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ABSTRACT  
As road traffic is becoming increasingly dense, new needs in 
terms of intelligent human-machine interaction are emerging for 
their control by human operators. One avenue of research 
consists in assisting them in their control task by an assistant 
agent. This paper presents a feasibility study in this field, 
involving interactions between humans and an assistant agent. 
For this purpose, a game theory-based model is proposed in 
order to be able to model a context-sensitive system for the 
cooperative realization of complex tasks. In this case, the 
participants of the game are human operators and an assisting 
agent interacting within the framework of the realization of a 
control task. Thus, each participants can choose an action 
between two possible ones (to cooperate or not). Then, the 
proposed utility functions allow to build the context-sensitive 
payoff matrix at each observation cycle of the human-machine 
interaction. To validate our model, we have implemented a 
simulated control situation; it concerns the regulation of traffic 
through intersections; this involves two human operators and an 
assistant agent. Thus, the assistant agent uses the game payoff 
matrix for its decision-making in using Nash equilibrium. This 
paper describes a feasibility study, focusing on an analysis of the 
results obtained during the execution of the simulation. Different 
research perspectives arise from this study in order to improve 
and generalize the proposed model. 
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1  Introduction 
Since the progressive exploitation of artificial intelligence in 
human-machine interaction since the late seventies [1, 2, 3], 
research on the so-called adaptive or intelligent human-machine 
interaction now induces a sub-domain dealing with human-
agent interaction. In particular, intelligent agents are taking an 
increasingly important place in the design of intelligent 
interactive, recommender or assistance systems. In more and 
more cases of practical uses, it becomes possible for these agents 
to take initiatives [4]. 

In the case of cooperation with human beings, in carrying out 
complex tasks, several interaction models and assistant agents 
have already been proposed. For example, Levin and colleagues 
propose a stochastic interaction model for assistant level 
decision making [5]. In [6], the authors use a markovian model 
for predicting human trust behaviour in the framework of 
human-agent interaction. An interaction model is proposed in 
[7], with the objective of describing intelligent agents that can 
teach human operators working in groups. In an assistance 
framework, Azaria et al. propose a so-called social agent which 
can give advice to a human being in case the decision making 
seems complicated [8]. To our knowledge, among the 
approaches of artificial intelligence using game theory [9] and 
the notion of Nash equilibrium [10], there is not yet an approach 
directly involving several human beings (our first work focusing 
on a single human [11]) and one or more assistant agents, as 
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players, with a view of intelligent human-machine interaction. 
Thus, the participation of human beings in the game, in the 
sense of game theory, is not yet formally expressed in the 
literature for this purpose of interaction. 

This paper focuses on a human-agent interaction model based on 
the definition of a repeated (or iterated) multi-player game. This 
paper is structured as follows. The second section first sketches a 
state of the art on human-agent interaction models. Then it 
addresses the problem of applications using agents for road 
traffic control; indeed such domain is considered in the 
feasibility study. In the third section, an interaction model based 
on game theory is proposed, explaining the formulation of the 
Nash equilibrium search. The fourth section presents a traffic 
simulator involving two human operators and an assistant agent, 
who collaborate for the purpose of traffic light control. This is 
implemented thanks to the possibility of participatory simulation 
in Netlogo. The analysis of the simulation results is presented in 
the fifth section; it illustrates the effectiveness of the proposed 
interaction model. The paper concludes with a discussion, a 
conclusion and research perspectives. 

2 State of the art 
This state of the art focuses primarily on human-agent 
interaction in a complex task setting. It then focuses on the 
exploitation of agents in traffic simulation; indeed this 
application field is used for the instantiation and validation of 
the interaction model proposed in this paper. 

2.1 Human-agent interaction models 
2.1.1 Agent-based approaches. When performing a complex or 
sometimes dangerous task, collaboration and cooperation 
between artificial agent or software agent and human operators 
proves to be a promising solution. For example, in the case of 
industrial process supervision, Le Strugeon et al. [12] propose an 
intelligent agent model to assist a human operator in a 
collaborative way to optimize industrial process control. In 
addition, Badeig et al. [13] describe the construction and design 
of a collaborative system using a multi-agent model. To improve 
the efficiency of assistance, Mandiau et al. [14] propose an 
assistance approach based on the agent concepts of beliefs and 
intentions. In [15], the authors propose a model of human-agent 
interaction with the objective of improving artificial intelligence 
with the support of human business expertise. For this goal, they 
use the iML interactive learning machine technique based on a 
principle of ant colony optimization (with possible human 
influence on constitutive agents). Finally, a recent study 
proposes a formal definition of explicability in the context of 
human-agent interaction using Machine Learning techniques. 
This approach takes into account information from the context, 
in particular the user's workload level and performance [16]. 

