
HAL Id: hal-03285159
https://uphf.hal.science/hal-03285159

Submitted on 26 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A human-centred design approach for developing
dynamic decision support system based on knowledge

discovery in databases
Hela Ltifi, Christophe Kolski, Mounir Ben Ayed, Adel M. Alimi

To cite this version:
Hela Ltifi, Christophe Kolski, Mounir Ben Ayed, Adel M. Alimi. A human-centred design approach
for developing dynamic decision support system based on knowledge discovery in databases. Journal
of Decision Systems, 2013, 22 (2), pp.69-96. �10.1080/12460125.2012.759485�. �hal-03285159�

https://uphf.hal.science/hal-03285159
https://hal.archives-ouvertes.fr


Author version, published in: 

Journal of Decision Systems, 22 (2), pp. 69-96, Taylor & Francis, 2013. 

A Human-centred Design Approach for Developing 
Dynamic Decision Support System based on 

Knowledge Discovery in Databases 
 
 

Hela Ltifi *, Christophe Kolski **, Mounir Ben Ayed*, Adel M. Alimi* 
 

* REGIM: REsearch Group on Intelligent Machines, University of Sfax, National School of Engineers (ENIS), 

BP 1173, Sfax, 3038, Tunisia 

hela_ltifi@ieee.org, mounir.benayed@ieee.org, adel.alimi@ieee.org 

 

** Univ Lille Nord de France, F-59000 Lille, France 

UVHC, LAMIH, F-59313 Valenciennes, France 

CNRS, UMR 8201, F-59313 Valenciennes, France 

Christophe.Kolski@univ-valenciennes.fr 

 

 

 

 

 

 

 

ABSTRACT. This paper presents a human-centred design approach for developing Decision Support Systems (DSS) based on a 

Knowledge Discovery in Databases (KDD) process. The KDD process generates a set of software modules. Our approach is 

based on a critical study of design methods. It uses the Unified Process (UP), which proposes a general framework; however, 

the UP does not include enough Human-Computer Interaction (HCI) elements. We suggest enriching the UP activities from 

the HCI perspective, adding HCI elements. The proposed approach is applied to a KDD-based Dynamic Medical DSS. 

KEYWORDS: Software process; Dynamic Decision Support Systems; Human-centred Design; Knowledge Discovery in 

Databases; Human-Computer Interaction  

 

RÉSUMÉ. Cet article présente une approche de conception centrée utilisateur pour le développement d’un système interactif 

d’aide à la décision  (SIAD) basé sur un processus d’extraction de connaissances à partir de données (ECD). Le processus 

d’ECD aide généralement à générer un ensemble de modules logiciels. Notre approche est basée sur une étude critique des 

méthodes de conception. Elle utilise le Processus Unifié (PU), qui offre un cadre méthodologique générique. Néanmoins, le 

PU n’intègre pas assez d’éléments d’Interaction Homme-Machine (IHM). Nous proposons d'enrichir les activités du PU sous 

l’angle des IHM. L'approche proposée est appliquée à un Système Interactif d’Aide à la Décision Dynamique (SIADD) basé 

sur l’ECD.  

MOTS-CLÉS: Système Interactif d’Aide à la Décision Dynamique, Conception centrée utilisateur, Extraction de connaissances 

à partir de données, Interaction Homme-Machine. 
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1. Introduction 

1.1. Dynamic Decision Support Systems based on KDD 

In the real world decisions are taking place in a dynamic environment (Hong et al., 2010). The final decision 

is only made at the end of some exploratory process such as a KDD process (Peng et al., 2008) (Hong et al., 

2010). Dynamic decision making incorporates time constraints. It is characterized by the need to make multiple 

and interdependent decisions in an environment that changes as a function of the decision maker’s actions, 

environmental events, or both (Brehmer 1992). 

Indeed, as it can be seen in Fig. 1, in dynamic decision making, a series of decisions must be made over time 

based on a set of factors related to the decisional context; the actions are interdependent so that later decisions 

depend on earlier decisions.  

To assist humans in these dynamic decision making scenarios, computer-based decision making systems 

have been developed. Some examples can be found in management of transportation (Zografos et al., 2002), 

airline networks (Feigh et al., 2006), healthcare (Lin et al., 2011), customer relationships (Chan et al. 2011), etc. 

Such systems can be called Dynamic Decision Support Systems (DDSS). 

There have been significant improvements in the decision support technologies, related to data storage 

volume, data processing and data extraction (Shi 2010). We are interested in a new generation of Business 

Intelligence technology: Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996). This technology can 

enrich the organization's business intelligence process.  

Indeed, traditional decision-support tools (e.g., OLAP1, Info-center, dashboard, ERP) leave the initiative to 

the users to choose the elements that they want to observe or analyze. In KDD (Fayyad et al., 1996) (Hand et al., 

2001) (Peng et al., 2008), the system often takes the initiative to discover the connections between the data 

elements. It is then possible, to a certain extent, to predict the future according to the actual new discovered 

knowledge and those discovered on the past. 

Today, decision makers require decision support systems to provide real-time knowledge, especially as the 

decision is made quickly and dynamically. For example, an airline pilot continuously receives information from 

his/her dashboard and makes decisions throughout the flight (Cook et al. 2007); an entrepreneur does the same 

daily to decide the strategic choice for his/her company; a hospital doctor is making measurements and analysis 

for his/her patients and makes decisions dynamically progressively as the knowledge arrive.  

In the field of software engineering several models for specification, design and implementations have been 

proposed. These models are very limited in the development of human-centred classical decision support 

systems, thus even more limited for the dynamic systems. In addition the processes dedicated to data mining 

systems design and evaluation are not covered by the article of (Peng et al., 2008), which is a motivation for this 

work. 

1.2. Case study used to illustrate the concepts and the approach proposed 

The case study used in the paper to illustrate the concepts and the approach proposed concerns a medical 

dynamic decision support system aiming at preventing Nosocomial Infections (NI). This kind of infection 

represents one of the major public health problems. NI are infections contracted in health care institutions. 

Infections are considered to be NI when they do not exist at the time of the patient's admission (Garner et al., 

1988). When the infectious state of the admitted patient is unknown, the infection is classically considered to be 

nosocomial if it appears 48 hours after the hospitalization.  

In the Intensive Care Units (ICU), the NI problem is far more alarming, because the patients who are 

hospitalized in ICU are more fragile. The importance and complexity of decision-making in controlling NI have 

been frequently highlighted in the research literature (Brossette et al., 2000). Research has shown the 

effectiveness of DSS and their capacity to produce useful rules. However, as they are described in the article, the 

physicians using them appear to have difficulties.  

