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ABSTRACT

This work is based on the original concept of coupling two

resonant vibration modes to reproduce insect wing kinematics

and generate lift. The key issue is designing the geometry and

the elastic properties of the artificial wings to achieve quadra-

ture coupling of the bending and twisting motions using only one

actuator. Qualitatively, this implies bringing the frequency of the

two resonant modes closer. In the light of this challenge, an op-

timal wing configuration was determined for a micromachined

polymer prototype three centimeters wide and validated through

experimental modal analyses to illustrate the proximity of the fre-

quencies of the bending and twisting modes. Then, a dedicated

lift force measurement bench was developed and used to demon-

strate a lift force equivalent to 110% of the prototype weight. For

the first time, high-speed camera measurements of the wing mo-

tion confirmed that maximum lift was obtained as expected for

bending and twisting motions in phase quadrature with a fully

resonant motion of the wings using a single actuator.

* Address all correspondence to this author.

1 Introduction

Among flying species observed in nature, insects certainly

demonstrate the most impressive capacities in terms of hover-

ing, backward flight or sudden acceleration, and their diversity

offers multiple solutions for bioinspired systems. Understanding

of insect flight has improved considerably, and it is well known

that lift results from a wide array of unconventional aerodynamic

mechanisms [1] as well as specific kinematics induced by the

flexible characteristics of the wings [2], and more precisely, as

illustrated in Fig. 1 through the generic periodic motion of the

wing cross section in the chord direction. Insect wing motion

relies on the combination of four basic motions: the downstroke,

supination, the upstroke, and pronation [3, 4].

In the case of flexible wings, the up and downstrokes involve

a bending motion whereas supination and pronation result in a

twisting motion in quadrature with the previous motion. This

phase quadrature, i.e. when the amplitude is maximal for one

motion it is null for the other, produces aerodynamic forces and

contributes to generating lift. As already mentioned, a key ele-

ment of insect flight is the flexibility of the wing structure that

often changes shape dynamically during flight [7], but its exact

role in aerodynamic performance remains unclear and contro-

versial. Several studies [2, 8, 9] have provided direct evidence

that flexible wings that can produce camber generate higher peak

lift forces than rigid wings [10, 11], but recent simulations [12]
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FIGURE 1. Insect wing motion: (a) Wing path described by look-

ing at a particular section of the wing (in red) with the dot represent-

ing the leading edge; (b) Tracking of this wing section during up and

downstrokes demonstrating their translational motion and showing slope

reversal due to pronation and supination interpreted as rotational mo-

tion; (c) trend in evolution of flapping and twisting in quadrature over

time [5, 6]

have demonstrated that aerodynamic performance decreases with

greater flexibility at low and medium angles of attack. Further-

more, the use of resonant mechanisms has also been the subject

of much discussion between studies highlighting the use of the

natural frequency of wings [13, 14] that yields excellent perfor-

mance with low power consumption, and those demonstrating

that insects have a wingbeat that is different from the resonance

frequencies of the wings [7,15], as the resonance mechanism de-

pends on other body parts such as the thorax [16].

There seems to be no one key to insect flight and a ques-

tion naturally rises: would it be possible to couple the bending

and twisting resonant modes to reproduce insect wing kinemat-

ics and generate lift ? Historically, the concept of mode cou-

pling has already been used in the fields of optics, photonics,

and chemistry [17, 18], as well as in microelectromechanical

systems (MEMS), to increase the sensitivity of vibrational gy-

roscopes [19, 20]. In music, instrument structures are also de-

signed to tune mode frequencies non-linearly to produce com-

plex sounds [21–23]. However, as far as we know, mechanical

vibration modes are generally shifted away from the natural fre-

quency to avoid destructive interactions with a system and are

rarely used to perform a specific mechanism. Therefore, part of

the challenge in this paper was to apply the concept of coupling

modes in the case of a nano air vehicle (NAV) constituted of

flexible artificial wings to reproduce insect wing kinematics and

generate lift.