2.1.2 Game Theory Approaches. In our previous work, we 
proposed a first interaction model between a human and an 
assistant agent [11]. Moreover, in [17], the authors use the game 

theory approach to study a strategic behavioural interaction 
between a human and an autonomous agent. In fact, this work 
focuses on the agent's behaviour using two principles: 
negotiation and deliberation. Regarding human-robot 
interaction, in [18], the authors exploit the game theory model to 
develop an interactive robot controller capable of physically 
interacting with one human being. In addition, game-theoretical 
approaches are proposed in various application domains, such as 
the Internet of Things (IoT) and Bitcoin technology, in the case 
of resource and task sharing (see for example [19]). However, 
human participation and context awareness are most often not 
explicitly addressed. 

2.2 Agents in our case study: road traffic control  
2.2.1 Agent-based approaches. Several works deal with the study 
and simulation of road traffic in terms of agent-based modelling. 
For example, in [20], the authors exploit the advantage of using 
the anticipatory behaviours of agents in multi-agent 
coordination for the simulation of traffic at intersections. In [21], 
a constructivist learning control model is proposed to facilitate 
traffic regulation. For traffic flow optimization, Ksontini et al. 
[22] propose a model based on an egocentric representation of 
the traffic environment that exploits the heterogeneity of 
vehicles and the drivers’ behaviours. In [23], the authors propose 
a reactive agent model for traffic microscopic simulation. Vith a 
view of organization of traffic light control, [24] describe a self-
organizing control in case of intersection signals’s failure. In 
order to improve traffic control, [25] introduce a control model 
based on traffic history. With the same objective, an agent-based 
modeling is also proposed by [26], using inference engines 
taking in input values related to temporal traffic situations. 
Finally, [27] propose a division of the global traffic network into 
a set of sub-networks in order to facilitate the control task by 
implementing a multi-agent system. To conclude, a brief (but not 
exhaustive) state of the art of multi-agent road traffic models has 
been presented. But the involvement of human operators in 
these agent-based or multi-agent approaches has not yet been 
explicitly formalized in the literature.  

2.2.2 Approaches using game theory. Some work focuses on the 
application of game theory for the organisation and simulation 
of road traffic. This is the case in ARCHISIM platform [28]: game 
theory has been proposed for resolving conflicts between 
vehicles at intersections. A two-player game model has been 
proposed in [29] in the case of conflict resolution between two 
motorcycle drivers. However, these approaches consider only 
vehicle or vehicle-driver participants. No game-theoretical 
approach explicitly involves one or more human operators and 
assistant agents interacting in a traffic control task.  

3  Proposal of an interaction model exploiting 
the principle of game theory for the purpose 
of assistance 

The game theory-based interaction model can be started with the 
case where an assistant and a human being (i.e. a human 



  
 

 

operator) interact. However, it is possible to propose a 
generalization of the model towards an interaction between 
several agents and several human beings (users). In this paper, 
we illustrate the proposed approach with one human and one 
agent, then two humans and one agent. Let us recall that to be 
able to define a game [9], it is necessary to specify at least the 
following elements: (i) the participants in the game who are 
called players, (ii) the rules of the game, (iii) the possible actions 
for each of the players, (iv) the utility functions allowing to 
calculate the gains of all the participants for the creation of the 
game payoff matrix. For a given game, a combination of the 
possible actions of all players is called a strategic profile. Thus, 
game theory modeling consists in finding the solutions of the 
game. The most commonly used approaches are the search for 
the best answers and the search for equilibrium. For this 
feasibility study, we will use the Nash equilibria [10]. 

3.1 Formalization of multi-player game with 
two possible actions for each player 

For formalization, we can consider the case where several 
human beings (users) interact with one or several assistant 
agents. In the following, we choose to use the C & D usual 
notation (coming from the prisoner's dilemma, stated in 1950 by 
the mathematician Albert W. Tucker) for the actions of the 
different entities: C for Cooperate, D for Defect (knowing that in 
our case, D actually means for an agent that it chooses not to 
cooperate, cf. below). 

