 − 1
fn−2(fx + if)Θ2,

(Θ2)x =
1

f2 − 1

(
fy
fn−2

Θ1 + i((n− 1)(f2 − 1)− f2)Θ2

)
,

(Θ2)y =
1

f2 − 1
fn−2(−fx + if)Θ1.

(5.94)

(c) With respect to the local coordinates (x, y) on M2 introduced above and local coordinates
(u3, . . . , un) on Mn−2,

L̃ = feix(u+ iv + 1, u+ iv,G, F̄ ), (5.95)

where the warping function f : M2 → R is a solution of

f2n−3fxx + ffyy + (n− 4)f2n−4f2
x − nf2

y + (n− 3)f2n−2 = 0, (5.96)

F : M2 → C is determined by

Fx = −e−i(n−3)x fy
fn
, Fy = e−i(n−3)xfn−4(fx + if), (5.97)

G : Mn−2 → Cn−2 is a minimal Lagrangian immersion, u : M → R is given by

u =
1

2
(〈G,G〉+ |F |2 − 1) +

1

2f2
(5.98)

and v : M → R is determined by

vx = − 1

f2
− fy
fn
=(ei(n−3)xF ),

vy = −fn−3<(ei(n−3)xF ) + fn−4fx=(ei(n−3)xF ),

vuk = 〈D ∂
∂uk

G, iG〉.

(5.99)
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Proof. We divide the proof into three cases.

Case (1): λ2 + µ2 + p2 + q2 > 1. It follows from (5.64) and (5.66) that

f =
C√

λ2 + µ2 + p2 + q2 − 1
(5.100)

for some real constant C > 0. Now consider the maps

Φ = e−ix
L̃+ (p+ iλ)E1 + (q + iµ)E2√

λ2 + µ2 + p2 + q2 − 1
,

Θ1 = e−i(n−1)x (q − iµ)E1 − (p− iλ)E2√
λ2 + µ2 + p2 + q2

,

Θ2 = e−i(n−1)x (λ2 + µ2 + p2 + q2)L̃+ (p+ iλ)E1 + (q + iµ)E2√
λ2 + µ2 + p2 + q2

√
λ2 + µ2 + p2 + q2 − 1

.

(5.101)

Then 〈Φ,Φ〉 = 〈Θ1,Θ1〉 = 1 and 〈Θ2,Θ2〉 = −1. Continuing in the same way as in the proof of
Proposition 5.3, we obtain case (a).

Case (2): λ2 + µ2 + p2 + q2 < 1. It follows from (5.64) and (5.66) that

f =
C√

1− λ2 − µ2 − p2 − q2
(5.102)

for some real constant C > 0. Now consider the maps

Φ = e−ix
L̃+ (p+ iλ)E1 + (q + iµ)E2√

1− λ2 − µ2 − p2 − q2
,

Θ1 = e−i(n−1)x (q − iµ)E1 − (p− iλ)E2√
λ2 + µ2 + p2 + q2

,

Θ2 = e−i(n−1)x (λ2 + µ2 + p2 + q2)L̃+ (p+ iλ)E1 + (q + iµ)E2√
λ2 + µ2 + p2 + q2

√
1− λ2 − µ2 − p2 − q2

.

(5.103)

Then 〈Φ,Φ〉 = −1 and 〈Θ1,Θ1〉 = 〈Θ2,Θ2〉 = 1. Continuing in the same way as in the proof of
Proposition 5.3, we obtain case (b).

Case (3): λ2 + µ2 + p2 + q2 = 1. Let us put

Φ = e−ixf(L̃+ (p+ iλ)E1 + (q + iµ)E2), (5.104)

Θ = e−i(n−2)x ((q − iµ)E1 − (p− iλ)E2) , (5.105)

where x is the coordinate on M2 defined by (5.67). Then we have

〈Φ,Φ〉 = 〈Φ,Θ〉 = 0, 〈Θ,Θ〉 = 1, (5.106)

DE1
Φ = DE2

Φ = DEiΦ = DEiΘ = 0, i = 3, . . . , n, (5.107)

DE1
Θ = e−i(n−3)x q − iµ

f
Φ, (5.108)

DE2Θ = −e−i(n−3)x p− iλ
f

Φ. (5.109)

It follows from (5.106) and (5.107) that Φ is a constant light-like vector. Moreover, from (5.107),
(5.108) and (5.109), together with (5.67) and (5.68), we obtain that Θ can be seen as a map from
M2 satisfying

Θx = −e−i(n−3)x fy
fn

Φ,

Θy = e−i(n−3)xfn−4(fx + if)Φ.