In fact, the decisions on nosocomial infections can reduce the possibilities of acquiring this kind of infection 

in the ICU, decrease the complexity of patient conditions and clinical interventions; and consequently increase 

                                                           
1 On Line Analytical Processing 



Time (in days)ICU Patient 
admission

1 day 2 days n-1 days

Pt0= x% Pt1= x1% =                        
P (factors/x)

Pt3= x2% =                              
P (factors/x1)

Ptn-1= x n-1% =                                
P (factors/xn-2)

… n days

Ptn= xn% =                                
P (factors/xn-1)

End of hospitalization

Dynamic database

Pti= probability of contracting a NI at the date ti

Collected data
+

Temporal 
factors

the cost of their care (Sheng, WH et al., 2005). In this context, our system aims at producing daily estimations, in 

percentages, of the probability to contract a NI during the patient's hospitalization in ICU. This probability is 

calculated using a data-mining technique and some temporal measures (e.g., urinary catheterization, intubation) 

in order to predict the infection risks based on patient records (Fig. 1). 

Figure 1. Dynamic decision making for preventing NI 

 

Each day, the decision on the patient state depends on the NI probability, and thus on the values of those 

factors up to the current day but also the previous days, as well as all the knowledge obtained by learning over 

time and the recording of previous events. In fact, a basic decision is made when the patient is admitted (t0). The 

future decision is the decision that will be made after the consequences of a basic decision become known. A 

future decision is linked to the basic decision because the alternatives that will be available in the future depend 

on the choice made in the basic decision. As time moves on, the future decision at the current decisional stage (t) 

becomes the basic decision at the next decisional stage (t+1), when new knowledge extracted by data mining 

(i.e., the probability of acquiring a NI) becomes known, and the future decision(s) should be addressed. As long 

as the patient is hospitalized, this process of the future decision becoming the basic decision repeats itself. The 

learn-then-decide-then-learn pattern describes how the decision-maker responds to new knowledge gained 

during the decision-making process. The elements described above, especially the existence of linked decisions, 

clearly show that decision-making in NI control is a dynamic process. In this context, the decision-making 

process requires the consideration over time of linked or interdependent decisions, or decisions that influence 

each other. This dynamic decision-making pattern is a chain of decisions, interspersed with learning periods. 

Such system is called Dynamic Medical Decision Support System (DMDSS).  

1.3. Content of the paper 

A DSS based on KDD deals with the decision problem using human knowledge and aims at helping users in 

the KDD and DSS processes from beginning to end. Human-computer cooperation is essential throughout the 

decision process, making Human-Computer Interaction (HCI) is a crucial aspect in interactive decision support 

systems (Piechowiak et al., 2004). The KDD-based DSS design process can be treated as an iterative unified set 

of activities and operations. We think a development approach relying on the Unified Process (UP) method and 

the Unified Modelling Language (UML) is appropriate for DSS development. UP tries to build robust system 

architecture incrementally (Brandas 2007); however, this method does not serve very well when the system 

studied is highly interactive because UP does not directly and systematically involve the user (Kolski et al. 

2001). In this context, it is possible to propose an enriched Software Engineering (SE) development approach 

from the HCI perspective. 

The paper is organized into six sections. In Section 2, we present the theoretical background for this work. In 

section 3, we propose a human-centred design approach, and its activities are described for each KDD-based 

DSS modules in a detailed way. In section 4, we introduce our validation process for the new design approach 

using an example of a DMDSS developed for fighting against NI in the Intensive Care Unit (ICU). In section 5, 

we discuss our approach, as well as the theoretical and practical implications of this work. Finally, we present 

our conclusions and our future research perspectives in section 6. 



2. Development of Dynamic DSS based on KDD: basic methodological concerns 

2.1. Fundamentals of KDD process  

We consider that the KDD process is iterative and interactive. Iterativity is related to the fact that the KDD is 

based on a succession of stages and that users can decide to go back constantly if the results are not pertinent for 

them. Interactivity is related to the various choices that users make. The KDD process has various phases 

(Fayyad et al., 1996) (Lefébure et al., 2001) (Fig. 2).  

 

Figure 2. The KDD process (inspired from Fayyad et al. (Fayyad et al., 1996)) 

 

Different stakeholders are involved at each phase. After defining the objectives and seeking the data needed, 

the following phases are carried out:  

(1) Data selection – select the data related to the analysis; 

(2) Data pre-treatment – clean the data to correct the inaccuracies and errors and then transform the data into a 

format suitable for data-mining;  

(3) Data mining  – mine the data to extract interesting patterns, by applying one or more techniques (e.g., 

neural networks, bayesian networks, decision trees);  

(4) evaluation & interpretation – evaluate and interpret the extracted patterns.  

(5) Knowledge management – integrate the knowledge in an information processing system (Kanapeckiene et 

al., 2010). 

In the next section, we will briefly examine a set of design models in both the software engineering (SE) and 

the Human-Computer Interaction (HCI) domains. We will highlight their relevance to the design of KDD-based 

DDSS, which obviously requires new and adapted approaches.  

2.2. Design models and methods 

In the literature, several analysis and specification processes and methods, intended for the systems 

Modelling, can be found. Software design models and methods are available for both the SE and HCI domains.  
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For the SE domain, several development cycles are available, for example, the traditional development 

cycles, including the waterfall (Royce 2003), V (McDermid et al., 1984) and Spiral (Boehm 1988) models, and 

the more recent development cycles, including the Y model (André 1994) and the Unified Process (UP) 

framework (Jacobson et al., 1999). Agile methods also offer promising perspectives (Dyba et al., 2008) (Conboy 

et al. 2011). All these development cycles aim at producing quality systems. But most traditional development 

cycles are too often directed towards the technical parts of the system and not towards the user. The more recent 

development cycles, such as UP, are more directed towards the user, up to a certain level. For this reason, we 

focus on the UP framework.  

The SE models remain the foundation of the methods and models used for human-machine interaction, called 

HCI-enriched models. Among these models, we can quote Long and Denley's model, which is close to the 

waterfall model (Long et al., 1990); the Star model (Hix et al., 1993); the Nabla model (Kolski 1997) (Kolski 

1998); or the U model (Abed et al., 1991) (Lepreux et al., 2003). The principal concern of all these models is that 

they highlight the fundamental elements, such as the Modelling of human tasks, the iterative development of 

prototypes and the evaluation of interactive systems (Kolski et al. 2001). However, they do not necessarily 

guarantee that a project trying to design and develop an interactive system will be a total success. In fact, no 

perfect model exists; they all have their strong and weak points.  

