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ABSTRACT  

The entire glass sheet forming process consists of heating and forming a glass sheet and 

cooling and tempering it afterwards. For the first step, the glass sheet is heated using a local radiative 

source and deforms by sagging. In the thermo-mechanical calculations, temperature dependent glass 

viscosity, heat exchange with the ambient air and radiative source effects should be considered. A 

two-dimensional finite element model with plane deformation assumptions is developed. Using the 

P1-Approximation, the formulation and numerical resolution of the Radiative Transfer Equation 

(RTE) are performed on the glass domain as it changes over time to estimate the flux of the radiative 

body at each position in the glass. In the next step, the sheet is cooled. Narayanaswamy’s model is 



used to describe the temperature dependent stress relaxation and the structural relaxation. The RTE 

is again solved using the P1-Approximation to consider the internal radiative effects during the 

cooling. There is a discussion using the P1-Approximation and comparing the results to other existing 

methods for the temperature changes of the glass throughout the forming process, for the deformed 

shape at the end of the forming step and for the residual stresses after tempering. 
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INTRODUCTION 

Glass is a semi-transparent material with highly temperature dependent mechanical and 

thermal behaviors. In reality as well as in modeling, deforming glass to achieve the final desired 

geometry requires mastering the coupled changes of the temperature inside the glass and the product 

shape. Modeling a glass forming process, where large deformations occur, means computing the 

solution of one complex and non-linear thermo-mechanical problem. On one hand, it is necessary to 

determine the heat conduction of the glass taking the conditions of the boundaries between the glass 

and the ambient air and the glass and the forming tools into account. On the other hand, the model 

would also need to solve the mechanical problem with the temperature dependent viscosity of the 

glass and the changing contact conditions imposed by the forming tools. In the last two decades, the 

modeling of glass forming has been widely developed [1,2] using commercial software packages or 

homemade codes. For specific applications, glass must be tempered to make it more resistant and 

safer. During the tempering phase, the deformations are limited but there is a coupling between 

temperature and stress relaxation. 

Besides heat conduction and heat convection, radiation plays an important role and for high 

temperatures, thermal radiation is the dominant heat transfer process. Very complete assessments of 



radiative heat transfer can be found in [3], [4], and [5] and its application to the glass industry can be 

found in [6] and [7]. 

Since the geometry of glass changes during forming, different glass forming modeling 

solutions were proposed to account for radiation effects. The first and simplest one involves totally 

ignoring the radiation effects [8]. Another solution consists of using the Stefan-Boltzmann’s law and 

considering only surface radiation [9]. This law is normally applied to opaque bodies, which is not 

the case for glass. Only a certain part of the radiant energy corresponding to the opaque spectrum of 

the glass is directly absorbed at the surface [10]. From a numerical point of view, the surface radiation 

is often approximated and taken into account by modifying the convection coefficient. This provides 

a linear relation instead of the T4 non-linearity in temperature [9].  

Glass is a semi-transparent material, and internal radiative effects also occur inside the glass. 

A widely used solution involves using equivalent conductivity (such as the active thermal 

conductivity method [11,12]), which is temperature dependent, or the Rosseland’s approximation 

[13]. The Rosseland’s approximation treats thermal radiation as a correction of heat conductivity, 

which is computed before the FEM computation using absorption coefficients. This is why it is so 

quick and easy to integrate into commercial software packages. It is used not only in glass forming 

modeling, where the domain changes overtime, but also extensively used for fixed domains with 

negligible deformations, such as glass tempering modeling. Originally, the method was derived in 

1924 by S. Rosseland [14] to investigate stellar radiation. This is why the method is valid only for 

optically thick glass. Furthermore, it was shown in [15] that, for glass tempering, using the 

Rosseland’s approximation produces vast errors in transient stress calculations. 

The exact method for taking radiation in glass into account is to solve the radiative transfer 

equation. From a numerical point of view, this is a challenge because of the high-dimensionality and 

the non-linearity of RTE. A detailed discussion about different numerical methods for solving the 

radiative transfer equation and many more references can be found in [3] and [7]. Due to that fact 



that, during glass forming, one must deal with changes in the geometry of the glass plate being 

formed, the P1-Approximation for numerically solving the radiative transfer equation is used for the 

research presented here. Using the method of moments [7], one can obtain a system of two-

dimensional diffusion equations instead of the high-dimensional radiative transfer equation. 

In the present glass sagging modeling case, a laser is used to create local heating of the glass, 

as examined for the thermal computations of the cutting [16], drilling [17] or scribing [18] processes. 

In these studies, radiative heating was usually performed in a simple way. A first method for taking 

the radiative source into account is to consider it as a surface flux [16,19,20] whose intensity is 

directly related to the power of the radiative source. This approximation is good if the source 

wavelength is in the opaque zone of the glass under consideration. If this is not the case, a more 

precise method must be used. Another method consists of applying Beer’s law, which involves 

nothing more than solving the one-dimensional radiative transfer equation [17,20]. In [21], Li et al. 

compare these two methods. The comparison reveals that both methods are very similar for optically 

thick glass. However, for optically thin glass, the Beer’s law model provides much better results with 

respect to experimental data. 

The research discussed here focuses on the two-dimensional (2-D) modeling of the extent of 

gravity sagging in a glass sheet being heated with a laser and of the tempering after sagging. This 

thermo-mechanical problem, for which both deformations and temperatures of the glass sheet must 

be computed, is a complex incremental and iterative problem that can be solved using commercial 

software. In the case of a deformable body discussed here, the P1-Approximation is used, for the 

forming and the tempering steps, to solve the RTE instead of using more simplified solutions found 

in the literature. An initial discussion on the temperature changes in the glass sheet during forming 

and on the deformed shape of the glass at the end of the forming step is proposed to compare the 

solution obtained by the P1-Approximation for radiation to other simplified ones. The discussion 

continues with the temperatures during the cooling phase and the residual stresses after tempering. 