The paper is organized as follows. Section 1 recalls the

flight mechanisms currently used by bioinspired Nano Air Vehi-

cles [24, 25] and then underlines different coupling approaches.

Section 2 presents the results of a systematic parametric analysis

in order to conceive optimal prototype artificial wings. In Sec-

tion 3, we present the experimental setup and in Section 4 we of-

fer some concluding remarks regarding the experimental results

that demonstrate the effectiveness of the coupling concept.

2 Flight mechanisms and wings kinematics

Leading edge

Flapping motion

Twisting motion

Deformed wing

Undeformed wing

Trailing edge

θ

ϕ

FIGURE 2. Drawing of a two degree of freedom flexible wing

In this study, we consider a fully flexible wing (Fig. 2),

whose kinematics are defined by the combination of two elemen-

tary motions: a flapping motion, described by an angle θ , and a

twisting motion, described by an angle ϕ .

2.1 Passive resonant twisting of the wing

In general, artificial wings of micro and nano air vehicles

consist of an articulated rigid leading edge attached to the thorax

and a flexible membrane. To produce an appropriate wing slope

and lift off [26], the most common mechanism is to impose a

large flapping motion on the rigid leading edge and to exploit the

passive twisting of the wing. In this case, the displacement of

the leading edge during flapping is imposed but twisting has a

single degree of freedom (Fig. 3). The system behavior can then

be written in the following differential form:

ϕ̈ +2ξ ω0(ϕ̇ − θ̇)+ω2
0 (ϕ −θ) = 0, (1)

with the imposed leading edge flapping motion θ(t) = θ0 cosΩt,

where ξ , ω0, θ0 and Ω represent the damping factor, the natu-

ral frequency of the system, the amplitude of excitation, and the

frequency of excitation, respectively. The flapping motion can be

written ϕ(t) = ϕ0 cos(Ωt+α); the amplitude ϕ0 and the phase α
of the twisting with respect to the imposed flapping are shown in

Fig. 3 as functions of the excitation frequency and the damping
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FIGURE 3. Frequency response of a single degree of freedom mass-

spring-dashpot system with an imposed base motion. Amplitude and

phase of the mass displacement ϕ with respect to the imposed motion

θ .

ratio. The dashpot was placed between the mass and the ground

to model aeroelastic damping.

Contrary to the amplitude, the oscillatory response of this

system reveals that the phase shift between the twisting motion of

the wing and the flapping motion of the leading edge is strongly

dependent on the damping factor. Hence, if phase quadrature is

obtained at the natural frequency ω0 without damping, this phase

quadrature shifts towards higher frequencies when the damping

factor increases. As with insects, a maximum lift force can be

achieved when flapping and twisting are in phase quadrature.

The excitation frequency can thus be chosen in order to trigger

the optimal phase shift and in general, the natural wing frequency

is not used.

Based on this statement, this explains and highlights why

some authors in the literature [26] claim that the maximum lift

force is not found at resonance but in quadrature.

2.2 Proposed concept

The new concept proposed in this paper was to design a flex-

ible wing such that the leading edge displacement and the twist-

ing are both induced by the dynamic resonant behavior of the

structure, with the right coupling to produce phase quadrature.

To obtain such specific kinematics, the proposed solution was (1)

to consider two natural vibration modes of which the deformed

shapes are close to a bending motion for the first one and close to

a twisting motion for the second one, and (2) to design the elastic

properties of the wing structure so that their natural frequencies

are close to each other.

To illustrate this concept, let us consider a reduced order dy-

namical model of the flexible wing, truncated to only two natural

modes. The displacement of a point x of the wing is written as a
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FIGURE 4. Theoretical prototype mode shapes: (a) bending; (b)

twisting. Amplitude and phase of the theoretical frequency responses

of the prototype: (c) amplitude of (1) bending and (2) twisting modal

coordinates; (3) amplitude of their combination; (d) bending (1) and

twisting phases (2) and their difference (4). Wing tip motion tracking

seen from one side: (e) bending resonance, (f) twisting resonance, (g,h)

quadrature motion

function of space and time:

u(x, t) = Φ1(x)q1(t)+Φ2(x)q2(t) (2)

with q1(t) and q2(t) being the modal coordinates and Φ1(x) and

Φ2(x) the modal shapes of the two modes retained (bending and

twisting, respectively). These two mode shapes are illustrated in

Fig. 4(a,b). More precisely, the bending mode shape Φ1(x) cor-
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responds to a motion with θ and ϕ in phase whereas the twisting

mode shape Φ2(x) results in phase opposition between θ and ϕ .

