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Conducting polymer actuators have long been of interest as an alternative to piezoelectric and electrostatic actuators due to their large strains and low operating voltages. Recently, poly (3,4-ethylenedioxythiophene) (PEDOT) -based ionic actuators have been shown to overcome many of the initial obstacles to widespread application in micro-fabricated devices by demonstrating stable operation in air and at high frequencies, along with microfabrication compatible processing using a layer by layer method that does not require any handling. However, there is still a need for characterization, prediction, and control of the actuator behavior. This paper describes the fabrication and characterization of thin trilayers composed of a 7 µm thick solid polymer electrolyte (SPE) sandwiched between two 2.1 µm thick PEDOT-containing layers. Beam properties including capacitance, elastic moduli of the layers, and the extent of charge driven strain, are applied to predict curvature, frequency response and force generation. The actuator is represented by an electrical circuit, a mechanical system described via dynamic beam theory, and a strain-to-charge ratio for the electro-mechanical coupling matrix, which together predict the actuator curvature and the resonant response. The success of this physical model promises to enable design and control of micro-fabricated devices.

INTRODUCTION

Electro active polymers (EAPs) has attracted interest in both academic and industrial fields since their mechanical and electrical characteristics have the potential for widespread application, for instance: locomotion systems [START_REF] Mcgovern | Finding NEMO (novel electromaterial muscle oscillator): A polypyrrole powered robotic fish with real-time wireless speed and directional control[END_REF] , steerable micro catheters 2 , micro pumps [START_REF] Ramírez-García | Biomimetic, low power pumps based on soft actuators[END_REF][START_REF] Wu | TITAN: A conducting polymer based microfluidic pump[END_REF] , micro actuators [START_REF] Wilson | New materials for micro-scale sensors and actuators. An engineering review[END_REF][START_REF] Pede | A general-purpose conjugated-polymer device array for imaging[END_REF][START_REF] Kiefer | The application of polypyrrole trilayer actuators in microfluidics and robotics[END_REF] . Poly(3,4-ethylenedioxythiopene) (PEDOT) based-actuators have received a lot of attention due to their properties such as: low density, biocompatibility [START_REF] Smela | Conjugated Polymer Actuators for Biomedical Applications[END_REF] , high stress, high power/weight ratio [START_REF] Mazzoldi | Conducting Polymer Actuators: Properties and Modeling[END_REF] , significant displacement (up to 1%), and low operating voltages [START_REF] Smela | Conjugated Polymer Actuators for Biomedical Applications[END_REF] in solution or in open-air [START_REF] Khaldi | Conducting interpenetrating polymer network sized to fabricate microactuators[END_REF] . They can be electronically controlled with reasonable frequency response and are potentially suitable for microscale applications. Actuating layers have been applied in bilayer [START_REF] Cho | A solid state actuator based on the PEDOT/NBR system[END_REF] , trilayer [START_REF] Citerin | Characterization of a new interpenetrated network conductive polymer (IPN-CP) as a potential actuator that works in air conditions[END_REF][START_REF] Zainudeen | PEDOT and PPy conducting polymer bilayer and trilayer actuators[END_REF][START_REF] Plesse | Synthesis and characterization of conducting interpenetrating polymer networks for new actuators[END_REF] , and multilayer [START_REF] Ikushima | A practical multilayered conducting polymer actuator with scalable work output[END_REF] structures in which conducting polymer electrode (CPE) layers are directly in contact with solid polymer electrolyte (SPE) layers accommodating ion flow. However, due to the large charge fluxes required, and the significant electronic and ionic resistances of CPE and SPE layers, speed of charging and actuation has been slow. These important rate-limiting factors are reducing the response speed of the actuator [START_REF] Tina Shoa | Rate Limits in Conducting Polymers[END_REF] . A new clean-room compatible process, referred to as Layer-by-Layer (LbL) [START_REF] Maziz | Top-down Approach for the Direct Synthesis, Patterning, and Operation of Artificial Micromuscles on Flexible Substrates[END_REF] , has been recently been demonstrated which removes the need for manual handling and promises to make the fabrication of conducting polymer actuators highly automated. It also enables thin layers and short device lengths, enabling fast actuation. In the LbL fabrication process of a trilayer structure, there is a need to creat CPE layers. PEDOT can be polymerized insitu via electropolymerization [START_REF] Hulvat | Liquid-crystal templating of conducting polymers[END_REF] or via vapour phase polymerization (VPP) [START_REF] Winther-Jensen | Base inhibited oxidative polymerization of 3,4ethylenedioxythiophene with iron(III)tosylate[END_REF] . In the VPP method, PEDOT thin films were fabricated by spin-coating an oxidant solution onto silicon substrate and then exposing this substrate to a monomer vapor.