(5.110)

This implies that

Θ = c0 + FΦ, (5.111)
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for some space-like unit vector c0 perpendicular to Φ and a function F : M2 → C satisfying (5.97).
Remark that (5.96) is the integrability condition for the system (5.97).

From (5.104) we obtain

L̃ =
eix

f
Φ + Ψ, (5.112)

where

Ψ = −(p+ iλ)E1 − (q + iµ)E2. (5.113)

Since 〈 L̃, E1 〉 = 〈 L̃, iE1 〉 = 〈 L̃, E2 〉 = 〈 L̃, iE2 〉 = 0, we find from (5.112) and (5.113)〈
eixΦ, E1

〉
= fp,

〈
eixΦ, E2

〉
= fq,〈

eixΦ, iE1

〉
= fλ,

〈
eixΦ, iE1

〉
= fµ,

(5.114)

or, equivalently,

〈Φ, E1〉 = f(p cosx+ λ sinx), 〈Φ, iE1〉 = f(λ cosx− p sinx),

〈Φ, E2〉 = f(q cosx+ µ sinx), 〈Φ, iE2〉 = f(µ cosx− q sinx).
(5.115)

It then follows from (5.113) and (5.115) that

〈Ψ,Φ〉 = −f cosx, 〈Ψ, iΦ〉 = −f sinx. (5.116)

We obtain from (5.105) and (5.113) that 〈Ψ,Θ〉 = 0 and together with (5.111) and (5.116) this
implies

〈Ψ, c0〉 = f <(F̄ eix), 〈Ψ, ic0〉 = f =(F̄ eix). (5.117)

Without loss of generality, we may choose

Φ = (1, 1, 0, . . . , 0), c0 = (0, 0, . . . , 0, 1). (5.118)

It then follows from (5.116)–(5.118) that Ψ = (Ψ2+feix,Ψ2,Ψ3, . . . ,Ψn, f F̄ e
ix) for some functions

Ψ2, . . . ,Ψn : M → C. Now define real valued functions α, β and complex valued functions
G3, . . . , Gn by

Ψ2 = feix(α+ iβ), (Ψ3, . . . ,Ψn) = feix(G3, . . . , Gn).

Then, from (5.112),

L̃ = feix
(

1

f2
+ α+ iβ + 1,

1

f2
+ α+ iβ,G3, . . . , Gn, F̄

)
(5.119)

and the conditon 〈L̃, L̃〉 = −1 yields

α =
1

2

(
〈G,G〉+ |F |2 − 1

)
− 1

2f2
, (5.120)

where 〈G,G〉 denotes the square of the length of G = (G3, . . . , Gn) in Cn−2. By putting u =

α+ 1/f2 and v = β, we obtain the desired expression for L̃ and (5.98).
Let us now check that G does not depend on x and y and is actually a Lagrangian immersion

of Mn−2 into Cn−2. Using (5.67), (5.104) and (5.105), we can express L̃x and L̃y as linear

combinations of L̃, Φ and Θ. Since Φ = (1, 1, , 0, . . . , 0, 0) and Θ = (F, F, 0, . . . , 0, 1), it follows

from these expressions that L̃3, . . . , L̃n satisfy

(L̃j)x = − 1

λ2 + µ2
(λp+ µq − i(λ2 + µ2))L̃j ,

(L̃j)y =
fn−2

λ2 + µ2
(µp− λq)L̃j .