 

TWO-DIMENSIONAL MODELING OF GLASS SAGGING AND TEMPERING   

In this paper, the glass was first exposed to a local heat using a laser source, and subsequently 

deformed through gravity sagging. In a second step, the deformed shape was tempered. The glass 

sheet was clamped on the left side (𝑦 = 0) and exposed to uniform convection with ambient air on 

all its surfaces.  Considering uniform thermal conditions in the 𝑥-direction and assuming that the 

dimension of the sheet in the 𝑥-direction was much larger than in the(𝑦, 𝑧)-directions, the problem 

can be reduced to two dimensions with generalized plane strain conditions. Under this assumption, 

there is no heat transfer in the (𝑥, 𝑧) plane but dilatation effects are allowed in the 𝑥-direction. Finally, 

the problem was solved on the following domain: 

 

𝑥̅ = (𝑦, 𝑧), and 𝐷 =  {0 ≤ 𝑦 ≤ 𝑙, 0 ≤ 𝑧 ≤ 𝑤, }, 𝐷𝑡 = 𝐷 ×  {0 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥}. 

 

𝑤 denotes the sheet thickness, 𝑙 the length (Figure 1) and 𝑡𝑚𝑎𝑥 the heating duration. 

 

Figure 1: Description of 2-D glass sagging under radiative laser heating. 

 

During the heating phase, the glass plate was surrounded by hot air and a laser was applied at 

point (𝑑, 𝑤) with constant power. The glass is only formed due to the gravity. For the tempering step, 

the laser was switched off and cool air was blown all over the glass sheet. 

 

 

 
y 

l 

w 

z Laser d 



 

Formulations of the gravity sagging of glass under radiative heating 

The static equilibrium of the deformable glass sheet in the presence of gravitational effects 

without inertial effects is described using: 

 

∇𝑥̅ ∙ 𝜎 + 𝜌𝑔̅ = 0, 𝑥̅ ∈ 𝐷,           (1) 

 

where 𝜎 is the Cauchy stress tensor in the deformed glass sheet, 𝜌 the density of the glass and 𝑔̅ the 

gravitational constant. Note that the derivative is taken with respect to position 𝑥̅ in the actual 

deformed glass sheet. The boundary conditions of the glass surface 𝜕𝐷 are affected by a non-

displacement condition imposed by clamped side 𝜕𝐿𝑢 of the glass sheet and the fact that there was 

no external force acting on the other glass sheet boundary 𝜕𝐷\𝜕𝐿𝑢. They are described using:  

 

𝑢̅ ∙ 𝑛̅ = 0, 𝑥̅ ∈ 𝜕𝐿𝑢  and   𝜎𝑛̅  ∙ 𝑛̅ = 0, 𝑥̅ ∈ 𝜕𝐷\𝜕𝐿𝑢,     (2) 

 

where 𝑢̅ is the displacement vector at position 𝑥̅ and 𝑛̅ is the normal unit vector for the glass surface. 

With a very low strain rate during sagging, the glass behavior was assumed to be viscoelastic 

around transition temperature 𝑇𝑔. The elastic part is characterized by the instantaneous Young 

modulus 𝐸 and Poisson’s ratio . At a given temperature, the glass is viscoelastic. The stress and 

strain tensors were split into a deviatoric tensor and a hydrostatic part using following relationships:  

 

𝝈(𝑟̅, 𝑡) = 𝒔(𝑟̅, 𝑡) +
𝑡𝑟𝑎𝑐𝑒(𝝈(𝑟̅, 𝑡))

3
𝑰 = 𝒔(𝑟̅, 𝑡) +

𝜎ℎ(𝑟̅, 𝑡)

3
𝑰, 

(3) 

 

𝜺(𝑟̅, 𝑡) = 𝒆(𝑟̅, 𝑡) +
𝑡𝑟𝑎𝑐𝑒(𝜺(𝑟̅,𝑡))

3
𝑰 = 𝒆(𝑟̅, 𝑡) +

𝜀ℎ(𝑟̅,𝑡)

3
𝑰, 

(4) 

  



where 𝒆(𝑟̅, 𝑡)is the deviatoric strain tensor, 𝒔(𝑟̅, 𝑡) the deviatoric stress tensor, 𝑰 the unit tensor, 

𝜀ℎ(𝑟̅, 𝑡) the first strain tensor invariant and 𝜎ℎ(𝑟̅, 𝑡) the first stress tensor invariant. In the following, 

a generalized Maxwell model was considered for the shear part. This leads to: 

 

𝒔(𝑟̅, 𝑡) = ∫ 𝐺(𝜉 − 𝜉′)
𝜕𝒆

𝜕𝜉′
(𝜉′)𝑑𝜉

𝜉

0
,          (5) 

  

with shear modulus 𝐺(𝑡) = ∑ 𝐺𝑖𝑒
−

𝑡

𝜏𝑖
𝑛
𝑖=1 . 𝐺𝑖 is the weight at relaxation time 𝜏𝑖 and 𝑛 the number of 

relaxation times used to describe the behavior of the glass  (𝑛 = 6 is enough to fit experimental data 

[21]). Bulk modulus 𝐾 was used as a constant. Variable 𝜉 was the so-called “reduced time”, which 

was used to take temperature dependence into account through the thermo-rheological simplicity 

assumption. It is defined by:  