The interpenetrating polymer network (IPN) situated between two PEDOT electrodes plays a role of an electronic insulator and an ion transfer membrane. For operation in open air, the trilayer actuator needs to be introduced to the electrolyte, which is necessary for the redox process, where during the oxidation and reduction ions flow through the ion transfer membrane. To improve the mechanical properties and ionic conductivity of this SPE, an IPN matrix of two cross-linked polymers: polyethylene oxide (PEO) and nitrile-butadiene rubber (NBR) [START_REF] Plesse | Synthesis and characterization of conducting interpenetrating polymer networks for new actuators[END_REF][START_REF] Vidal | Conducting IPN actuators: From polymer chemistry to actuator with linear actuation[END_REF] has been designed and controlled. For the purpose of control and to predict the actuator's behavior, researchers have developed models. Madden [START_REF] Madden | Conducting polymer actuators[END_REF] came up with an analytical model based on the diffusive elastic metal phenomenon to describe chemical process between electrolyte and polymer electrode that can be applied to a trilayer actuator, and which was further extended by Shoa [START_REF] Shoa | Analytical modeling of a conducting polymer-driven catheter[END_REF] . This chemical model was linked to the mechanical deformation by an experimentally determined strain-to-charge ratioan empirical constant that relates injected ionic charge density to strain [START_REF] Madden | Conducting polymer actuators[END_REF] . Alici [START_REF] Alici | Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications[END_REF] also proposed an analytical model in which emphasizes the effects of the interface between electrolyte and polymer electrode and models it as a capacitor and a resistor.

This previous work has employed equivalent circuit models. A related alternative that is explored here is Bond Graph methodology. It appears to be a promising candidate as it allows easy access to power transformation, stored power, and dissipated power inside these actuators. Bond Graph language has shown its flexibility in working with different energy domains and feasibility to describe interactions between systems [START_REF] Karnopp | System dynamics : modeling and simulation of mechatronic systems[END_REF] . These characteristics provide an approach for the design of actuators and further, the design of complete actuated robots while retaining the physical structure of the model [START_REF] Nishida | Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator[END_REF] . Few works in modeling IEAP actuators using Bond Graphs have been proposed. Byung-Ju Yi concentrated on diffusion in separator layer and electrodes of ionic polymer-metal composites (IPMCs) and did not describe the mechanical response. The model was not verified by experiments [START_REF] Yi | Modeling of EAPs as multiple energy domain systems: A bond graph approach[END_REF] . Nishida developed a more complex model on IPMCs type using distributed port-Hamiltonian [START_REF] Nishida | Multi-scale distributed parameter modeling of ionic polymer-metal composite soft actuator[END_REF] , while Bowers built a Bond Graph model of bilayer actuators operating in a liquid environment [START_REF] Bowers | MSc thesis title: Modeling, Simulation, and Control of a Polypyrrole-Based Conducting Polymer Actuator[END_REF] . Since ionic EAP actuators inherently involve energy flow in multiple energy domains: mechanical, electrical, simultaneously with chemical domain, a thorough model for explaining the behavior of this actuator is required. Regarding the work that has been accomplished on fabrication and modeling of trilayer actuators, there is a need to improve the fabrication process and develop a more adaptable model to predict actuator behavior. Within this work, an improvement in the LbL process to synthesize an ultrathin trilayer structure in a cleanroom environment will be described. A key advance is the precise control of the VPP by using a vacuum heating plate allowing the fine control of pressure and temperature during the process. Following this step, the microbeam dimensions and composition were studied under scanning electron microscope (SEM), via energy-dispersive X-ray (EDX) analysis and through mechanical, electrochemical and electromechanical testing. In next step, an IEAP actuator model is being developed. An RC electrical circuit is represented for physical model, the electromechanical coupling matrix is based on the accepted relationship between the strain and the volumetric charge density (strain is proportional to charge density multiplied by an empirically derived strain to charge ratio), and a mechanical model is coupled in based on the modal superposition method to treat Euler-Bernoulli dynamic beam equations for beam displacement. This model will provide physical insight into IEAP actuator behavior, which should enable designers to optimize the system through identified critical parameters. Furthermore, the model can then be expanded to describe complex actuator geometries and interactions with other systems.

EXPERIMENTAL SECTION

Fabrication

The synthesis of a trilayer actuator is based on the LbL method which was first described by Maziz 28 , where all the layers are spin coated and deposited on top of previous layers. The overall process is shown in Fig. 1. In this study, the LbL process has been adapted to clean room compatible microfabrication. The first PEDOT electrode layer was synthesized by mixing Poly(ethylene glycol) methyl ether methacrylate (PEGM) (50 wt. %) and Poly(ethylene glycol) dimethacrylate (PEGDM) (50 wt. %), known as PEO precursors, with Fe(III) p-toluene sulfonate oxidant solution in butanol. PEO precursors were added to this layer, and to all the subsequent layers, and polymerized finally throughout the trilayer structure to improve the adhesion between the layers as well as increase ionic conductivity. A solution was stirred during 10 min and spin coated on a 2-inch silicon wafer. The oxidant solution coated wafer was then placed on a vacuum hot plate for EDOT VPP at 45 o C for 50 minutes under vacuum. EDOT monomer droplets were placed in the vacuum system on a glass slides situated around the wafer to obtain a homogenous PEDOT layer. on semi-IPN with PEO prec carbonate (DC lend was spin 45 min at 50 o improve adh s synthesized i VPP was car wt. % of PEO at treatment. ctrode layer, yer. The heat tr ator DCPD in rosslinking to also a micro-p welled in ioni int (Fig. 1).
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