For human beings, we choose the following notations: 

1. The human being asks the assistant for help : C.  
2. He or she does not require any help: D. 

Concerning the assistant, it can respond to the request of one of 
the human beings (if there is at least one request) or 
inform/warn human beings of important information if there is 
no request: C.  

The assistant can also let human beings work autonomously 
[which is also in line with the principle of learning by doing [30]: 
D.  

It is important to note that, in practice, there are other possible 
actions than: to cooperate and not to cooperate. These two actions 
have been chosen to facilitate the search for equilibrium (using 
Nash equilibrium) and adaptation with a view to a generic 
assistance system. 

Thus, Figure 1 shows an example of a graphical representation of 
possible cases. Hi is one of the human beings involved and A1 
designates an assistant. Thus, the outcomes of the game are the 
paths: CCC, CCD, CDD, DCD, etc. For example, CCC means that 
the two human beings H1 and H2 simultaneously ask for help and 
the assistant intervenes. 

 

Figure 1: Graph showing the outcome of the game (case of 
two humans and one assistant agent) 

In the decision-making process, the assistant has one of the 
following strategies at its disposal: 

1. To act or not to act randomly (without intelligency) 
2. To act or not, while trying to maximize its gain for each 

move in the game (the assistant is selfish [31]). 

3. To act or not to act, while considering the maximum gain 
for human beings (it is more altruistic [32]) with human 
beings). 

4. To act or not to act according to Nash equilibrium [10] 
considering the optimal gain for everyone.  

3.2 Payoff of human beings and assistant agent 
3.2.1 The Human beings’s payoff. If a human being asks for 

help, his or her gain depends on the responses of the assistant 
agent and the choices of other humans: his or her gain decreases 
with his or her workload level. This gain also decreases with his 
or her profile because the higher experience level and the lower 
workload, the less the human being should ask for help from the 
assistant agent (who should then be able to take care of other 
tasks for example). Thus, the gain of each human also depends 
on the other human beings: if the human asks for help, his or her 
gain increases with the sum of the workloads of all humans, and 
with the criticality level. But the gain decreases with his or her 
experience level. If the human being is autonomous, his or her 
gain decreases with the intervention of the assistant and 
especially if he or she does not have a high level of workload. 
But in fact, the criticality level can significantly influence the 
choice of the human being, to be autonomous or not.  

3.2.2 The assistant’s payoff. The assistant(s)’s payoff depends 
on the choices of the human beings. In addition, the numerical 
values of the payoff take into account the information relevant 
to the user context, i.e. the human’s workload and the 
experience level. The assistant is an intelligent agent capable of 
intervening if human beings need help. In terms of game theory, 
the agent and the human beings who need help, share the same 
payoff value, because if the assistant intervenes, it justifies by its 
payoff that its intervention is necessary; this payoff also 
increases with the criticality level of the situation. In case of non 
intervention, the values can be chosen according to two cases: 
(1) When human beings do not need help, the assistant agent 
must not react (i.e. respond to their request) at the risk of 
unnecessarily wasting time (which could be spent on other 
tasks); (2) When humans have asked for help (and the assistant 
does not intervene), the assistant's payoff may increase because 



  
 

 

 

it has much more time to deal with other tasks, but it will not be 
very useful from the human point of view [33], especially if the 
human really needs the help because of a high level of workload, 
for example. 

3.3 Proposal of utility functions to build payoff 
matrix at each iteration during the task 

According to the principles related to payoff, stated above, we 
can propose the following functions in the context of the 
creation of the game payoff matrix for the case of an assistant 
agent and m human beings: 

 3.3.1 Calculation for Assistant agent gain. If the assistant has 
reacted (i.e. it plays C):  

1 1

( , )
m m

A j h i i h

i i

u C x c wl usrl d crt
 

      (1) 

with: 

crt designates the criticality level of the situation, according to [34] 

ch means the number of human beings requesting assistance.  

dh means the number of human beings who are self-sufficient: no 
need for assistance. 

wli refers to the workload level of a human being of index i [35]. 

usrli is the experience level of the user of index i [36]. 

m is the total number of human operators. 

In this formula, the assistant's payoff increases with the number 
of humans requesting assistance, and with their workload level. 
This shows the importance of the assistant's intervention. 
However, this gain decreases with the sum of their experience’s 
levels because if all humans are experts, the assistant does not 
need to intervene. 