    

𝜉(𝑟̅, 𝑡) = ∫ 𝜙[𝑇(𝑟̅, 𝑡′)]𝑑𝑡′

𝑡

0

 
(6) 

 

where 𝜙 is the “shift function” defined by (8).The behavior of glass during a cooling process is very 

complex since structural relaxation must be taken into account. This is usually done by using the 

concept of fictive temperature. Roughly speaking, fictive temperature 𝑇𝑓 represents the deviation of 

the structure of the glass from its equilibrium state. The fictive temperature is determined as follows: 

 

𝑇𝑓(𝑟̅, 𝑡) = 𝑇(𝑟̅, 𝑡) − ∫ 𝑀(𝜉 − 𝜉 ′)
𝑑𝑇

𝑑𝜉′
𝑑𝜉′

𝑡

0
. (7) 

 

𝑀(𝑡) is the relaxation modulus of the fictive temperature, which depends only on the material. Shift 

function [25] is defined by:    



𝜙(𝑟̅, 𝑡) = 𝑒𝑥𝑝 (−
𝐻

𝑅𝑔
[

𝑥

𝑇(𝑟̅,𝑡)
+

1−𝑥

𝑇𝑓(𝑟̅,𝑡)
−

1

𝑇𝑟
]). 

(8) 

 

𝐻 is an activation energy, 𝑅𝑔 = 8.314  𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 the universal gas constant, 𝑥 a material 

parameter and 𝑇𝑟 a reference temperature at which 𝐺(𝑡) is measured. 

Moreover, the fictive temperature 𝑇𝑓 also contributes to thermal strain: 

 

𝜀𝑡ℎ(r̅, 𝑡) = 𝛽𝑙 (𝑇𝑓(r̅, 𝑡) − 𝑇0(r̅, 𝑡)) + 𝛽𝑔 (𝑇(r̅, 𝑡) − 𝑇𝑓(r̅, 𝑡)). (9) 

 

𝛽𝑙 and 𝛽g are the dilatation coefficients in the liquid and solid states respectively. 

Since gravity sagging will create large deformations of the glass sheet, the highly nonlinear 

system (1,2) must be solved to get the displacements. The high temperature dependency of the 

behavior of the glass (8) means that, in the modeling, we must consider the heat transfer in the glass 

during gravity sagging. The heat transfer in the 2-D glass sheet is described by the well-known heat 

transfer equation: 

 

𝑐𝑝𝜌
𝜕𝑇

𝜕𝑡
(𝑥̅, 𝑡) = ∇ ∙ (𝑘ℎ(𝑥̅, 𝑡)∇𝑇(𝑥̅, 𝑡)) − ∇ ∙ 𝑞̅(𝑥̅, 𝑇),          (𝑥̅, 𝑡) ∈ 𝐷𝑡,     (10) 

 

𝑇(𝑥̅, 0) = 𝑇0(𝑥̅),           𝑥̅ ∈ 𝐷.          (11) 

 

T denotes the temperature depending on position 𝑥̅ and time 𝑡, 𝑐𝑝 is the specific heat capacity, and 

𝑘ℎ the heat conductivity. 𝑇0(𝑥̅) denotes the initial temperature of the glass. On the right hand side of 

(10), 𝑞̅(𝑥̅, 𝑇) denotes the radiative flux vector, which is defined as the first moment of radiative 

intensity 𝐼(𝑥̅, ̅,) with respect to direction vector 𝛺̅ by: 

 

𝑞̅(𝑥̅, 𝑇) = ∫ ∫ 𝐼(𝑥,̅ ̅,)
𝑆2

𝑚𝑎𝑥

𝑚𝑖𝑛
̅𝑑d.        (12) 



 

𝑆2 denotes the unit sphere. At the boundary, it is proposed to describe heat flux using: 

 

𝑘ℎ∇𝑇(𝑥̅, 𝑡) ∙ 𝑛 = 𝛼(𝑇(𝑥̅, 𝑡) − 𝑇∞(𝑡)) + 

                                           𝜋𝜖 ∫ (𝐵(𝑇(𝑥̅, 𝑡),λ) − 𝐵(𝑇∞,λ))𝑑
𝑜𝑝𝑎𝑞𝑢𝑒

λ, (𝑥̅, 𝑡) ∈ 𝜕𝐷𝑡.   (13) 

 

This means that heat flux is composed of two terms. The first one represents convection with the 

surrounding air at a temperature 𝑇∞. 𝛼 is the convection coefficient. The second represents the 

difference between the radiation of the glass and the irradiation of the surroundings in the opaque 

wavelength region. 𝜀 denotes hemispherical emissivity and 𝜆 the wavelength in the glass, 𝑚𝑖𝑛 ≤

 ≤ 𝑚𝑎𝑥. 𝐵(𝑇(𝑥̅, 𝑡),) denotes Planck’s function given as 

 

𝐵(𝑇(𝑥̅, 𝑡),λ) =
2ℎ𝑐𝑂

2

𝑛𝑔
2λ5[𝑒ℎ𝑐0/𝑛𝑔λT(𝑥̅,𝑡)−1]

 .        (14) 

𝑘 is Boltzmann’s constant, ℎ Planck’s constant, 𝑐0 the speed of light in a vacuum, and 𝑛𝑔 the 

refractive index of the glass. Due to the glass sheet forming, the heat transfer problem (10-14) must 

be solved on a deformable body. There is coupling between the equilibrium equations (1-9) and the 

heat equations (10-14).  