To propose a development method, we have to take into account two things: 1) the KDD tools are usually 

difficult to use because most of the users are not experts in computer science or in statistics, and 2) it is difficult 

to develop a KDD-based DSS that responds exactly to the needs of the users. These difficulties can be overcome 

by involving the user throughout the KDD-based DSS development cycle. 

In this work, we suggest to use the Unified Process, and adapting it to the specificities of DDSM design.  

3. Proposed methodology  

In the previous section, we have highlighted inherent limits of the well-known development models. For the 

past few years, the objective of our research is to define a theoretical and methodological framework for 

designing and evaluating decision support systems, mainly seen as interactive systems (Ltifi et al., 2008) (Ltifi et 

al., 2009b) (Ltifi et al., 2010b) (Ben Ayed et al., 2010). This framework is based on the Unified Process 

(Jacobson et al., 1999). Modelling the system architecture with UML, using UP as the main model, helps the 

developers to rapidly construct and implement accurate, scalable interactive systems (in the sense of 

(Mohagheghi et al., 2009)). The UP model offers an appropriate framework for developing interactive systems. 

Since UP is based on UML, developers can create complex decision models and databases (e.g., Data-mining 

Applications). In addition, UML offers a high level of component reusability. 

3.1. The Unified Process (UP) 

The Unified Process consists of a set of generic principles that can be adapted to specific projects (Jacobson 

et al., 1999). Thus, to some extent, it is a process pattern that can be adapted to a large category of software 

systems, various application fields, different company types, different qualification levels and diverse project 

sizes. UP is (1) controlled by use cases, representing the functional needs of the system; and (2) centred on 

system architecture, which provides the structure for the work carried out during the iterations. In addition, it is 

iterative and incremental, with the aim of reducing complexity by controlling it, by breaking up a data-

processing project into sub-projects, each representing one iteration. These iterations indicate the steps in the 

sequence of activities, while the increments correspond to the product development stages. An iteration takes 

into account a number of use cases. The aspects of the model being analyzed and designed are based on UML 

(Rumbaugh et al., 1999). A process defines who does what, when and how in order to achieve a preset goal 

(Jacobson et al., 1999). UP has 4 phases: (1) inception, during which the project scope is defined through use 

cases and feasibility studies; (2) development, during which the needs are defined and the architecture specified; 

(3) construction, during which the software is built through several iterations and various system versions; and 

(4) transition, during which the system is delivered to the end-users and put into service. These end-users are 

trained and provided with technical support. 

Why choose UP as a starting point? 

First, UP allows the costs to be limited to the strict expenses of an iteration. It also allows limiting the risks of 

delaying the installation of the application to be developed. UP also permits potential problems to be identified 

in the first stages of development, rather than at the testing stage, as it happens with the traditional approaches. 
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The rhythm of development can be accelerated because the objectives are clear and have been planned in the 

short term. This short-term planning is due to the fact that the user’s needs and the corresponding requirements 

cannot be completely defined in advance. The system architecture provides the structure for the work carried out 

during each iteration, while the use cases define the objectives and guide the work completed during the iteration 

(Larman 2007) (Somé 2006). Second, UP considers the user’s needs, as mentioned previously. However, 

Lemieux and Desmarais (Lemieux et al., 2006) showed that, according to the ISO 13407 standard, UP is not 

user-centred. This standard specifies the rules to be followed to adapt a software development process to a user-

centred design. They also note that the introduction of the use cases is not sufficient to make a design process 

user-centred. 

Our approach must take both SE principles and HCI principles into account. This approach is based on the 

UP principle of iterative and incremental development, which allows each accomplished task to be evaluated. 

Our approach thus incorporates the continual and constant participation of the user (Muller 2007). 

3.2. General presentation of the proposed approach 

According to the KDD stages, the system to be developed could require up to five modules for its 

implementation: (1) select the data, (2) pre-treat the data, (3) mine the data, (4) evaluate and interpret the 

patterns, and (5) manage the extracted knowledge. The data-mining (DM) module can contain several 

applications, each one using a different technique to achieve different objectives. Other modules may be 

combined together; we propose to combine the data selection and pre-treatment modules into a single module 

called "data acquisition and storage" (Fig. 3). 

 

Figure 3. The KDD-based DSS modules 

 

We define a methodological framework to design and develop the KDD-based DSS modules. These modules 

are related since they compose the KDD process. However, each module has its individual objectives. Thus, the 

design and the creation of each module can be done in parallel or in overlap with the other modules of the KDD-

based DSS. Our approach is based on the principles of a user-centred design, as defined by Gould and Lewis 

(Gould et al., 1985). Several principal phases can be proposed, which are coherent with the different authors who 

have proposed user-centred methods (Robert 2003). This general development framework is based on the three 

principles of the generic UP: iterative development, use-case control, and architecture-centred. We propose 

dividing the project into four phases: Inception, Development, Construction and Transition. The principal 



development activities are iterative and incremental. Our approach focuses particularly on the activities, as 

illustrated by Fig. 4. 

For the Modelling, we use UML (Rumbaugh et al., 1999). In fact, UP is based on UML. In addition, it is a 

language that allows models to be represented without defining their development processes. Thus, it can be 

used with any other software development process. 

 

Figure 4. The proposed approach 

 

In the following section, we present a detailed description of the HCI-enriched activities used in our approach 

for developing a KDD-based DSS. 

3.3. Detailed description of the HCI-enriched activities 

For each of the four modules involved in the KDD stages, the following activities have to be performed (see 

Fig. 5, 6, 7 and 8). Each module has developmental specificities described in Tables 1, 2, 3 and 4. 

3.3.1. The needs assessment activity (Fig. 5) 

Needs assessment consists in analyzing the future decisional system objectives, in terms of the functional and 

HCI needs. This stage is based on: (1) the analysis of the normal and abnormal decisional situations, which 

allows the first functional and structural description of the decisional domain; (2) the construction of the first 

prototypes as soon as possible, in order to involve the future users rapidly by giving them an outline of possible 

solutions; and (3) the Modelling of the user, which allows the different types of users to be represented, as well 

as their behaviours. The user model facilitates the design of a user-centred interface. This model is significant in 

our development approach for interactive systems. 
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Analysis of the decisional situations (normal and abnormal) Elaboration of mockups and/or prototypes User modelling

Objectives

Expression of the decisional needs

Needs evaluation

Needs + System constraints

not OK : poorly expressed needs not OK : poorly defined needs

Definition and allocation of tasks

OK

Definition of the interactive tasks Definition of the automatic tasks Definition of the manual tasks

Tasks evaluation

OK
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After identifying and expressing the needs, this stage is evaluated early, compared to the system constraints (e.g., 

organization, logical and/or temporal constraints). This evaluation leads to two possible results: (1) if there is a 

problem, the user has to give feedback and check the first three stages described above; or (2) if there is no 

problem, he/she has to identify and organize the tasks that must be accomplished by the Human-Computer pair. 