According to classical vibration theory [27], the two modal

coordinates q1(t) and q2(t) satisfy the following differential

equation:

q̈i(t)+2ξiωiq̇i(t)+ω2
i qi(t) = Fi cosΩt, i = 1,2, (3)

where ξ1 and ξ2 are the damping factors of each mode, ω1 and

ω2 are their natural frequencies, F1 and F2 are the modal forcing

terms, and Ω is the harmonic excitation frequency. These modal

coordinates can be written q1(t) = a1 cos(Ωt +α1) and q2(t) =
a2 cos(Ωt + α2) in the steady state. If ξi <

√
2, the response

is resonant, as shown in Figs. 4(c,d) ((1) for bending mode and

(2) for twisting mode). The frequency response of the wing is

also shown (line (3)) and results from the modal combination of

Eq. (2).

Amplitudes a1 and a2 are maximum for Ω ≃ ω1,ω2, where

the phases α1, α2 cross the π/2 value. As shown in Fig. 4(d),

there are two other frequencies between the resonance frequen-

cies for which the phase difference is α2 −α1 = π/2 and cor-

responds to kinematics with the bending and twisting motion in

quadrature. To illustrate these particular kinematics, wing tip

motion tracking, seen from the side, is shown in Figs. 4(e,f,g,h).

For an excitation frequency close to the two bending and twist-

ing resonances (Ω ≃ ω1,ω2), the wing motion is synchronous

and corresponds to one of the oscillatory mode shapes. At the

two quadrature frequencies, it is clear from Figs. 4(g,h) that the

bending and twisting mode shapes are both activated in quadra-

ture, and that the resulting wing motion is similar to that of an

insect wing shown in Fig. 1(b).

Consequently, the proposed concept has two remarkable

properties. First, it results in the right coupling of the bending

and twisting motion to recreate the movement of an insect wing.

Second, since the two quadrature actuation frequencies are close

to the bending and twisting resonances, the wings respond with

a large amplitude suitable to maximize the lift force.

2.3 Aeroelastic modeling
In order to estimate the evolution in lift force as a function

of frequency using a simple dimensional analysis, the force ap-

plied by a fluid on an immersed rigid body obeys the following

expression:

F =
1

2
Cd(Re,Γ)ρSV 2 (4)

where S is the surface of the wing, ρ is the fluid density, V is the

fluid velocity field, and the drag coefficient Cd is a function of the

Reynolds number Re and the geometry Γ of the immersed body.

This is the so-called steady fluid force because the fluid velocity

field around the body is time independent. If the speed of the

body changes slowly enough over time (the time variations of

V (t) are small with respect to V ), the previous formula still holds

as F(t) = 1
2
Cd(Re,Γ)ρSV 2(t). This is known as the quasi-steady

force.

The flapping wing nanodrone developed in this study has a

wingspan of 2.2 cm and a flapping frequency of 190 Hz. The

wings vibrate at a velocity in the order of 190 cm/s. Since the

kinematic viscosity of air is around 10−5m2/s, these data yield a

Reynolds number of Re = 1900, i.e. the fluid is in transition to

turbulence.

Studies carried out [28] on flat plates at transitional

Reynolds numbers, as well as with high Reynolds numbers [29],

have shown that a very good correlation could be obtained if we

consider the expression (4) containing the squared velocity. In

addition, both studies considered an added-mass term for a better

correlation with the experimental results obtained with oscillat-

ing plates. The complete model is called the Morrison equation:

F =
1

2
CdρSV 2 +CmρVol

dV

dt
(5)

where Vol is the bodys volume and Cm is the so-called inertia co-

efficient, which once again depends on the Reynolds number Re,

the geometry, and its trajectory. For example, its value is 0.5 for

an accelerating sphere in potential flow. The thoroughly studied

added-mass effect [30] appears due to the inertia of the fluid. Its

associated force is thus proportional to the time derivative of the

bodys speed. This effect clearly cannot be taken into account by

the classical steady formula (4).