(5.121)

By using that L̃j = feixGj for j = 3, . . . , n and (5.68), we obtain from (5.121) that (Gj)x =
(Gj)y = 0. To show that G : Mn−2 → Cn−2 is Lagrangian, it suffices to check that 〈Guj , iGuk〉 = 0

for all j, k = 1, . . . , n− 2. A straightforward computation shows that 〈L̃uj , iL̃uk〉 = f2〈Guj , iGuk〉
and since L̃ is Legendrian, we have 〈L̃uj , iL̃uk〉 = 0 so that we obtain the result.
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Finally, we check that v satisfies the system (5.99). Since L̃ is horizontal, we have 〈L̃x, iL̃〉 =

〈L̃y, iL̃〉 = 〈L̃uj , iL̃〉 = 0 for all j = 1, . . . , n − 2. A straightforward computation, using (5.95),
(5.97) and (5.98) then gives the result.

The converse can be verified by long but straightforward computation. �

6. Main theorems

Finally, we summarize our results from above as the three main theorems.

Theorem 6.1. Let M be a Lagrangian submanifold of the complex Euclidean space Cn with n ≥ 5.
Then we have the inequality

δ(2, n−2) ≤ n2(n− 2)

4(n− 1)
H2

at every point. Assume that M is non-minimal. Then the equality sign in the above inequality
holds identically, i.e., M is δ(2, n− 2)-ideal, if and only if M is locally congruent to the image of
one of the following two immersions:

(a)

L(x, u2, . . . , un) =
eiθ(x)

ϕ(x) + ix
Φ(u2, . . . , un),

with

θ(x) =
n− 1

2− n
arcsin

(
cx

n−2
n−3

)
, ϕ(x) =

√
1

c2 x
2

n−3

− x2,

where c is a positive constant and Φ is a minimal Legendre submanifold of S2n−1(1) ⊆ Cn which
is mapped to a δ(n− 2)-ideal minimal Lagrangian submanifold of CPn−1(4) by the Hopf fibration;

(b)

L(x, y, u1, . . . , un−2) =
(
f(x, y)eixΦ(u1, . . . , un−2), z(x, y)

)
,

where Φ defines a minimal Legendre immersion in S2n−3(1) ⊂ Cn−1 and (feix, z) is a Lagrangian
surface in C2, where f is determined by

fyy
fn−2

− (n− 2)
f2
y

fn−1
+ (n− 1)fn−1 + (n− 2)fn−3f2

x + fn−2fxx = 0

and z by

zx = ei(n−1)x fy
fn−2

,

zy = ei(n−1)xfn−1

(
i− fx

f

)
.

Remark 6.1. As pointed out in Remark 3.1, if M is a minimal δ(2, n − 2)-ideal Lagrangian sub-
manifold of Cn and the bases given in Lemma 3.1 can be pasted together to form an orthonormal
frame, then M is either δ(2)-ideal, δ(n−2)-ideal or δ(2, k)-ideal for some k satisfying 2 ≤ k < n−2
or it is given by

L(x, y, u1, . . . , un−2) =
(
L1(x, y), L2(u1, . . . , un−2)

)
,

where L1 is a minimal δ(2)-ideal Lagrangian immersion into C2 and L2 is a minimal δ(n−2)-ideal
Lagrangian immersion into Cn−2.

Theorem 6.2. Let M be a Lagrangian submanifold of the complex projective space CPn(4), with
n ≥ 5. Then we have the inequality

δ(2, n−2) ≤ n2(n− 2)

4(n− 1)
H2 + 2(n− 2)

at every point. Assume that M is non-minimal. Then the equality sign in the above inequality
holds identically, i.e., M is δ(2, n− 2)-ideal, if and only if M is locally congruent to the image of
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L = π ◦ L̃, where π : S2n+1(1) → CPn(4) is the Hopf fibration and L̃ is one of the following two
immersions:

(a)

L̃(x, u2, . . . , un) =

(
eiθΦ(u2, . . . , un)√

1 + λ2 + ϕ2
,
ei(n−2)θ(iλ− ϕ)√

1 + λ2 + ϕ2

)
,

where θ, ϕ and λ are functions of x only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = −1− ϕ2 − (n− 2)λ2, θ′ = λ,

and Φ is a Legendre immersion into S2n−1(1) whose image under the Hopf fibration is minimal
δ(n− 2)-ideal Lagrangian in CPn−1(4);