If the assistant leaves it up to the human operators to work 
autonomously (D): 

1 1

( , )
m m

A j h i i

i i

u D x c usrl wl
 

    (2) 

Here, the assistant's gain increases only with the sum of the 
values of the human experience levels. But the assistant's payoff 
decreases with their workload level, and especially with the 
criticality level (because non-assistance can lead to a loss). 

3.3.2 Calculation for Human (Hk) gain. If the human of index k 
(called Hk) asks for help (C):  

1 1

( , )
k

m m

H k a i k a i

i i

u C x c wl usrl d wl
 

     (3) 

with: ca the number of assistant agents which choose act, 
da designates the number of assistant agents which choose not to 

intervene (i.e ca , da  {0,1} in our case); 
kx  are the actions for 

other players (the assistant and non-humans of index k). 

In this formula, the human being’s payoff asking for help 
increases with the sum of the workloads of all the human beings. 
But it decreases with this human being’s experience level (here 
indexed by k).  

If the k-index human being is autonomous (D): 

 
1

( , ) ( )
k

m

H k a i k k

i

u D x c wl usrl crt wl


       (4) 

 with: Hk refers to the human of index k. and usrlk the experience 
level of k-index human being. 

In this case, the gain decreases with the sum of the workloads of 
all human beings. And since the human being (of index k) is 
autonomous, it is only his or her experience level that will have 
a positive impact on the value of his or her payoff. However, 
with a high criticality level and a high workload level, his or her 
payoff should decrease accordingly.  

If the agent acts, the payoff of humans asking for help are 
greater than the payoff of those who are self-reliant. If the agent 
does not respond, the payoff of humans asking for help are less 
than the payoff of autonomous humans. If the human is 
autonomous, the payoff of the agent in case of intervention is 
lower than in case of non-intervention. If the human asks for 
help, the intervening agent's payoff is higher than that in case of 
non-intervention.  

3.4 Total payoff calculation over N iterations 
As we have considered a repeated game of several players, we 
propose to calculate each player's payoff by the following 
formulas: 

For human beings: 
1

1
( , )

k k

N

H H k k i

i

G u x x
N 

   with: 
kHu  

designates the utility function of each human operator. For the 

assistant: 
1

1
( , )

N

A A k k i

i

G u x x
N 

  with: ( , )k k ix x designates 

the strategic profile in the i-th iteration and Au  the utility 

function of the assistant agent. 

These formulas make it possible to evaluate each player's payoff 
by studying the Nash equilibrium of each iteration. For the 
assistant, we have assumed that it takes charge of other tasks 
apart from assisting the human operator(s). 

3.5 Equilibrium search 
After building the utility functions for the players, we will now 
proceed to the resolution of the game. The Nash equilibrium in 
pure strategy corresponds to a situation in which none of the 
players has an interest in unilaterally changing the strategy [10]. 
However, this equilibrium does not always exist. Alternatively, 
there is also another type of equilibrium called mixed-strategy 
equilibrium which uses a probability distribution over the set of 



  
 

 

possible actions for each of the players to determine the 
equilibrium.  

Our formulation leads to a non-zero sum game, i.e. the sum of 
the payoffs of the different players is not equal to 0. In our case, 
the following conditions must be met for a strategic profile to be 
a Nash equilibrium in pure strategy. Let a strategic profile rated 
s* such that: 

   * * * * * * * * *

1 2 1,  ,  ,  , ,  ,    *,  ,  k k m A k k As s s s s s s s s s      

So, s* is a Nash equilibrium in pure strategy if [1, ]i m 
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with: si* designates an action performed by the human of index i 
at the equilibrium, si for any action of the latter. Thus, sA* an 
action performed by the assistant at the equilibrium, and sA 
designates any action of the assistant.  

It would be possible to choose other methods. But Nash 
equilibrium has been chosen particularly as we are considering 
an assistant agent (considered rational and cooperative) which 
can take over other occupations: it can become an assistant for 
one or more other tasks. Thus, the Nash equilibrium allows to 
obtain an optimal gain for each participant (humans and agent). 
For Nash equilibrium search, we use the algorithm described in 
[37]. If the algorithm does not find a Nash equilibrium, we have 
taken by default the action D for the assistant agent. 