 

Solving the RTE during glass sagging 

The glass sheet is locally heated (𝑥̅ ∈ 𝜕𝐿𝑞) using a laser with a power denoted by 𝑞𝑙𝑎𝑠𝑒𝑟(𝑡) 

acting on a surface area denoted by 𝐴𝑙𝑎𝑠𝑒𝑟. The radiation of the hot glass in the semi-transparent 

wavelength region is described by the Radiative Transfer Equation (RTE) [23]. If a band model for 

the absorption coefficient 𝜅(𝜆) is considered: 

 

() =  𝑘 = 𝑐𝑜𝑛𝑠𝑡., for 𝑘−1 ≤   ≤ 𝑘 , 𝑘 = 1,2, … , 𝑀𝑘.     (15) 



 

then the radiative intensity𝐼(𝑥̅, ̅,)  must satisfy the following equation in each band 𝑘 [24]: 

 

̅ ∙ ∇𝐼𝑘(𝑥̅, ̅) + 𝑘𝐼𝑘(𝑥̅, ̅) = 𝑘𝐵𝑘(𝑇(𝑥̅, 𝑡)), (𝑥̅, 𝑡) ∈ 𝐷𝑡,     (16) 

 

where   𝐵𝑘(𝑇) = ∫ 𝐵(𝑇,)𝑑
𝑘

𝑘−1
 and 𝐼𝑘(𝑥̅, ̅) = ∫ 𝐼(𝑥̅, ̅,)𝑑

𝑘

𝑘−1
  is the unknown in the band 𝑘 

which is independent from 𝜆. 

 

The boundary condition for 𝐼𝑘(𝑥̅, ̅) on domain 𝜕𝐿𝑞𝑡 affected by the laser heating is 

𝐼𝑘(𝑥̅, Ω̅) = 𝐵𝑘(𝑇∞) +
𝑞𝑙𝑎𝑠𝑒𝑟

𝑘 (𝑡)

4𝜋𝐴𝑙𝑎𝑠𝑒𝑟
,            (𝑥̅, 𝑡) ∈ 𝜕𝐿𝑞𝑡,      (17) 

 

with  𝑞𝑙𝑎𝑠𝑒𝑟
𝑘 = ∫ 𝑞𝑙𝑎𝑠𝑒𝑟

𝑘 ()𝑑.
𝑘

𝑘−1
 

 

The boundary condition elsewhere is  

 

𝐼𝑘(𝑥̅, Ω̅) = 𝐵𝑘(𝑇∞),                               (𝑥̅, 𝑡) ∈ 𝜕𝐷𝑡\𝜕𝐿𝑞𝑡.      (18) 

  

Due to the RTE (16-18), the whole system (10-18) used to compute the temperatures in the glass 

sheet during glass forming is high-dimensional, non-linear, and therefore, challenging to solve 

numerically. This is why we use the P1-Approximation for the radiative part (16-18). Instead of (16) 

with boundary conditions (17) and (18), this approximation leads to consider now the incident energy 

𝐺𝑘(𝑥̅) of the band 𝑘 satisfying 

 

−∇ ∙ (
1

3𝑘
∇𝐺𝑘(𝑥̅)) + 𝑘𝐺𝑘(𝑥̅) = 4𝜋𝑘𝐵𝑘(𝑇(𝑥̅, 𝑡)), (𝑥̅, 𝑡) ∈ 𝐷𝑡,     (19) 



with the boundary conditions 

1

3κ𝑘
∇𝐺𝑘(𝑥̅) ∙ 𝑛 =

1

2
(𝐺𝑎

𝑘(𝑥̅) − 𝐺𝑘(𝑥̅)),        

 (20) 

where 

 

𝐺𝑎
𝑘(𝑥̅) = 4𝜋𝐵𝑘(𝑇∞), (𝑥̅, 𝑡) ∈ 𝜕𝐷𝑡\𝜕𝐿𝑞𝑡,        (21) 

𝐺𝑎
𝑘(𝑥̅) = 4𝜋𝐵𝑘(𝑇∞) +

2𝑞𝑙𝑎𝑠𝑒𝑟
𝑘 (𝑡)

𝐴𝑙𝑎𝑠𝑒𝑟
, (𝑥̅, 𝑡) ∈ 𝜕𝐿𝑞𝑡.       (22) 

 

The divergence of the radiative flux in (19) ) is directly related to 𝐺𝑘(𝑥̅) using  

∇ ∙ 𝑞̅(𝑥̅, 𝑡) = ∑ 𝑘 (4𝜋𝐵𝑘(𝑇(𝑥̅, 𝑡)) − 𝐺𝑘(𝑥̅))𝑘                  (23) 

 

The derivation of the fundamental equations and the P1-Approximation can be found in [7]. 

For the mathematical analysis of the coupled system (10,11,16), (19,20), (21,22), refer to [24].  

To solve the RTE using P1-Approximation, one can note that (19) is very close in form to the 

steady-state heat transfer equation obtained by deleting the left-hand side in (10). Not only does the 

equation have a similar form, but the boundary conditions do as well (comparing (19) to (13)). Only 

term κ𝑘𝐺𝑘(𝑥̅), present in the P1-Approximation (19) has no equivalent in the steady-state heat 

transfer equation (10). Consequently, the decision was made to solve the P1-Approximation using 

ABAQUS® finite element software because of its ability to solve the steady-state heat equation. For 

this reason, using a DC2D8 thermal finite element, which is an 8-node quadrangle element with 

bilinear interpolation in ABAQUS®, the RTE can be solved using the P1-Approximation (19) if, at 

each finite element level: 

- 𝐺𝑘(𝑥̅) is considered as a temperature to be computed for each of the nodes of the finite 

element, 



- 
1

3𝜅𝑘
 represents material conductivity, 

- the film boundary condition present in ABAQUS® is used to take (20) into account with the 

film coefficient equal to ½ and the film temperature equal to 𝐺𝑎
𝑘(𝑥̅), 

- the right-hand side of (20) is considered to be body flux. 