(b)

L̃(x, y, u1, . . . , un−2) = eixf(x, y)Φ(u1, . . . , un−2) + ei(n−1)x
√

1− f(x, y)2 Θ2(x, y),

where, with respect to a suitable orthogonal decomposition Cn+1 = Cn−1 ⊕ C2, the map Φ is a
minimal Legendre immersion into S2n−3(1) ⊆ Cn−1 , the real function f is determined by

(1− f2)f2n−3fxx + (1− f2)ffyy + ((n− 2)(1− f2) + 2f2)f2n−4f2
x

− ((n− 2)(1− f2)− 2f2)f2
y + ((n− 1)(1− f2) + 2f2)f2n−2 = 0

and Θ2 is map into S3(1) ⊆ C2, which is a solution of

(Θ1)x =
1

1− f2

(
if2Θ1 −

fy
fn−2

Θ2

)
,

(Θ1)y =
1

1− f2
fn−2(fx + if)Θ2,

(Θ2)x =
1

1− f2

(
fy
fn−2

Θ1 + i((1− n)(1− f2)− f2)Θ2

)
,

(Θ2)y =
1

1− f2
fn−2(−fx + if)Θ1.

Remark 6.2. As pointed out in Remark 3.1, if M is a minimal δ(2, n−2)-ideal Lagrangian subman-
ifold of CPn(4) and the bases given in Lemma 3.1 can be pasted together to form an orthonormal
frame, then M is either δ(2)-ideal, δ(n−2)-ideal or δ(2, k)-ideal for some k satisfying 2 ≤ k < n−2.

Theorem 6.3. Let L : M → CHn(−4) be a Lagrangian submanifold of the complex hyperbolic
space CHn(−4) with n ≥ 5. Then we have the inequality

δ(2, n−2) ≤ n2(n− 2)

4(n− 1)
H2 − 2(n− 2)

at every point. Assume that M is non-minimal. Then the equality sign in the above inequality
holds identically, i.e., M is δ(2, n− 2)-ideal, if and only if M is locally congruent to the image of

L = π ◦ L̃, where π : H2n+1
1 → CHn(−4) is the Hopf fibration and L̃ is one of the following six

immersions:

(a)

L̃(x, u2, . . . , un) =

(
eiθΦ(u2, . . . , un)√

1− λ2 − ϕ2
,
ei(n−2)θ(iλ− ϕ)√

1− λ2 − ϕ2

)
, λ2 + ϕ2 < 1,

where λ, ϕ and θ are functions of x only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = 1− ϕ2 − (n− 2)λ2, θ′ = λ,

and Φ is a Legendre immersion into H2n−1
1 (−1) whose image under the Hopf fibration is minimal

δ(n− 2)-ideal Lagrangian in CHn−1(−4);
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(b)

L̃(x, u2, . . . , un) =

(
ei(n−2)θ(iλ− ϕ)√

λ2 + ϕ2 − 1
,
eiθΦ(u2, . . . , un)√

λ2 + ϕ2 − 1

)
, λ2 + ϕ2 > 1,

where λ, ϕ and θ are functions of x only, satisfying

λ′ = (n− 3)λϕ, ϕ′ = 1− ϕ2 − (n− 2)λ2, θ′ = λ,

and Φ is a Legendre immersion into S2n−1(1) whose image under the Hopf fibration is minimal
δ(n− 2)-ideal Lagrangian in CPn−1(4);

(c)

L̃(x, u2, . . . , un) =
cosh

2
n−3

(
n−3

2 x
)

e
2i
n−3 arctan(tanh(n−3

2 x))

[(
w +

i

2
〈Φ,Φ〉+ i,Φ, w +

i

2
〈Φ,Φ〉

)
+

∫ x

0

e2i arctan(tanh(n−3
2 t))

cosh
2

n−3
(
n−3

2 t
) dt (1, 0, . . . , 0, 1)