4 Feasibility study: road traffic control task 
involving one and then two human operators 
assisted by an assistant agent 

Traffic control is one of the complex tasks that can involve 
human beings, who have to deal with regulation at every 
intersection. In this feasibility study, we use Netlogo to simulate 
the road traffic control environment. Netlogo is an open source 
simulation plateform created by Ury Wilensky [38, 39]. It is easy 
to use in modelling and simulation of complex systems, such as 
natural, social or engineering systems. Netlogo uses an agent-
based approach. 
The assistant agent is intended to assist the human being(s) in 
carrying out these control tasks with two actions: to take special 
care of an intersection or to leave the task to the human being(s) 
for the control of the traffic lights located at each intersection.  

To this end, certain rules of expertise could be evoked to justify 
the importance of the intervention or not of the assistant agent 
through each of the intersections: 

1. It can search for an intersection that has the maximum 
number of vehicles waiting to enter it (for example, vehicles 
stopped by the red traffic lights in front of them). In this 

case, it can change the signal control (i.e. colours of the 
lights) in this intersection. 

2.  It can select an intersection that has the minimum number 
of vehicles waiting to enter the intersection (stopped by the 
red traffic lights). 

4.1  Description of the participative traffic 
simulation application under Netlogo 

The hubnet server allows a so-called participative simulation 
[40]. In this simulation, clients (human operators) can participate 
in a cooperative way in the management of traffic lights in order 
to obtain maximum fluidity.  

The three participants (later referred to as P1, P2 and P3) in this 
first feasibility study are undergraduate students in physics or 
economics (average age: 25 years; two men and one woman). 
The main selection criteria for choosing participants are: Have 
good eyesight, be able to use a computer, be able to work in a 
team, not be subject to dizziness (which can be caused by vehicle 
movements on a screen). All the people solicited in the 
framework of this first feasibility study agreed to take part in it, 
but the health situation related to Covid-19 did not make it 
possible to have more participants (no access to the buildings). 
In addition, an external observer (evaluator) is appointed for the 
initial configuration of the traffic model by setting the speed 
limiter, number of vehicles, etc. The observer also sets the 
duration of an iteration, starts and stops the simulation. For the 
implementation, the protocol in Figure 2 is followed. 

 

Figure 2. Protocol followed by participants 

In terms of functionalities, the use case diagram visible in Figure 
3 shows the different types of actors: human operator, 
simulating a road traffic controller (one, then two human 
operators); assistant agent; external observer (evaluator). 



  
 

 

 

 

Figure 3: Use Case Diagram 

Figure 4 shows a screenshot used by participant P2 (case of two 
humans P2 and P3 involved in the traffic control task). Each 
participant is connected via a Hubnet client. Each client displays 
a user interface with a set of commands to intervene on road 
traffic. 

 

Figure 4: Hubnet Client interface (participant P2)  

4.2 Hubnet client description 
On the client's user interface, the human being connected to the 
simulator server has the choice to take the initiative on an 
intersection he or she can choose: he or she can change the 
corresponding traffic lights or wait for the help of the assistant 
agent set up to help them control the lights of the whole traffic. 
Thus, each human operator can also consult information about 
the workload level of the other operators and their experience 
levels; this information may help his or her decision-making. For 
example, it can be seen that the workload level of the other 
human is equal to 1 (very low workload) and his or her 
experience level is equal to 5 (very high level). 

In addition, humans can control the maximum vehicles’s speed 
limit. They can choose the intersection concerning the lights 
they want to intervene on. 

 

5  Results of the feasibility study with 1 agent 
and 1 human then 2 humans 

An initial feasibility study has yielded a set of promising results. 
These make it possible to highlight the impact of decisions taken 
by the players on the overall traffic behaviour. This impact is in 
terms of average traffic speed, number of vehicles waiting, 
evolution of the average waiting time of vehicles.  

The proposed simulator has been used in situations involving 
200 vehicles to give meaning to the cooperation between human 
beings and the assistant in the context of traffic control using 
traffic lights.  

Each participant used the Netlogo simulator for about 1 hour and 
30 minutes. This period included a series of simulator runs, with 
short breaks in between (to approximate working conditions in a 
control room [41]). For this feasibility study, an execution lasts 
180s for a number of iterations equal to 60, to obtain the 
following results: Average speed, number of vehicles waiting 
and vehicle waiting time for both cases: (1) one human being and 
one assistant, (2) two human beings and one assistant. The 
curves below show usage sequences of 60 cycles only (for good 
readability of the curves presented for representative purposes, 
in relation to this feasibility study). These sequences occur after 
approximately one hour of use; each participant had the 
opportunity to master the commands of the user interface. 