Those added-mass forces only contribute for a virtual

change in the bodys mass. Since the resonant oscillatory motion

of the body will be considered in the following, those added-

mass, proportional to the acceleration dV
dt

of the body, contribute

only to a small change in the natural frequency of the body. Con-

sequently, we will suppose that the corrected natural frequency

has been taken into account in the development of the structural

model of the nanodrone, and only the steady component (the first

term of Eq. 3) of the fluid force will be considered from now on.

Moreover, since this study is for hovering, the only fluid velocity

present is induced by the wings’ motion and the free stream one

is taken as null.

As the drag coefficient Cd depends on the wing geometry,

trajectory, and the Reynolds number, it seems unrealistic to aim

to obtain an extremely accurate and reasonably computable drag

coefficient model. Our purpose here was to obtain an aerody-

namic model which can return values within the correct order of

magnitude; the value will then be set to Cd = 1 (its lower and

upper bounds known to be respectively 0.5 and 10).

It is well known that the tangential component of the force

is negligible compared to the normal one in the case of flat plates
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in sinusoidal motion. In our aerodynamic model, the force will

also be taken as orthogonal to the wings surface.

It is known that oscillatory flow parallel to a flat plate pro-

duces a purely tangential force without any normal component,

regardless of the Reynolds number. Therefore, our expression

will have to be reduced when V is orthogonal to the normal sur-

face n.

Since the wings are deformable and can thus change shape

as a function of time, neither the velocity field nor the normal

vector is uniform on the wing surface. However, the fluid prob-

lem is mathematically a boundary value problem, i.e. the value

of any magnitude at a single point will, in general, depend on the

value in the whole fluid domain, typically by means of a volume

integral. In linear theory, this influence or dependency is deter-

mined by mapping using a Greens function. In this study, we will

assume that this influence will decay fast enough from any two

points on the wing. We can, therefore, consider that local aero-

dynamic effects are of first order and we can estimate the local

force by only evaluating local variables.

By the above consideration, the force model that will be used

in our calculations is:

F =−1

2
ρ

x

Wing

|V |(V.n)ndS (6)

where the local force per unit surface area (the integrand) op-

poses the wings speed direction and the velocity field V now de-

pends on a local point on the wing surface.

From this model, the calculations are then processed by nu-

merical integration of the local aerodynamic forces applied to

the wing kinematics obtained with the modal modeling described

previously in equation (3). The lift force generated by the differ-

ent wing kinematics over the working frequency range can then

be computed.

In Fig 5, the bending amplitude of the wing tip (in green)

has been plotted against the forcing frequency and the associated

mean lift force (in blue); the mean was calculated over a flapping

period. We can observe two local maxima for the lift which are

very close to the quadrature frequencies at 134.8 Hz and 146.7

Hz (highlighted by vertical red lines). The left peak is located

between the resonance frequency (maximal amplitude) and the

quadrature frequency (optimal kinematics, i.e. the closest from

insects’ ones). The other local maximum is located exactly at

the second quadrature frequency, as its related amplitude is rela-

tively constant in its neighborhood. These important results are

in agreement with those obtained by [31].

Although high bending amplitudes are necessary to generate

lift, they are not sufficient. The second lift maximum is located at

the local minimum of the bending amplitude, which is a quadra-

ture frequency. This proves that good coordination between the

FIGURE 5. Bending amplitude (green) vs. mean lift force (blue) over

a period of movement, plotted against the applied forcing frequency

twisting and bending motions is the real driving force behind lift

generation.

The reason behind this is that flapping movement alone does

not generate lift; twisting is also involved, and the twisting am-

plitude of the second quadrature peak is much higher than the

first one.