By acting at each finite element level according to the aforementioned considerations to solve 

the RTE using P1-Approximation, the UEL (User ELement) user-subroutine in ABAQUS® was 

employed to add extra term κ𝑘𝐺𝑘(𝑥̅) present in (19) and not present in the steady-state heat transfer 

equation (10) to the thermal stiffness matrix. With the DFLUX user-subroutine, the temperature 

dependent right-hand side in (19) was introduced.  

The P1-Approximation (19) must be solved for each band using the aforementioned procedure in 

ABAQUS®. Afterwards, the divergence of the radiative flux ∇ ∙ 𝑞̅(𝑥̅, 𝑡) (23) is computed to determine 

the heat transfer in the glass sheet (10-13).  

 

To summarize, for a given temperature map in the glass sheet (meaning for a given time t and 

for given temperature values at the nodes of the 2-D finite element mesh of the glass sheet), the body 

caused by radiation is computed as follows:  

- From the temperature field and for given time t, the Planck function integrals 𝐵𝑘(𝑇(𝑥̅, 𝑡)) 

(14) to be used in (13) are computed. The surface radiation effects appearing in the second 

term of the boundary conditions (13) used for the heat equation (10) can be directly computed 

(a first FORTRAN program was developed for this purpose). 

- The incident radiation 𝐺𝑘(𝑥̅) (21-22) for the 𝑀𝑘 bands is computed using functions 

𝐵𝑘(𝑇(𝑥̅, 𝑡)) (this is done using ABAQUS® according to the aforementioned procedure) 

- Body flux ∇ ∙ 𝑞̅(𝑥̅, 𝑡) is computed using results 𝐺𝑘(𝑥̅) of the 𝑀𝑘 bands (23) (a second 

FORTRAN program was developed for this purpose). 

 



The method to solve the RTE with the P1-Approximation (19-22) using the ABAQUS® finite 

element software as described above was validated with a one-dimensional (1-D) problem by using 

just one band κk = 10.  𝑚−1 to get an analytical solution. The 1-D problem was solved using 2-D 

rectangular geometry with insulation on the two horizontal boundaries and boundary conditions on 

the vertical edges described by (20). The analytical solution for G(x) and the ABAQUS® solution 

were consistent with each other (difference of less than 0.01% at each node) using a mesh of 50 

uniform elements in the 1-D solution. Several κk values were tested. The conclusion was that the 

mesh must be refined near the boundaries as κk increases (i.e., for the more opaque bands). This is 

due to the appearance of boundary layers when κk becomes large. The coupling of the RTE with the 

heat transfer equation (10-13) was also validated using a 1-D thermal problem (10-13) considering a 

2-band model for radiation. The value of the surface temperature was successfully compared with 

the solution of a 1-D finite difference program developed by Siedow et Al. [15].  In this program, the 

P1-Approximation was also implemented (difference less than 0.25% for the surface temperature at 

each time step). 

 

MODELING RESULTS AND DISCUSSION  

In this section, different methods to take radiation into account are compared and their 

influences on the temperature changes during the process, on the deformed shape of the glass sheet 

and on the residual stresses. 

 

Input data for the entire forming process 

The geometry described in Figure 1 was considered with thickness 𝑤 equal to 6.∙ 10−3𝑚 and 

length 𝑙 to 150.∙ 10−3 𝑚. The glass was uniformly preheated   at the temperature 𝑇0(𝑥̅) = 873.15 𝐾 

in order to decrease the viscosity. All the material properties used in the sequel are given in Appendix: 

mechanical data are given in Tables 1, 2, 3 whereas thermal and radiative data are given respectively 



in Table 4, and Tables 5 and 6. The modeling is divided into two parts. During the first 25 s of 

forming, the laser heating occurred at a distance 𝑑 (Figure 1) of 5.∙ 10−3 𝑚. The characteristics of 

the laser were: width 𝛿 = 3.∙ 10−3 𝑚, surface flux 
𝑞𝑙𝑎𝑠𝑒𝑟

𝐴𝑙𝑎𝑠𝑒𝑟
= 250.  𝑘𝑊 ∙ 𝑚−2, and wavelength 

2.75 𝜇𝑚 ≤  𝜆𝑙𝑎𝑠𝑒𝑟  ≤ 4.50 𝜇𝑚. Note that the laser wavelength was chosen in the 𝑘 = 2 band of the 

band model for the glass absorption ((15) and Table 5) so that it heats the glass not only at the surface 

but also directly inside. This amount of heat enabled the sheet to deform quickly in this area whereas 

the rest of the glass sheet deforms much less. 

 Natural convection around the sheet was considered with the temperature of the surrounding 

air 𝑇∞ equal to 873.15 𝐾 and convection coefficient 𝛼 equal to 20.  𝑊 ∙ 𝑚−2 ∙ 𝐾−1. For the next 250 

s of tempering, the laser was switched off and the glass sheet was cooled down by forced convection 

described by 𝑇∞ = 273.15 𝐾 and 𝛼 = 300. 𝑊 ∙ 𝑚−2 ∙ 𝐾−1. 

 

Three approaches to model the heating for the forming 

Three different approaches were considered in the modeling. They differ in the way the laser 

source, internal radiation and surface radiation are taken into account.  