5.1 Numerical Results 
Figure 5 shows the average vehicle speeds calculated for each 
cycle in the simulation. At the beginning of the simulation, all 
the vehicles move with a random initial speed, and a peak is 
obtained for the average speed. Afterwards, due to the traffic 
density, a decrease in the average speed will be observed. Indeed 
some vehicles have to stop or slow down depending on the 
situation of the vehicle ahead: presence of a red traffic light or 
waiting for a vehicle that crosses the intersection first. 

 

Figure 5: Evolution of the average speed of the vehicles 

In Figure 5, v_moy_1_1 refers to the evolution of the average 
speed of vehicles in the case of one human being (P1) and one 
assistant agent; v_moy_1_2 refers to the case of two human 
beings (P2 and P3) and one assistant. For the two simulation 
cases mentioned above, Figure 6 shows the evolution of the total 
number of vehicles stopped during each of the cycles. After the 
start of the simulation, almost all the vehicles are running at 
initial speeds, which justifies the low value of this number at the 
start.  



  
 

 

 

Figure 6: Evolution of number of stopped vehicles 

In Figure 6, vehicule_stop_1_1 refers to the number of vehicles 
stopped in the case of one human and one assisting agent; 
vehicule_stop_1_2 refers to the case involving two humans and 
one assisting agent. 

Figure 7 shows the cumulative waiting time of vehicles during 
the 60 cycles. Wait_time_1_1 shows the evolution of the waiting 
time for vehicles at each iteration (case involving one human 
being and one assistant agent); wait_time_1_2 refers to the case 
involving two human beings and one assistant.  

 

Figure 7: Evolution of average vehicle waiting time over 
iterations 

Concerning the number of interventions (expressed, for example, 
by the number of colour changes at traffic lights), Figure 8 shows 
the evolution of the number of interventions by human beings 
(in both cases considered) while Figure 9 shows the evolution of 
the number of interventions by assistant agents. 

 

Figure 8: Evolution of the human’s intervention numbers 

In Figure 8, interv_hum_1_1 refers to the evolution of 
interventions of human beings in the case of one human being 
(P1) and one assistant agent; interv_hum_1_2 refers to the case of 
two human beings (P2 and P3) and one assistant. 

 

Figure 9: Evolution of the intervention of the assistant 
agent depending on the Nash equilibria 

In Figure 9, interv_ass_1_1 refers to the intervention of the 
assistant agent in the case of one human being (P1) and one 
assistant agent; interv_ass_1_2 refers to the case of two human 
beings (P2 and P3) and one assistant. 

The description of the interventions of the assistant and the 
human beings during the 60 cycles is as follows: 35 interventions 
of the assistant and 12 for the human beings (case: 1 assistant, 2 
human beings); 45 interventions of the assistant and 4 for the 
human being (case: 1 assistant, 1 human being). This can be 
explained by the fact that with only one human being, the 
assistant has to increase the frequency of the interventions in 
order to contribute to the fluidity of the traffic. 

5.2 Qualitative results 
The answers of the 3 participants to the questionnaire after the 
performance of the control task (during 60 iterations) assisted by 
the agent, are visible in Table 1. For evaluation purposes, each of 
the participants answers the question on the usability of the 
proposed simulator, the effectiveness of the agent assistant in 
assisting and the opinion on the mode of assistance. Each 
response is measured using the 5-value Likert scale [42]. The 
values are 1 (Strongly Disagree), 2: (Disagree), 3 (Neither 
Disagree nor Agree), 4 (Agree), 5 (Strongly Agree). The first 
results regarding participants' opinions are provided in Table 1. 
They show a first positive trend, which is promising for this first 
feasibility study. This will have to be confirmed in the context of 
other studies involving more participants. 

Table 1: Opinions of the three participants involved (Case 1-
1: one human being (P1) and one assistant agent; Case 1-2: two 
human beings (P2 and P3) and one assistant). 

Participants Usability of 

the simulator 

Effectiveness 

of assistance 

Opinion on the 

assistant agent 

Participant P1 : 

Case 1-1 

5 4 4 

Participant P2 : 

Case 1-2 

5 4 4 

Participant P3 : 

Case 1-2 

4 4 3 

 
  



  
 

 

 

Several first impressions of the participants can be seen below: 

« I think it's a good traffic simulator. In terms of performance, I've 
seen that the assistant offers effective help in controlling and 
detecting intersections with a lot of vehicles waiting to enter them. 
It really is a cooperative traffic management assistant » 
(Participant P1). 