A smaller lift force is associated with the second quadrature

frequency since the amplitudes of the first are much larger.

3 Prototype design

3.1 Structure and manufacturing
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H1

L

W1

W2

W3

Leading edge

Thorax

Magnet

Membrane

Trailing edge

Link

Prototype Modelling

θ1

θ2

θ3

FIGURE 6. NAV prototype with SU-8 skeleton, Parylene C wings

and electromagnetic actuator with a total mass of 22 mg

The prototype was fabricated with dedicated MEMS tech-

nologies to allow highly accurate design tolerance. It is com-

posed of a 3D skeleton made from multiple layers of photo-resist

SU-8, with thicknesses ranging between 40 µm and 150 µm

(Fig. 6). The wing membranes, composed of a thin film 400

nm thick of Parylene C, were deposited on the skeleton veins re-

sulting in wings 22 mm in length. All the details can be found

in [32]
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Wing actuation relies on the vertical electromagnetic force

applied to the magnet when a sinusoidal current flows through

the coil. To drive both wings simultaneously, the prototype was

fitted with a single electromagnetic actuator placed in the mid-

dle of the thorax. The latter has the advantage of being easy to

manufacture and integrate into our prototype, having a simple

geometry, fast response speed, and high bandwidth, and more

particularly the possibility of tuning a wide range of frequencies.

The electromagnetic actuator comprises a magnet stuck to the

tergum which is slipped into a copper coil fixed to the thorax, as

presented in Fig. 6. A cylindrical neodymium iron boron magnet

Ni-N48 (HKCM) 0.5 mm thick, 1.5 mm in diameter, and weigh-

ing 6 mg was selected. The coil was made in-house using 80 µm

diameter enameled copper wire; the number of turns was 20.

The total weight of the prototype is 22 mg, which means it

is currently the smallest and lightest flexible-wing NAV.

3.2 Wing geometry

The flexible structure of the wing was modeled using Euler-

Bernoulli beam deformation in a vacuum. The structural effect

of the wing membranes was neglected, as their thickness is very

small compared to the veins. These assumptions are justified

since our primary goal was to design the wing geometry such

that the natural frequencies of the bending and twisting vibra-

tion modes were close. To this end, a parametric analysis of the

wing vein geometry proposed in Fig. 6 was performed. Among

the constraints, the geometry of the thorax was imposed and the

resonant modes had to be between 100 Hz and 200 Hz using the

photoresist polymer SU-8, a material considered as equivalent to

that of natural insect wings [33–35]. Evidently, the key issue of

this analysis was to bring the frequencies of two natural modes

closer, as explained in the previous section.

To this end, an optimization of the geometrical parameters

(θi,Wi,Hi . . .) of the wing vein geometry of Fig. 6, based on a

theoretical modal analysis, was performed. The main constraints

were to bring the frequencies of the two natural modes as close

as possible to each other and lying between 100 Hz and 200 Hz.

The geometry of the thorax was imposed.

According to this parametric study, an optimal wing vein

configuration was obtained, as illustrated in Fig. 6. Its frequency

response is shown in Fig. 4, with damping ratios ξ1 = ξ2 = 5%

chosen in Eq. (3) to fit the experiments. The viscous damping

included here was used to take into account the damping effect

of the aeroelastic forces. Even though multiple solutions exist,

the one proposed here appears to be satisfactory since the two

coupled modes are only 20 Hz apart, with the bending mode

occurring at 130.2 Hz and the twisting mode at 151.4 Hz for

the wings created. This now means that quadrature coupling of

these modes is possible just by tuning the excitation frequency.

The use of two resonant modes yields two solutions to obtain

the quadrature shift between each resonance. The first one is at

134.8 Hz and the second one is at 146.7 Hz, very close to the

bending and twisting resonances, thus resulting in a relatively

large amplitude of wing motion.

Figs. 4(e,f,g,h) depict the simulated wing chord motion for

the bending mode at 130.2 Hz, the twisting mode at 151.4 Hz,

and the quadrature motions at 134.8 and 146.7 Hz, respectively.