 

* Case 1, denoted “Surface”: the laser heating was modeled using a surface flux 𝑞′′ applied on a zone 

of boundary 𝜕𝐿𝑞𝑡 defined by (𝑑 −
𝛿

2
< 𝑦 < 𝑑 +

𝛿

2
, w) and centered on the laser entry point located at 

(𝑑, 𝑤). Term 𝑞′′ was added to the right-hand side of (13) only on the area concerned by the laser 

flux. The surface radiation was taken into account with Stefan-Boltzmann’s law [9]. The radiation 

effects inside the glass were modeled with the Rosseland’s approximation [14] using an equivalent 

conductivity 𝑘𝑒 computed from the band model used and the corresponding absorption coefficients 

(Table 7 in Appendix). In Case 1, body flux ∇ ∙ q̅(x̅, t) in equation (10) was not computed and taken 

as equal to zero. 

 



* Case 2, denoted “Beer”: the laser was modeled with Beer’s law [20] considering body flux 𝑄(𝑧) =

𝜅2
𝑞𝑙𝑎𝑠𝑒𝑟

𝐴𝑙𝑎𝑠𝑒𝑟
𝑒−𝜅2(𝑤−𝑧) obtained by solving the 1-D RTE [20]. In the present 2-D modeling, it was 

assumed that the glass region concerned by the heat flux was defined as 0 < 𝑧 < 𝑤  and −
𝛿

2
< 𝑦 <

𝑑 +
𝛿

2
; 𝐴𝑙𝑎𝑠𝑒𝑟 = 𝛿 ∙ 1 (1 is the dimension in the 𝑥 −direction). Constant 𝜅2 is the absorption 

coefficient of the glass at laser wavelength 𝜆𝑙𝑎𝑠𝑒𝑟; 𝜅2 is equal to 330.  𝑚−1 considering Table 5 in 

Appendix. The body flux 𝑄(𝑧) is added to the right-hand side of (10). In case 2, the surface radiation 

was also taken into account with the Stefan-Boltzmann’s law and, the radiation effects were taken 

into consideration using the Rosseland’s approximation. As in Case 1, body flux ∇ ∙ q̅(x̅, t) in 

equation (10) was not computed and taken as equal to zero. 

 

* Case 3, denoted “P1”: the laser and the radiation effects inside glass are modeled with the P1-

Approximation using a three-band-model for the absorption coefficient (Table 5 in Appendix). The 

resolution of the thermal problem and RTE were performed using the equations (15-23). Surface 

radiation was only considered in the opaque region of the spectrum using the second expression in 

the right-side in (13). Since the laser wavelength belonged to [2.75 𝜇𝑚; 4.50 𝜇𝑚], the laser heat was 

also considered in equation (16) when 𝑘 = 2. Consequently, for 𝑘 = 1 and 𝑘 = 3, the term 𝑞𝑙𝑎𝑠𝑒𝑟
𝑘  

vanished in (16). 

 

Finite element mesh 

The thermo-mechanical problem of the entire glass sheet forming process was incrementally 

and iteratively solved, using ABAQUS® finite element software. Both mechanical and thermal 

equations were solved using the mesh in Figure 2. The mesh is composed of 8987 nodes and 2920 

CPEG8T elements with generalized plane strain conditions, biquadratic interpolation for 

displacements and bilinear interpolation for temperatures. Before each time step, the RTE equation 



was solved for each band using the P1-Approximation (18-23) and the same mesh as in Figure 2, but 

with DC2D8 thermal elements to solve the RTE with the modifications described in the procedure 

above.  

Forty elements were used in the thickness with refinement near the upper and lower glass 

surfaces, under the laser location and on the glass edges. The mesh was refined to get a correct 

estimation of the temperature gradients during the heating (forming) and cooling (tempering) steps. 

These gradients correspond respectively to the laser heating and to the air convection cooling.  

Moreover, the refinement provides to get an accurate computation of the radiative energy (19-22), of 

the bending effects during the forming and of the residual stresses after tempering. 

 

Figure 2 – Finite element mesh of the glass sheet in Figure 1. 

 

Results and discussion 

The first analysis concerns the forming step (25 s). Figure 3 shows the temperature changes 

for P1, Surface and Beer cases in three locations: in the upper surface of the glass sheet throughout 

the laser entry point touched by the laser (Figure 3-a), in the mid-plane of the glass sheet under the 

laser (Figure 3-b), and on the lower surface under the laser (Figure 3-c). These three locations are 

respectively denoted A(𝑑, 𝑤), B(𝑑,
𝑤

2
) and C(𝑑, 0).  

Because of the position of the laser over the sheet, the highest temperatures are obtained at 

Point A (Figure 3-a) regardless of the case, and the lowest temperatures are obtained at Point C 

(Figure 3-c).  

y 

z Laser 



Regardless of the point, the temperature values obtained during the forming step in the 

Surface case are higher than in the Beer and P1 cases. In fact, in the modeling for the Surface case, 

the laser energy is totally absorbed by the glass and in contrast, in the formulation of the two other 

models, one part passes through the glass.  

At the end of the forming step, at point A (Figure 3-a) close to the laser, the temperature 

obtained in the P1 case is 25.  𝐾 higher than in the Beer case. On the other side of the glass sheet, 

Point C in Figure 3-c, the temperature obtained in P1 is 20.  𝐾 lower than in Beer. Inside the glass 

(Points B and C), the temperatures are lower in P1 than in Surface and Beer. As found in [3,5,23], 

the Rosseland’s approximation is too diffusive. 