]
,

where Φ is a minimal δ(n−2)-ideal Lagrangian immersion into Cn−1 and w is the unique solution
of the PDE system wuk = 〈Φ, iΦuk〉 for k = 2, . . . , n;

(d)

L̃(x, y, u1, . . . , un−2) = −eixf(x, y)Φ(u1, . . . , un−2) + ei(n−1)x
√

1 + f(x, y)2 Θ2(x, y),

where, with respect to a suitable orthogonal decomposition Cn+1
1 = Cn−1 ⊕ C2

1, the map Φ is a
minimal Legendre immersion into S2n−3(1) ⊆ Cn−1, the real function f is determined by

(1 + f2)f2n−3fxx + (1 + f2)ffyy + ((n− 2)(1 + f2)− 2f2)f2n−4f2
x

− ((n− 2)(1 + f2) + 2f2)f2
y + ((n− 1)(1 + f2)− 2f2)f2n−2 = 0

and Θ2 is a map into H3
1 (−1) ⊆ C2

1, which is a solution of

(Θ1)x =
1

1 + f2

(
−if2Θ1 −

fy
fn−2

Θ2

)
,

(Θ1)y =
1

1 + f2
fn−2(fx + if)Θ2,

(Θ2)x =
1

1 + f2

(
− fy
fn−2

Θ1 − i((n− 1)(1 + f2)− f2)Θ2

)
,

(Θ2)y =
1

1 + f2
fn−2(fx − if)Θ1;

(e)

L̃(x, y, u1, . . . , un−2) = eixf(x, y)Φ(u1, . . . , un−2)− ei(n−1)x
√
f(x, y)2 − 1 Θ2(x, y),

where, with respect to a suitable orthogonal decomposition Cn+1
1 = Cn−1

1 ⊕ C2, the map Φ is a
minimal Legendre immersion into H2n−3

1 (−1) ⊆ Cn−1
1 , the real function f is determined by

(f2 − 1)f2n−3fxx + (f2 − 1)ffyy + ((n− 2)(f2 − 1)− 2f2)f2n−4f2
x

− ((n− 2)(f2 − 1) + 2f2)f2
y + ((n− 1)(f2 − 1)− 2f2)f2n−2 = 0
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and Θ2 is a map into S3(1) ⊆ C2
1, which is a solution of

(Θ1)x =
1

f2 − 1

(
−if2Θ1 −

fy
fn−2

Θ2

)
,

(Θ1)y =
1

f2 − 1
fn−2(fx + if)Θ2,

(Θ2)x =
1

f2 − 1

(
fy
fn−2

Θ1 + i((n− 1)(f2 − 1)− f2)Θ2

)
,

(Θ2)y =
1

f2 − 1
fn−2(−fx + if)Θ1;

(f)

L̃(x, y, u1, . . . , un−2) = f(x, y)eix(u(x, y, u1, . . . , un−2) + iv(x, y, u1, . . . , un−2) + 1,

u(x, y, u1, . . . , un−2) + iv(x, y, u1, . . . , un−2), G(u1, . . . , un−2), F (x, y)),

where the real function f is determined by

f2n−3fxx + ffyy + (n− 4)f2n−4f2
x − nf2

y + (n− 3)f2n−2 = 0

and the complex function F by

Fx = −ei(n−3)x fy
fn
, Fy = ei(n−3)xfn−4(fx − if),

G is a minimal Lagrangian immersion into Cn−2, the real function u is given by

u =
1

2
(〈G,G〉+ |F |2 − 1) +

1

2f2

and the real function v is determined by

vx = − 1

f2
− fy
fn
=(ei(n−3)xF ),

vy = −fn−3<(ei(n−3)xF ) + fn−4fx=(ei(n−3)xF̄ ),

vuk = 〈D ∂
∂uk

G, iG〉.

Remark 6.3. As pointed out in Remark 3.1, if M is a minimal δ(2, n − 2)-ideal Lagrangian sub-
manifold of CHn(−4) and the bases given in Lemma 3.1 can be pasted together to form an
orthonormal frame, then M is either δ(2)-ideal, δ(n−2)-ideal or δ(2, k)-ideal for some k satisfying
2 ≤ k < n− 2.
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