It is clear that the wing slope during each stroke is almost null for

the bending mode, while during tracking of the twisting mode the

slope is not conserved during the stroke. For these bending and

twisting modes, no lift can be generated. As expected, coupling

these modes with a quadrature phase shift allows insect wing

kinematics to be reproduced (Fig. 1) since the maximum slope

between the leading and trailing edge occurs when the wing is

halfway between the upstroke and the downstroke, with slope

reversal at the end of each stroke.

4 Experimental setup
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FIGURE 7. (a) Experimental setup for measuring lift force (b) Fre-

quency response measurement using PSV400 laser vibrometer; (1) Fre-

quency Response Function (FRF) of the prototype taken at the magnet

under normal operation (prototype magnet driven by sine sweep); (2)

FRF of the tip of the brass beam with the non-actuated prototype glued

to it and directly driven by an additional magnet coil system.

In order to estimate both the kinematics and the lift force

generated by the prototype during wing actuation, a specific test

bench with different measuring devices for each of the various

measurements required was developed as shown in Fig. 7(a). It
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comprises a brass cantilever beam to which the prototype was

glued, the goal being to correlate the cantilever displacement

with the NAV aerodynamic force.

A Polytec PSV400 scanning laser vibrometer was used to

measure the velocity at several points on the skeleton of the pro-

totype during a sine sweep input excitation. More precisely, the

frequency spectrum of the velocity signal was divided by that of

the input electric current in the coil to obtain the Frequency Re-

sponse Function (FRF) of the corresponding point. An example

is shown in Fig. 7(b), line (1).

The laser vibrometer was also used to measure the passive

response of the brass beam to identify its lowest resonance fre-

quency (Fig. 7(b), line (2)). It was then verified that it was greater

than twice those of the prototype bending and twisting resonance

frequencies, which lie between 150 Hz and 250 Hz. This con-

dition was necessary to ensure that the cantilever displacement

could be used to determine the lift force generated by a simple

proportionality relation independent of the actuation frequency.

The linear relation between the force applied to the can-

tilever tip and its jib was evaluated at 180 µN/µm using both

an FT-S1000 microforce sensing probe and an FT-1000 mechan-

ical probe from Femto-Tools. The lift force was then obtained

during wing prototype actuation by measuring the displacement

of the cantilever using a CCD laser (LK-G32 Keyence) that can

measure displacements in the order of 0.1 µm, so a minimum

force of approximately 20 µN could be measured.

5 Results analysis and discussion

Using the experimental setup described in the previous sec-

tion, we tested the performance of the optimal wing configura-

tion presented in Fig. 6. The percentage was determined by the

parametric analysis. Firstly, the FRFs at several points on the

prototype skeleton were measured using the PSV400 scanning

laser vibrometer. These values were then used to reconstruct the

deflection shape of the prototype at several actuation frequen-

cies. The FRF at the magnet is depicted in Figs. 7(b) and 8(c)

and shows two resonances at 140 Hz and 195 Hz. The corre-

sponding deflection shapes are presented in Figs. 8(a,b) and they

are clearly associated with the bending and twisting modes. The

experimental results are impressively close to those obtained in

simulation. First, the experimental mode shapes were similar to

the ones predicted. Then, a minimal difference in frequency of

60 Hz was successfully obtained between the bending and twist-

ing modes. Obviously, the theoretical difference was smaller

(about 20 Hz), which can be explained by the aeroelastic effects

neglected in the model. These effects are responsible for damp-

ing and added mass effects that change the resonance frequen-

cies.