These tasks can be divided into three categories: interactive tasks, which involve both the user and the system; 

automatic tasks, which involve only the application, and manual tasks, which involve only the user. Once the 

tasks have been defined, they are evaluated. 

Figure 5. The needs assessment used for each module of the KDD-based DSS 

  



For each module of the KDD-based DSS, the needs assessment is done as shown in Table 12. 

 

Table 1. The needs assessment of the KDD-based DSS modules 

Module Specificities 

Data acquisition 

and storage 

module 

Analyzing the decisional situations from the data acquisition and pre-treatment sub-

modules. 

Preparing the first UI prototypes so that the module general architecture can be 

determined. 

Modelling the user, who is an expert in his or her field and in using data-processing 

tools. 

Defining the sub-modules' functionalities of data capture, selection, cleaning, 

transformation and demonstrating them to the users for an early evaluation. 

Defining and describing: (1) interactive tasks (e.g., choosing the data acquisition zones, 

the data to be selected and cleaned, the variables to be transformed), (2) automatic 

tasks (e.g., the automatic operations of pre-treatment) and (3) manual tasks (e.g., 

users filling files with the necessary decisional data). 

Evaluating tasks in order to check whether or not they satisfy the user's needs. 

Data-mining 

module 

Analyzing decisional situations related to the various data-mining techniques that can 

be used. 

Building the UI prototypes that present (1) the way that the user wants to visualize 

extracted knowledge, and (2) the variables that have to be introduced by the user. 

Modelling the user, who must be able to interact with the module but he is not 

supposed to know the details of the data-mining technique(s) to be used.  

Evaluating the data-mining functionalities to check the possibilities of applying the 

selected data-mining technique(s).  

Dividing the tasks of this module into interactive tasks (e.g., introducing the necessary 

values for the automatic tasks) and automatic tasks (e.g., executing the selected 

data-mining techniques).  

Evaluating the possibilities offered by these techniques. 

Evaluation 

module 

Studying the evaluation criteria of the discovered models (or patterns), as well as the 

resulting decisional situations. 

Creating the interpretation methods for the patterns of the knowledge extracted. 

Preparing the UI prototypes to give an idea about the interface architecture to evaluate 

and interpret the patterns. 

Modelling the user, who must be able to interpret the results of the knowledge 

discovery and execute a useful and usable evaluation module (Bahloul et al., 2010) 

Validating the evaluation and interpretation functionalities. 

discerning the task evaluations: (1) interactive tasks for a qualitative evaluation; (2) 

automatic tasks for a quantitative evaluation 

Interpreting automatically in order to extract knowledge. 

Knowledge 

management 

module 

Describing each decisional situation in order to represent a value of knowledge and a 

possible solution used to rectify this situation.  

Displaying the UI prototypes that present (1) the values predicted by data-mining 

techniques and (2) the possible solutions automatically generated by the system. 

Modelling the user, who takes on the behavior of a decision-maker. 

Validating the functionalities of prediction, possible solution generation, and decision 

proposal, based on the extracted knowledge. 

Dividing the tasks into: (1) interactive tasks, which allow the decision-maker to 

validate or cancel previously-generated solutions, and (2) automatic tasks, to 

predict the values and generate possible solutions. 

Checking whether or not tasks allow the decision-maker to make satisfactory decisions. 

 

  

                                                           
2 Several stakeholders can be involved in each module: the user (i.e., decision-maker), the KDD expert, the designer and the human factors 
specialist. 



3.3.2. The analysis and design activities (Fig. 6) 

The first activity results in a list of interactive and automatic tasks, as well as the user model. Once the tasks 

have been defined, they must be analyzed. The stage of interactive task analysis specifies the human tasks in 

normal and abnormal situations (Abed et al., 1991), which is closely connected with identifying the user's 

characteristics, resources and cognitive limits in the user model. Analyzing the automatic tasks is related to the 

analysis of the functional tasks that can be accomplished within a decision-making process. The User Interfaces 

(UI) can then be analyzed in order to define their behaviour. This analysis focuses on the relationships between 

the user and the interactive system. It is a question of indentifying the ergonomic and technical needs rigorously, 

then defining the number of screens to be used, the sequence of views, the information presentation modes and 

the human-computer dialogue methods.  

This specification stage is followed by the design stage, which allows the models for the automatic tasks and 

the UI to be designed. This design makes it possible to formalize the needs specification to define the appropriate 

algorithms. These algorithms will be transmitted to the implementation stage to be developed. The analysis and 

design models are evaluated at this level. This evaluation checks that they correspond to the needs. If the result is 

unsatisfactory, the analysis and design models are modified to produce models that correspond to the needs.  

Once the specification and the UI design have been validated, an advanced UI prototype can be built in 

collaboration with the experts and the users. All the information provided within the framework of these 

activities makes it possible to specify the architecture of the future system. This system is developed and 

enriched progressively by adding the analysis and design models, which are UML models that integrate the 

sequence, communication and interaction overview diagrams. The system architecture is composed of the 

following elements: (1) the user interface allowing interactions with the user; (2) a database containing 

information, for example, about the users, the procedures, the decision problems and the solutions; and (3) the 

software packages. This architecture must be evaluated. Then, depending on the evaluation's results, either we 

start the following activity or we go back to an earlier point and make modifications.  

Figure 6. The analysis and design activities used for each module of the KDD-based DSS 

Specification of the automatic tasks Specification of the interactive tasks Specification of the User Interfaces

Interactive tasks + User modelAutomatic tasks
ISO criteria

Design of the automatic modules Design of the User Interfaces

Model evaluation

Analysis and design models

not OK : analysis problemnot Ok : design problem

Elaboration of HCI prototypes by the designer

OK

Specifying the architecture

Architecture

Architecture evaluation

OK

not Ok : poorly elaborated HCI prototypesnot Ok : poorly specified architecture



For each module of the KDD-based DSS, the analysis and the design activities are done as shown in Table 23.  