 «I found the simulator easy to operate. About assistance, I found 
that the assistant acts efficiently on the most overloaded 
intersections when necessary. I have the impression that it can 
quickly determine the number of vehicles stopped at the entrance of 
the intersections to be prioritized and act on the traffic lights » 
(Participant P2). 

« I think the simulator gives you some ideas about road traffic. I 
have the impression that the assistant acts appropriately when my 
workload is high. However, there is a limit in some intermediate 
cases where it does not intervene, even when my workload is high 
and the other person is not» (Participant P3).  

6 Discussion 
The discussion is focused on two points. 

6.1  Equilibria considering only the intervention 
of the assistant  

The Nash equilibrium proposes an intervention for the assistant 
in each iteration. In the case where the assistant agent takes over 
the control of all the junctions, the obtained results show a 
certain efficiency in the management of the junctions, in 
particular in terms of average traffic speed, number of vehicles 
stopped. At each iteration, the assistant is, therefore, obliged to 
act because the equilibrium allows it to intervene. To do this, the 
agent will consider successively during the same cycle, in its 
area of occupation, the number of vehicles stopped for each 
intersection in descending order: the assistant must first take 
care of the intersection or intersections with the maximum 
number of stopped vehicles. Thus, the number of interventions 
coincides with the number of iterations (remember that we have 
considered a number of iterations equal to 60).  

6.2  Equilibria with or without the intervention 
of the assistant  

The feasibility study shows us the interaction between an 
assistant agent and one and then two human operators in traffic 
control. Here, the assistant agent uses the Nash equilibrium 
principle [10] for decision making on all intersections (including 
those occupied by human operators). Simulation sequences over 
60 cycles have been carried out, several of which have been 
illustrated to show the feasibility of the approach. Such a 
sequence duration allows to illustrate different interventions of 
the assistant agent, the human(s) involved, and the consequences 
of the interventions on traffic.  

Thus, in the sequences selected and illustrated above, the 
assistant intervenes from iteration 10 to 35 (for the case: one 

human and one assistant), and 25 to 50 (for the case: two humans 
and one assistant) (Figure 9). There is stability in the average 
traffic speed (Figure 5). Between iterations 35 and 40 (for the 
case: one human and one assistant) and 50 to 60 (for the case: 
two humans and one assistant) (Figure 9) during which the 
assistant has calculated the Nash equilibrium: the human beings 
have a lower workload level and with a high of expertise, the 
assistant does not act (given the equilibrium) hoping that the 
human beings have the possibility to act. In this period, the 
assistant does not intervene and there is a decrease in the 
average speed, despite the effort of the human beings (Figure 8).  

Always considering Nash equilibrium, an optimization of traffic 
is also observed if the human beings have a high level of 
workload with a slightly lower expertise level: hence the 
importance of the assistant's intervention.  

Finally, it can be noted that the traffic results do not depend on 
the number of iterations. We can go up to several hundreds or 
even thousands of iterations. Effectiveness depends essentially 
on the interventions of the human beings and the assistant 
throughout the execution, while taking into account the initial 
characteristics of the traffic. 

7 Conclusion 
In this paper, we proposed a game-theoretical model of human-
computer interaction, involving an assistant agent and several 
human beings (two in the described study) who interact in a 
given interactive environment. This model supports decision 
making from the perspective of assisting, or not, based on 
information coming from the context, of human operators. The 
feasibility study was carried out on two cases: one human and 
one assistant agent; two humans and one assistant agent. These 
two cases concerned a complex traffic control task. They show 
the feasibility of the approach, and also give an insight into the 
effectiveness of the assistant agent. If the assistant does not 
intervene, a degradation of the traffic can be observed.  

A first research perspective concerns the setting up of two user 
studies: the first with about ten participants for the case 
involving a single human; the second with about ten groups of 
participants for the case involving two humans and an agent. In 
these studies involving more participants, it will be possible to 
analyse their behaviour in detail. Another perspective concerns 
the explanation of the efficiency of the agents linked to a 
measure of satisfaction of human beings in terms of assistance. 
This measure can also be related to the principle of context 
awareness in the context of assistance. Finally, the comparison 
with other adaptation approaches, as well as with other agent-
based approaches for traffic management, will be also envisaged. 
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