In a second step, the lift force was measured in the steady

state at several frequencies around the bending and twisting res-

onance frequencies using the proposed test bench. Fig. 8(d)
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FIGURE 8. Experimental deflection shapes at resonance: (a) bending

mode; (b) twisting mode; (c) Frequency response function (FRF) of the

prototype taken at the magnet and zoomed over the frequency range

of interest; (d) Average lift force over one period for several excitation

frequencies. Polynomial curve fit.

shows the lift force averaged out over a period of motion and

a polynomial curve fit. Good precision was obtained for such

levels of force since an uncertainty of approximately 10% was

observed. Furthermore, two maximum values of the averaged

lift force were observed near the bending and twisting modes,

at 133.5 Hz and 190.8 Hz, respectively. Obviously, these max-

imum values correspond to the phase quadrature frequencies in

accordance with the theoretical results (Fig. 4(d)) and aeroelastic

modeling (Fig. 5), and as shown by the high-speed camera mea-

surements below. Moreover, the second value near the twisting

mode, 220 µN, was sufficient to overcome the prototype weight,

equivalent to 200 µN. In addition, the main goal of this study was

to use the quadrature coupling of two resonant modes to produce

lift, and this was definitely achieved and validated.

To supplement this discussion, Fig. 9 presents the instanta-

neous force measured as a function of time as well as the associ-

7



ated frequency spectrum for the second quadrature frequency. In

addition to the continuous component, two frequency peaks can

be distinguished: one at the actuation frequency of 190.8 Hz cor-

responding to the drag force, and the other at the second harmon-

ics frequency of 381.6 Hz associated with the lift force, as fre-

quency doubling is related to slope variation during the strokes.

As shown by [4, 36], the averaged force obtained corresponds to

the effective lift force.
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FIGURE 9. Lift force versus time at the second quadrature actuation

frequency (190.8Hz) and related frequency spectrum.

Finally, the observation and tracking of the wing chord mo-

tion using a high-speed camera (Phantom V7.4 from Vision) is

illustrated in Fig. 10. From this figure, it can be concluded once

again that the experimental motion presents the expected wing

kinematics with the leading and trailing edges in quadrature.

This underlines the interest of using coupled resonant modes in

quadrature to generate lift.

6 Conclusion
In this paper, a new mechanism to generate sufficient lift

to overcome the weight of a flexible wing NAV was presented.

This mechanism is based on the coupling in quadrature of two

natural bending and twisting vibratory modes of the wings. As

mentioned, the first key issue of this work was to bring the fre-

quency of the two modes closer together in order to reproduce in-

sect wing kinematics. The analytical parametric modeling solved

this issue and provided an optimal geometrical wing configura-

tion. Furthermore, aerodynamic modeling validated the concept

by predicting the maximum lift generated at the quadrature fre-

quencies. Experimental studies were then conducted on this con-

figuration and the kinematics and the evolution in lift in relation

to the frequency were in excellent agreement with the theoreti-

cal predictions. Finally, it was demonstrated that our prototype

was able to generate a lift force of 110% in relation to its weight,

which validated this new concept.

Future work must now focus not only on wing configura-

tion but also on the actuation and transmission parts in order to

1 2 3 4

5 6 7 8

FIGURE 10. Several frames captured using a high-speed camera at

the second quadrature actuation frequency (190.8Hz). Blue dashed line:

initial chord position; Orange dashed line: current chord position. Slope

inversion occurs around frame 4.

increase the bending amplitude and enable take off. To achieve

this goal, a multi-criteria analysis needs to be performed to op-

timize a cost function according to the take-off objective. The

criteria could be based on structural parameters such as wing and

thorax geometries, mode frequencies, and mode excitability, as

well as aerodynamic parameters such as wing membrane surface

and force distribution. Furthermore, although the predicted lift

force is in good agreement with measured one in term of evolu-

tion with frequency it is still a qualitative model and will need to

be improved by taking account of large displacement and by cal-

ibrating the aerodynamic coefficients. The lift force test bench

could also be improved, with a second sensor to identify the best

inclination angle of the prototype.

ACKNOWLEDGMENT

This work was supported by ANR-ASTRID CLEAR-Flight

(ANR-13-ASTR-0012), the RENATECH program, the Direction

Generale de l’Armement, and the Haut-de-France Region.

REFERENCES
[1] Srygley, R., and Thomas, A., 2002. “Unconventionnal lift

generating mechanism in free flying butterflies”. Nature,

420, pp. 660–664.