 

Table 2. The analysis and design of the KDD-based DSS modules  

Module Specificities 

Data acquisition 

and storage 

module 

Analyzing the interactive and automatic tasks for the data capture, selection, cleaning 

and transformation sub-modules. 

Formalizing the UI and the associated functionalities for data acquisition and data pre-

treatment. 

Designing the way a new recording will be filtered in the database, and cleaned and 

transformed if necessary. 

Evaluating the data capture mechanism and the pre-treatment of the analysis and 

design models. 

Preparing the advanced prototypes for data selection, cleaning and transformation. 

Evaluating the data capture mechanism and the pre-treatment of the sub-module 

architecture. 

The architecture includes: (1) the data capture and pre-treatment UI, (2) their software 

packages, and (3) the database.  

Data-mining 

module 

Analyzing the automatic tasks allows the specification of the data-mining execution 

process and the user-machine interactions. 

Formalizing the various data-mining sub-modules. 

Evaluating the analysis and design models to check whether or not the data-mining 

techniques are formalized correctly. 

Giving a good idea of the possible user-module interactions with the advanced 

prototypes. 

Evaluating the data-mining module's architecture. 

The architecture includes: (1) data-mining application UI, (2) data-mining 

algorithm(s), and (3) the database.  

Evaluation 

module 

Analyzing the automatic pattern evaluation and interpretation tasks and the interactive 

evaluation tasks. 

Defining the design formalisms of the quantitative and qualitative evaluation as well as 

the interpretation for the knowledge extraction. 

Validating the design models concerning the different patterns evaluation and 

interpretation methods. 

Preparing the advanced UI prototypes presenting the way that the user will be able to 

interact with the module to evaluate the patterns. 

Evaluating the evaluation and interpretation of the sub-modules' architecture. 

The architecture includes: (1) the evaluation UI, (2) the interpretation UI, (3) the 

evaluation and interpretation tools, and (4) the database.  

Knowledge 

management 

module 

Analyzing the prediction and the solutions generation tasks. 

Analyzing the interactions between the decision maker and the system (to validate or 

not each decision generated by the system). 

Designing the various tasks of prediction and possible solutions generation for the 

decision support in their various possible scenarios. 

Validating (1) the analysis and design formalisms, (2) the UI and (3) the knowledge 

management for decision-making algorithms. 

Showing how the user will be able to validate or cancel a possible automatically-

generated solution through the advanced UI prototypes. 

Evaluating the knowledge management module's architecture. 

The architecture includes: (1) automatic prediction UI, (2) UI for the automatic 

generation of possible solutions, (2) automatic prediction and solution-generation 

algorithms, and (4) the database. 

 

  

                                                           
3 Several stakeholders can be involved in each module: the user, the KDD expert, the designer and the human factors specialist. 



3.3.3. The implementation activity (Fig. 7) 

The Implementation starts with a schedule for the software development and maintenance. This schedule 

must be prepared to facilitate the long-term feasibility of this development effort. The implementation activity 

consists in coding the functional parts, based on the previously-defined algorithms (in the design activity), and 

the UI. All the code components are then assembled and integrated (Prencipe et al., 2005) in a subsystem in 

order to build a prototype at the end of the iteration.  

Figure 7. The implementation activity used for each module of the KDD-based DSS 

 

The prototypes represent the levels of future software development that take into account more and more 

details of the specifications. In particular, effectiveness, robustness and maintenance are taken into account from 

the start of the development, since prototyping encourages data abstraction. Each prototype is evaluated in order 

to verify its correspondence to the system architecture. Each prototype must be validated by the user and the 

KDD expert to make sure it conforms to technical and user-friendly standards. 

For each module of the KDD-based DSS, the implementation is done as shown in Table 34. 

  

                                                           
4 Several stakeholders can be involved in each module: the user, the KDD expert and the developer. 

Design models + architecture
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Table 3. The implementation of the KDD-based DSS modules 

Module Specificities 

Data acquisition 

and storage 

module 

Implementing (1) the data acquisition and pre-treatment UI, (2) the database, and (3) 

the software packages. 

Assembling the code components for the UI and the software packages in order to 

build the prototype. 

Evaluating the prototype by the user (data acquisition tasks) and by the KDD expert 

(data pre-treatment tasks). 

Data-mining 

module 

Coding the data-mining UI and the data-mining algorithms. 

Assembling the code components for the UI and the software packages for the data-

mining techniques in order to build the prototype. 

Evaluating the prototype by the KDD expert. 

Evaluation 

module 

Coding the evaluation and interpretation UI and software packages. 

Assembling the code components to build a prototype. 

Evaluating the prototype by the user (qualitative and quantitative evaluation tasks) and 

by the KDD expert (interpretation tasks). 

Knowledge 

management 

module 

Implementing the UI and the software packages for the prediction, possible solution 

generation and decision-making sub-modules. 

Assembling the code components to build a prototype. 

Evaluating the prototype by the user (i.e., the decision-maker). 

 

3.3.4. The testing activity 

The testing activity makes sure that the users are able to execute their tasks through the proposed UI. This 

test will highlight the errors in the code. The detected errors can be functional, connected to choice and 

performance, or interactive. We distinguish two kinds of tests: unitary tests and integration tests (Fig. 8) 

Unitary tests evaluate the functions that were developed during the iteration. Testing can begin as soon as the 

function is coded, checked and, if necessary, validated. When non-conformity is detected, it is then necessary to 

correct the errors and the anomalies. If no non-conformity is detected, the code components will be gradually 

assembled with the code tested in the preceding iterations. The UI of the subsystems must also be tested, as well 

as the way each one of them communicates and behaves in the new environment. This evaluation generally 

focuses on the performance of the total system, according to user behavior when they are interacting with the 

system. Once the real model of the resulting subsystem has been established, it is compared with the ideal model 

defined in the needs assessment. This comparison allows the subsystem to be validated in terms of the defined 

needs (Abed et al., 1991). The utility and the usability of the system are also evaluated.  

Figure 8. The tests used for each module of the KDD-based DSS 

sub-system evaluation

Sub-system execution

OK

not OK

Detecting the functional errors Detecting the human-computer interaction problems

Correcting the sub-system

Validating the sub-system



Integration tests evaluate the complete system. They check the interactions between the subsystems in order 

to make it possible for the users to construct their decision-making process. This evaluation must insure that the 

system provides a complete assistance tool and verify the quality of the UI. 

For each module of the KDD-based DSS, the testing is done as shown in Table 45. 