The difference between Beer and Surface is greater than in Tian et Li works [20]. In fact, they 

used a laser with a larger laser wavelength (10.6 𝜇𝑚) and at this wavelength, a larger absorption 

coefficient for the glass (≈ 30000.  𝑚−1, i.e. quite opaque glass). In consequence, less of radiation 

entered in the glass in their studies than in the present study. 
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Figure 3: Temperature changes during the forming step for all cases (P1 (solid line), Surface (dashed line) and Beer 

(dotted line) cases : (a) at Point A (𝒅, 𝒘),  (b) at Point B (𝒅,
𝒘

𝟐
), (c) at Point C (𝒅, 𝟎). 

At the end of the forming step, the temperature fields plotted on the initial glass geometry for 

the three cases are presented in Figure 4. The analysis zone is limited to 𝑑 − 3 ∙ 𝑤 ≤ y ≤ 𝑑 + 3 ∙ 𝑤 

(it corresponds to 32.∙ 10−3 𝑚 ≤ 𝑦 ≤ 68.∙ 10−3 𝑚). Outside of this zone, the temperature remains 

equal to the initial temperature with no laser heating effect. 
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 Comparing temperature fields in Figure 4, the zone concerned by the temperature changes at 

the end of forming is larger for Surface and Beer than for P1. In 𝑦 −direction, the temperature remains 

equal to the initial temperature (873.  𝐾) for P1 at a distance 1.5 ∙ 𝑤 under the laser entry point, for 

Surface and Beer, the distance is over 2.5 ∙ 𝑤. There is also more homogeneous temperature 

distribution in 𝑧 −direction for Surface and Beer compared with P1. Once again, the Rosseland’s 

approximation is too diffusive. 

  

 

 

 

Temperature 

(K) 

 

 

 (a) 

 

(b) 

 

(c) 

 

Figure 4: Temperature fields at the end of the forming step in the glass zone defined  

by 𝒅 − 𝟑 ∙ 𝒘 ≤ 𝒚 ≤ 𝒅 + 𝟑 ∙ 𝒘 (𝟑𝟐.∙ 𝟏𝟎−𝟑 𝒎 ≤ 𝒚 ≤ 𝟔𝟖.∙ 𝟏𝟎−𝟑 𝒎): 

 (a) P1, (b) Surface and (c) Beer cases.  

Figure 5 gives the displacement in 𝑧 −direction of the glass sheet middle line at the end of 
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the forming step (25 s). With the differences in the temperature fields in Figures 3 and 4, the 

computed displacements on the midline are different for the P1, Surface and Beer cases.  

Regardless of the case, displacement is a combination of the temperature level in the glass 

and of the zone concerned by the temperature change. Since glass viscosity depends on the 

temperature (3-8), the viscosity level is more or less reduced in a large zone of slightly varying size 

and glass sagging occurs. Based on the computations, one may observe that the displacements along 

the vertical 𝑧 −axis at glass sheet edge 𝑦 = 150.∙ 10−3  𝑚 are respectively 8.9 ∙ 10−3 𝑚, 

11.6 ∙ 10−3 𝑚 and 17.2 ∙ 10−3 𝑚 for the P1, Beer and Surface cases. ¨This corresponds to 

𝑧 −displacement with thickness ratios equal to 1.48, 1.93 and 2.87. The Surface case produces the 

largest displacements and P1 the smallest. This can be explained by the higher heat energy absorbed 

by the glass in the Surface case. When comparing Beer and P1, the modeling shows that the glass 

region affected by the highest temperature changes is larger in case of Beer.  

P1 is a priori more accurate than using Rosseland approximation and we see that the results 

vary drastically from a modeling to another. No benchmark or experimental results are available to 

validate the results. An experimental investigation should be carried out to validate the results.  

 

Figure 5: Representation of z-displacements along the glass sheet middle line defined  

by 𝒛 =  
𝒘

𝟐
, 𝟎 ≤ 𝐲 ≤ 𝐥 (𝟎.  ≤ 𝐲 ≤ 𝟏𝟓𝟎.  ∙ 𝟏𝟎−𝟑𝐦, 𝒛 =  𝟑.∙ 𝟏𝟎−𝟑𝐦)  

for P1 (solid line), Surface (dashed line) and Beer (dotted line) cases. 
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The second analysis concerns the tempering step (250 s) when the laser is shut off and the 

glass is cooled by forced convection. Since no laser heating is present, the term related to 𝑞𝑙𝑎𝑠𝑒𝑟 in 

equations (17) and (22) vanishes. The P1-Approximation (19-22) to solve the RTE remains the same 

as the forming step. In this tempering step, the P1-Approximation results (denoted “P1”) compared 

with the results of the Stefan-Boltzmann’s law and Rosseland’s approximation are used (denoted 

“BS-Rosseland”).   

For the tempering, Figure 6 shows the modeling results outside of the zone affected by the 

laser forming, where the temperatures after the forming step remain uniform and equal to initial 

temperature 873.15 𝐾. The analysis is made on the line defined by 𝑦 = 2 ∙ 𝑑 and 0. ≤ 𝑧 ≤ 𝑤 (𝑦 =

100.∙ 10−3 𝑚,   0. ≤ 𝑧 ≤ 6.∙ 10−3 𝑚). Due to tempering conditions, there is a symmetry in the 

temperature distribution with respect to the glass thickness in this location.   

The temperature gradient between the core and the surface of the glass sheet is one major 

parameter for judging the quality of the tempering [15]. Figure 6 shows the change in temperature 

gradient between surface and core during tempering for the SB-Rosseland and P1 cases are presented. 