[2] Wootton, R., 1991. “The functional morphology of the

8



wings of odonata”. Advances in odonatology, 5(1),

pp. 153–169.

[3] Wootton, R., 1999. “How flies fly”. Nature, 400(6740),

July, pp. 112–3.

[4] Dickinson, M., 1999. “Wing Rotation and the Aerody-

namic Basis of Insect Flight”. Science, 284(5422), June,

pp. 1954–1960.

[5] Fry, S. N., Sayaman, R., and Dickinson, M. H., 2003. “The

aerodynamics of free-flight maneuvers in drosophila”. Sci-

ence, 300, pp. 495–498.

[6] Seshadri, P., Benedict, M., and Chopra, I., 2012. “A novel

mechanism for emulating insect wing kinematics”. Bioin-

spir. Biomim., 7, p. 036017.

[7] Chen, J.-S., Chen, J.-Y., and Chou, Y.-F., 2008. “On the

natural frequencies and mode shapes of dragonfly wings”.

Journal of Sound and Vibration, 313(3-5), June, pp. 643–

654.

[8] Ennos, 1988. “The importance of torsion in the design of

insect wings”. Journal of experimental biology, 140(1),

November, pp. 137–160.

[9] Ennos, 1988. “The inertial cause of wing rotation in

Diptera”. Journal of experimental biology, 140(1), Novem-

ber, pp. 161–169.

[10] Mountcastle, A., and Daniel, 2009. “Aerodynamic and

functional consequences of wing compliance”. T.L. Exper-

iments in fluids, 46, May, p. 873.

[11] Young, J., Walker, S., Bomphrey, R., Taylor, G., and

Thomas, A., 2009. “Details of insect wing design and

deformation enhance aerodynamic function and flight ef-

ficiency”. Science, 325(5947), September, pp. 1549–52.

[12] Zhao, L., Huang, Q., Deng, X., and Sane, S., 2010. “Aero-

dynamic effects of flexibility in flapping wings”. Journal

of the royal society Interface, 7, pp. 485–497.

[13] Michelin, S., and Llewellyn Smith, S., 2009. “Resonance

and propulsion performance of a heaving flexible wing”.

Physics of Fluids, 21(7), July.

[14] Masoud, H., and Alexeev, A., 2010. “Resonance of flexible

flapping wings at low Reynolds number”. Physical Review

E - Statistical, Nonlinear, and Soft Matter Physics, 81(5),

May.

[15] Ha, N., Truong, Q., Goo, N., and Park, H., 2013. “Relation-

ship between wingbeat frequency and resonant frequency

of the wing in insects.”. Bioinspiration & biomimetics,

8(4), December.

[16] Hrncir, M., Gravel, A.-I., Schorkopf, D., Schmidt, V., Zuc-

chi, R., and Barth, F., 2008. “Thoracic vibrations in stin-

gless bees (Melipona seminigra): resonances of the thorax

influence vibrations associated with flight but not those as-

sociated with sound production.”. The Journal of experi-

mental biology, 211(Pt 5), March, pp. 678–85.

[17] McCutcheon, M., Young, J., Rieger, G., Dalacu, D., Fred-

erick, S., Poole, P., Aers, G., and Williams, R., 2006.

“Second-Order Nonlinear Mixing of Two Modes in a Pla-

nar Photonic Crystal Microcavity”. Physics, 2, January.

[18] O.V. Misochko and E.I. Rasi-Iba and E.Y. Sherman and

V.B. Timofeev , 1990. “On the mixing of vibrational modes

in high-t superconductors”. Physics Reports (Physics Let-

ter), 6(194), November, pp. 387–395.

[19] Zaman, M., Sharma, A., and Ayazi, F., 2006. “High per-

formance matched-mode tuning fork gyroscope”. IEEE

MEMS, January, pp. 66–69.

[20] Leland, R., 2003. “Adaptive Mode Tuning for Vibrational

Gyroscopes”. IEEE Transactions on control systems tech-

nology, 11(2), March, pp. 242–247.

[21] Monteil, M., Thomas, O., and Touzé, C., 2015. “Identi-
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