 

Table 4. The testing of the KDD-based DSS modules 

Module Specificities 

Data acquisition 

and storage 

module 

Executing the user tests to check if the user can carry out data capture and pre-

treatment operations using the UI proposed. 

Executing the integration tests to validate the first KDD-based DSS module and to 

check the user-system interactions during the data capture and pre-treatment 

operations. 

Data-mining 

module 

Executing the unitary tests to check if the UI are useful for: 

Verifying whether or not the data-mining algorithm satisfies user needs, and verifying 

the handling ease of the UI. 

Testing the complete data-mining module to make sure that the user can use it easily. 

Evaluation 

module 

Executing the unitary tests to check whether or not the user manages to deal with the 

evaluation tasks. 

Executing other tests by the KDD expert to verify whether or not the discovered 

patterns can be interpreted in order to extract knowledge to support the decision. 

Executing the integration tests to make sure that: starting from all of discovered 

patterns, the system will be able to evaluate and interpret them in order to extract 

knowledge. 

Knowledge 

management 

module 

Executing the unitary tests to check whether or not the users can interact easily with 

the generated solutions and make decisions. 

Testing the UI of this module by the users to validate them. 

Executing the integration tests to validate the decision-maker's interactions with the 

computer during the process. 

 

Our approach proceeds with several iterations from the inception phase to the transition phase. We applied 

the different activities in each iteration, along with their actions (described above). The resulting models are 

represented using UML. In the next section, we present the application of our approach in the healthcare domain. 

4. Case study 

In the preceding sections, we presented our global approach for developing an interactive KDD-based DSS. 

This approach was applied to a concrete case in the healthcare domain in order to help physicians to understand 

and prevent NI. The system is currently being used in the ICU of the Habib Bourguiba Teaching Hospital in 

Sfax, Tunisia (Ltifi et al., 2010a). This KDD-based Dynamic Medical DSS was designed and developed 

according to the four phases of the U P. Each stage of these iterations used the activities suggested in this paper. 

These activities and their actions were not conducted with the same intensity in each iteration. 

Let us take the example of user Modelling. This Modelling process began gradually at the beginning of the 

project and became dominant in the first iteration of the development phase, but it was reduced to almost nothing 

in the last iterations of the construction and transition phases. This process shows the need to proceed step by 

step in close association with the users. They progressively suggest new improvements and tests in view of the 

results obtained in the preceding iterations.  

The development of the KDD-based DMDSS was subdivided in four modules: (1) data acquisition and 

storage module; (2) data-mining module; (3) evaluation module; and (4) knowledge management module (Fig. 

3). At the time that this article was written, our user-centred, iterative, incremental process had resulted in (1) the 

creation of a temporal database; (2) the development of a data acquisition and storage module; (3) the 
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development of a data-mining module, with two data-mining applications; and (4) the development of a 

knowledge management module. The evaluation module is now under development (Bahloul et al., 2010).  

The three first modules were designed and implemented according to the tables presented in the section 3.3. 

Table 5 shows the development of the data acquisition and storage module. 

 

Table 5. The design process for the data acquisition and storage module 

Phase Iteration Activity Brief description 

In
ce

p
ti

o
n
 

Iteration 1 Needs assessment - Nosocomial Infections (e.g., definition, causes, risks) 

were studied. 

- The general architecture of UI prototypes was 

outlined, with the physicians proposing windows with 

tabs. 

- A preliminary user model was created by an expert in 

the NI field. 

- Initial use case model (diagram + textual description) 

was created, including initial data acquisition and data 

pre-treatment functions. 

- Tasks were defined as presented in section 3.3. 

Analysis & design Non-applicable (N/A) in this iteration 

Implementation N/A in this iteration 

Testing N/A in this iteration 

D
ev

el
o
p

m
en

t 

Iteration 1 Needs assessment - Filling out the forms created an additional workload to 

select the data. To compensate for this increased 

workload, the users asked us to offer interns full 

database tables to reduce their workload by allowing 

them to avoid writing table names. 

Analysis & design - The automatic data acquisition modules (e.g., age, 

duration of stay, risk of death and data selection) were 

analyzed using collaborative activity and 

state/transition diagrams and designed using sequence 

diagrams. 

- The interactive data acquisition modules were 

analyzed and designed. 

Implementation - The raw database was implementation using the SQL 

Server DBMS. 

Testing N/A in this iteration 

Iteration 2 Needs assessment - In the data pre-treatment UI prototypes was added the 

possibility of an automatic search for a data 

inaccuracies or errors in the database. 

- The thorough analysis of NI allowed us to refine the 

definition of the tasks to be executed by the decision-

maker; 

Analysis & design - The automatic data selection modules and HC 

interfaces were analyzed and designed. 

- The automatic data cleaning modules and HC 

interfaces were analyzed and designed. 

Implementation - Only the temporal database was implemented. 

Testing N/A in this iteration 

C
o
n

st
ru

ct
io

n
 

Iteration 1 Needs assessment - Since the database is temporal, it is useless to record 

the date each time a physician enters the system; so a 

button for "Next Day" and "Previous Day" would 

facilitate the data entry. 

- The UI was modified by verifying the boxes or radio 

buttons to facilitate the data entry in order to avoid 

errors and to make the data coherent, especially the 

values on which certain statistical tests are based.  

Analysis & design - The automatic data transformation modules and the UI 

were analyzed and designed. 

Implementation - The various data acquisition UI were implemented, 



Phase Iteration Activity Brief description 

taking all the users remarks into account. 

- The automatic data acquisition modules were 

implemented, using C#.net 

Testing - A proposal was made to add explanatory icons 

associated to some buttons (e.g., +, Stop). 

Iteration 2 Needs assessment N/A in this iteration 

Analysis & design N/A in this iteration 

Implementation - Some slight improvements to the data acquisition UI 

(i.e., text displays) were made. 

- The automatic data selection modules and the UI were 

implemented. 

- The automatic data cleaning modules and UI were 

implemented. 

- The automatic data transformation modules and UI 

were implemented. 

Testing - The user tests were executed. Results: the usability 

problems related to data entry were described, and the 

other physician needs were detected. 

T
ra

n
si

ti
o
n
 

Iteration 1 Needs assessment N/A in this iteration 

Analysis & design N/A in this iteration 

Implementation - The last bugs connected to the latest user tests were 

corrected. 

Testing - The last prototype was tested using the ICU patient 

data transcribed on the provided forms, and no errors 

were detected. 