The maximal value of the gradient is 170. 𝐾 for P1, whereas it is only 80. 𝐾 for SB-Rosseland. This 

is once again due to the overestimated diffusion of the Rosseland’s approximation which leads to a 

smaller difference between the surface temperature and the core temperature. Consequently, the 

computed residual stresses in the tempered glass are different, as shown in Figure 7. The residual 

stress distributions along the thickness of the glass present the well-known parabolic shape with 

tension in the core and compression on the surface. Like the consequences of the different 

temperature gradients of the P1 and BS-Rosseland cases (Figure 6), the magnitudes of core and 

surface stresses are different. In the core, tension stress is +13.8 𝑀𝑃𝑎 for SB-Rosseland and, 

+47.7 𝑀𝑃𝑎 for P1. On the surface, compression stress is −34.9 𝑀𝑃𝑎 for SB-Rosseland and, 

−89.1 𝑀𝑃𝑎 for P1. In [25], for a convection coefficient equal to 320. 𝑊 ⋅ 𝑚−2 ⋅ 𝐾−1 and an initial 

glass temperature equal to 873.15 𝐾, the experiments performed by R. Gardon and O.S. 



Narayanaswamy showed +50. 𝑀𝑃𝑎 tensile stress in the core. With a convection coefficient of 

300. 𝑊 ⋅ 𝑚−2 ⋅ 𝐾−1 in the present modeling and the same initial temperature used in [25], we may 

conclude that:  

- using the modeling of the glass tempering Stefan-Boltzmann’s law and the Rosseland’s 

approximation for surface and internal radiation in glass produces an incorrect estimation of 

stress,  

- in contrast, using the P1-Approximation and solving the RTE produces an accurate estimation 

of stress.  

 

Figure 6: Temperature gradients between surface (𝒛 =  𝟔.∙ 𝟏𝟎−𝟑 𝒎) and core (𝒛 = 𝟑.∙ 𝟏𝟎−𝟑 𝒎) during the tempering 

step in location 𝒚 =  𝟐 ∙ 𝒅 = 𝟏𝟎𝟎.∙ 𝟏𝟎 −𝟑𝒎) for P1 (solid line) and SB-Rosseland (dash-dotted line) cases. 

 

Figure 7:  Distribution of residual stresses along the glass thickness  in location 𝒚 =  𝟐 ∙ 𝒅 = 𝟏𝟎𝟎.∙ 𝟏𝟎−𝟑 𝒎 at the end 

of the entire glass sheet forming process for P1 (solid line) and SB-Rosseland (dash-dotted line) cases. 
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CONCLUSION 

In the present study, 2-D mathematical formulations of the entire glass sheet forming process, 

including radiation, are proposed. In comparison with the literature, where approximated methods 

have been developed to account for internal and surface radiation in glass, the Radiative Transfer 

Equation (RTE) was solved using the P1-Approximation even through the glass domain is not a fixed 

domain during the forming phase.  

By using a band-model for the absorption coefficient of glass, the radiative body flux needed 

to solve the heat transfer equation was computed using ABAQUS® finite element software by 

developing specific user-subroutines in ABAQUS® and two complementary subroutines in 

FORTRAN.  

Comparing the results with approximated methods, it was proven that significant errors exist 

when the RTE is not correctly solved. These errors not only concern the temperature changes in the 

glass but also the deformed shape after forming and the residual stresses after tempering. 
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APPENDIX 

 

Table 1: Elastic properties of glass 

Elastic part 

𝐸 = 71.  𝐺𝑃𝑎  

𝜈 = 0.22  

Glass dilatation coefficient 𝛼𝑔 = 9.2 10−6 

Liquid dilatation coefficient 𝛼𝑙 = 18.4 10−6 

 

 

 



Table 2: Relaxation properties of glass (5)                

 

Shear modulus 𝐺(𝑡) Structural relaxation 𝑀(𝑡) 

𝐺𝑖 𝜏𝑖(s) 𝑤𝑖 𝜏𝑠𝑖(s) 

0.067 10.75 0.0561 2.707 104 

0.053 155.00 0.5074 1.213 105 

0.086 1406.00 0.2163 3.297 105 

0.230 10150.00 0.1320 8.963 105 

0.340 46080.00 0.0408 2.436 106 

0.224 222222.00 0.421 1.092 107 

 

 

 

 

 

 

 

Table 3: Data for shift function 𝜙(𝑟̅, 𝑡) (8) 

 

 

 

 

Table 4: Thermal properties of glass 

Conductivity 𝑘ℎ = 1.  𝑊 ∙ 𝑚−1 ∙ 𝐾−1 

Specific heat 𝐶𝑝 = 1250.  𝐽 ⋅ 𝑘𝑔−1 ⋅ 𝐾−1 

Density 𝜌 = 2500.  𝑘𝑔 ∙ 𝑚−3 

 

Table 5: Absorption coefficients 

𝑇𝑟𝑒𝑓 = 746.15 𝐾 

𝐻 𝑅⁄ = 7.65 104 

𝑥 = 0.5 

Band number 𝑘 𝜆𝑘−1(𝜇𝑚) 𝜆𝑘   (𝜇𝑚) 𝜅𝑘(𝑚−1) 

1 0.50 2.75 20. 

2 2.75 4.50 330. 



 

 

 

Table 6: Other radiation properties 

 

 

 

Table 7: Equivalent conductivity  

𝑇(𝐾) 𝑘𝑒  (𝑊 ∙ 𝑚−2 ∙ 𝐾−1) 

873. 7.19 

923. 9.38 

973. 12.04 

1023. 15.19 

1073. 18.86 

1123. 23.07 

1173. 27.83 

 

 

3 4.50 6.00 5000. 

- 6.00 ∞ opaque 

refractive index 𝑛𝑔 = 1.46 

emissivity 𝜀 = 0.92 