- The main user expressed his satisfaction and accepted 

the final module "data acquisition and storage ". 

According to the needs expressed by the users, we developed two applications for the data-mining module in 

order to predict every day the NI appearance in ICU. Each application uses one data-mining technique. Table 6 

shows the development of the data-mining module. 

 

Table 6. The design process for the data-mining module 

Phase Iteration Activity Brief description 

In
ce

p
ti

o
n
 

Iteration 1 Needs assessment - The physicians understood the methodological principles. 

They found it very useful to be involved. 

- For this module, the original data-mining technique used was 

the K Nearest Neighbours (KNN).  

- The users prepared several UI prototypes that showed, if the 

probability is higher than 50%, there is a NI risk. 

- The use case model included the KNN technique 

functionalities. 

- The tasks were defined:   

 Automatic tasks – The distances between the new patient 

characteristics and those of the patients already hospitalized, 

recorded in the ICU database were calculated. We used the 

Euclidian distance. The other automatic task is the 

identification and classification of the K nearest neighbours. 

Based on this classification, we calculated the probability of 

contracting a NI. 

 Interactive tasks – with the goal being to have the best 

discrimination rate, the user chose the value of  K (1, 3 or 

5), thus following up the classification process. 

Analysis & design N/A in this iteration 

Implementation N/A in this iteration 

Testing N/A in this iteration 



Phase Iteration Activity Brief description 
D

ev
el

o
p

m
en

t 

Iteration 1 Needs assessment - The project team considered the KNN technique to be 

insufficient for dynamic decision-making, since the data were 

temporal and multidimensional (Fu 2011). For this reason, we 

added the Dynamic Bayesian Networks (DBN) (Darwich 

2001) (Murphy 2002) as an analysis technique to obtain 

knowledge models that evolve over time. This technique is a 

special Bayesian Network, which is used for the dynamic 

stochastic process models. 

- The use case diagram was refined to add the DBN technique 

function: the daily classification of the patient state, which 

evolves throughout the patient's hospitalization. 

Analysis & design - The Euclidian distance calculation and the associated UI were 

analyzed and designed. 

Implementation - The database is ready to mine. 

Testing N/A in this iteration 

Iteration 2 Needs assessment - A "Report" button was added to launch a procedure 

recapitulating the patient's hospitalization history. 

Analysis & design - The necessary procedures were added to display the patient 

data corresponding to the selection criteria. 

Implementation - The first UI and the automatic module for calculating the 

Euclidian distance were implemented. 

Testing N/A in this iteration 

C
o
n

st
ru

ct
io

n
 

Iteration 1 Needs assessment N/A in this iteration 

Analysis & design - The diagrams were modified to reflect the additional tasks. 

- The rest of the automatic and interactive tasks were analyzed 

and designed. 

Implementation - The second UI was implemented, showing the probability of 

an NI appearance (Fig. 10).  

Testing N/A in this iteration 

Iteration 2 Needs assessment N/A in this iteration 

Analysis & design - The analysis and the design of the DBN technique's function 

must take into account that patient data are treated 

progressively. This data enrich the DBN models that use them 

to provide other predictions.  

- With each time series (Fu 2011), it is possible to predict the 

patient state. Then, this prediction is used as an entry for 

predicting the patient state on the following day. In addition, 

the current day observations are also entries for predicting the 

NI contracting result. 

Implementation - The UI and the automatic module for dynamic prediction of 

the patient state using the DBN technique was implemented 

(Fig. 10). 

Testing - User tests were executed that compare the specified tasks and 

the tasks really carried out by the user, with globally 

successful results. Some remaining usability problems were 

highlighted. 

- The transactions were tested using SQL Server DBMS 

T
ra

n
si

ti
o
n
 Iteration 1 Needs assessment N/A in this iteration 

Analysis & design N/A in this iteration 

Implementation N/A in this iteration 

Testing - The users expressed their satisfaction and accepted the final 

data-mining module.  

Fig. 9 shows the User Interface for using the KNN algorithm. This algorithm is run each day during the 

patient's hospitalization. In this article, we cite the example of a patient for which the probability of contracting 

an NI is modified: it is 0% on the first day and 60% on the fifth day. Such a prediction helps the physicians to 

take the necessary precautions to protect the patients during their ICU stay. 



As shown in Fig. 10, after choosing the patient file number (485/06), the physicians6 (i.e., the system user, 

who is an expert in this domain) only have to add the current date for which they want to obtain the NI 

probability for the patient. For the classification, a column named "results" is reserved and is initialized at "not". 

 

Figure 9. Human-Computer Interface for NI prediction 

 

 
 

Figure 10. Human-Computer Interface of dynamic classification of the state of the patients 

 

For each date and each patient selected, a daily probability of contracting NI will be associated to the patient. 

If, on one date, a "yes" value is recorded, then this patient will be classified having a nosocomial infection 

starting at this date. If a "no" value is recorded, the physician can predict the varied probabilities during this time 

period if the patient will contract a nosocomial infection. In Fig. 10, there are three ovals: (1) the first, denoted 

A, indicates the identifiers of the time series associated to prediction dates; (2) the second, denoted B, shows the 

various probability values of contracting an NI from the first days of the patient's hospitalization, with the last 

                                                           
6 They are the principal stakeholders for this project. 



value on this list of probabilities being 82%; and the third, denoted C, shows whether or not the patient has 

contacted an NI after this period of time. Once the data-mining module was implemented, we started developing 

the Knowledge management module. The objective of this module was to choose between various possible 

alternatives to solve the NI appearance problem by selecting the best solution or a compromise. Table 7 shows 

the development of the Knowledge management module. 

 

Table 7. The design process for the knowledge management module  

Phase Iteration Activity Brief description 

In
ce

p
ti

o
n

 

Iteration 1 Needs assessment - According to the probability value discovered by the data-

mining technique(s), a list of possible solutions must be 

generated. Fig. 11 shows a user's handwritten note with 

suggestions for a UI for the possible solutions generated 

according to the probability of contracting a NI.  

Analysis & design N/A in this iteration 

Implementation N/A in this iteration 

Testing N/A in this iteration 

D
ev

el
o
p

m
en

t 

Iteration 1 Needs assessment - The physician proposed associating a text and an alarm 

image if there is a great risk to the NI occurrence 

percentage. 

Analysis & design 

- The functions of knowledge integration and automatic 

generation of possible solutions were analyzed and 

designed. 

Implementation N/A in this iteration 

Testing N/A in this iteration 

Iteration 2 Needs assessment - Tasks were added: typing a name or an administrative code 

results in a display of the patients concerned by the 

decision; double-clicking on the line corresponding to 

patient results in a display of their contact information. 

Analysis & design 

- The UML diagrams were modified to reflect the additional 

tasks. 

- The automatic generation of possible solutions function was 

analyzed and designed. 

Implementation - The knowledge integration function was implemented. 

Testing - The UI showing the NI occurrence probability was tested. 

 

C
o
n

st
ru

ct
io

n
 

Iteration 1 Needs assessment N/A in this iteration 

Analysis & design N/A in this iteration 

Implementation - The automatic generation of possible solutions function was 

implemented. 

Testing - The generation of the possible solutions to prevent NI was 

tested, resulting in the detection of some errors in the 

transactions with the temporal database. These errors were 

corrected. 

Iteration 2 Needs assessment N/A in this iteration 

Analysis & design N/A in this iteration 

Implementation - The decision-making function was implemented. 

- Whenever possible, the data entry zones were replaced by 

radio buttons or check boxes. 

Testing - User tests were executed. The results met our expectation; 

the tasks were accomplished, though with some UI overlap. 

T
ra

n
si

ti
o
n
 

Iteration 1 Needs assessment N/A in this iteration 

Analysis & design N/A in this iteration 

Implementation N/A in this iteration 

Testing - User tests related to the dates were executed, resulting in a 

simplification of the data entry procedures.  

- User tests were executed to verify the proposed UI had the 

characteristics of a quality interface (e.g., coherence, error 

prevention) and validate the module. 

- The users expressed their satisfaction and accepted the final 

"knowledge management module". 



 

 

 

Figure 11. Extract of the possible solutions generation UI (as initially expressed by a physician) 

5. Discussion 

5.1. Methodological contributions  

In this paper, we showed that KDD is a process that helps decision-makers to obtain knowledge that supports 

the best decision. KDD and DSS converge because DSS can be based on KDD process. A KDD-based DSS can 

be considered as an interactive system, composed by a predefined set of modules. The process starts by defining 

the problem and the objectives and ends by extracting knowledge to help make decisions. As far as we know, no 

one has proposed any human-centred approach to design and developed a KDD-based DSS.  

In this work we propose an approach in which the user is the principal actor all through the development 

period. Therefore, our approach can be a model that guides the developer to build the system, while respecting 

interactivity and interactivity. In the literature, we can find many models for SE development or enriched from 

the HCI perspective. But none of these models is appropriate for developing a KDD-based DSS. By studying the 

SE model, we found that UP is the most appropriate process for interactivity and iterativity. However, as UP is 

not user-centred, we enriched it with HCI elements. The HCI elements include: elaboration and design of mock-

ups and prototypes, user modeling, human task modeling, early evaluations, UI specification and design. 

The most important research contribution of this paper is to propose a generic approach that helps to develop 

a KDD-based DSS by involving the end user all through the development process in order to make it possible for 

potential users to describe their functional needs and to evaluate and validate the different interfaces.  

5.2. Practical contributions  

Our practical contribution is the development of a KDD-based Dynamic Medical Decision Support System 

(DMDSS) to fight against nosocomial infections. This DMDSS reduce their risk and their impact across the 

continuum of care. Health care organizations are required to do use such DSS. 

During this project, we were able to involve physicians and KDD expert throughout the development 

process. The final product is set up in the intensive care unit (ICU) of Habib Bourguiba hospital in Sfax - Tunisia 

(Ltifi et al., 2010a). Our KDD-based DMDSS operates in that unit, and it is used to explain and prevent 

nosocomial infections. For the system performance evaluation, we used a test database that contains 58 cases 

(i.e., patient files). We applied two data-mining algorithms – KNN (Riesbeck et al., 1989) and DBN (Darwich 

2001) (Murphy 2002) (Trabelsi et al., 2010) – to real data from the ICU. We were able to extract knowledge and 

transform it automatically to obtain probabilistic, quantitative and qualitative prediction results. These prediction 

results are 74% reliable, which is very promising. 

Our KDD-based DMDSS predicts the patient state. This prediction is dynamic, evolving throughout the 

patient's hospitalization through new measurements. These measurements enrich the models in order to help 

provide other predictions. At each dayi of the patient's hospitalization, his or her state is envisioned at some 



future point by a probability, which will be used to predict dayi+1. We compared these predictions with observed 

results. We obtained the results presented in the confusion matrix7 in Table 8. 

 

Table 8. The confusion matrix of the results produced by the DBN 

  Observed results 

Predicted results 
Yes No Total 

Yes 9 8 17 

No 7 34 41 

Total 16 42 58 

 

We calculated the rates of evaluation starting from the prediction results obtained by our DBN structure (Ltifi 

et al., 2010a). We found that the classification rate was correct to 0.74, the positive capacity of prediction = 0.56, 

and the negative capacity of prediction = 0.81. The observed vs. predicted results presented in Table 5 are 

represented by the histogram in Fig. 12.  

 

Figure 12. Prediction results for a database of 58 patients (Ltifi et al., 2010a) 

6. Conclusion 

This article proposes a user-centred approach for designing DSS based on KDD. The DSS deals with the 

problem according to its knowledge. Some of this knowledge can be extracted using a decisional support tool, 

called Knowledge Discovery in Databases (KDD). Since KDD-based DSS are highly interactive, designers of 

such systems must rely on elements from two fields: Software Engineering (SE) and Human-Computer 

Interaction (HCI).  

In this context, we have proposed an approach that uses UP and UML, to which we contributed the 

enrichment of each activity with HCI elements. Developers must have a unified view of system design and 

implementation. We recommend using the proposed approach to develop an integrated DMDSS based on the 

activity workflows, which will be able to accurately identify, model and implement the decision-making 

requirements. This approach should allow a realistic, well-documented system, which will be able to meet most 

user requirements and support the development of an accurate and flexible DSS.  

In order to validate this approach, we are presently developing a KDD-based DMDSS to supervise the NI 

contracted in ICU. The project is being developed in constant association with the system users (i.e., physicians): 

needs assessment, task definition, user characteristics identification, prototyping, evaluations and validations. 

The DSS is not totally completed. Further studies will be conducted to improve our approach. We also want to 

propose a methodology for evaluating KDD-based DMDSS, taking into account evaluation methods and 

techniques used in two fields: HCI and visual data-mining (Ltifi et al., 2009a). The integration, early in the 
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project, of conceptual models considering explicitly the context would constitute another research way (Brossard 

et al., 2011). 
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