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ABSTRACT
Dynamic scheduling of manufacturing systems is encountered in many real-world industries such 
as the food and pharmaceutical industries. The scheduling of these systems must not only be 
efficient but also reactive to cope with dynamic job arrivals and machine breakdowns. Over the last 
decade, products within Product-Driven Control Systems (PDCS) have become smart entities 
capable of actively handling the manufacturing process. In this paper, a PDCS based on the design 
of Smart Products is proposed. A generic model of the decisional strategy allows Smart Products to 
characterize different decisional contexts and thus switch efficiently from one scheduling rule to 
another using a novel Hyper-Heuristics (HH) based approach. The implementation and testing of 
the proposed PDCS on hybrid flexible flow-shops with multiple constraints inspired by the 
pharmaceutical industry are presented. The comparative study with 168 combinations of schedul-
ing rules from the literature highlighted the superiority of the HH to minimize the Mean 
Completion Time. Furthermore, the proposed approach enhanced both the global performance 
and the reactivity of the manufacturing control system.

KEYWORDS 
Dynamic scheduling; 
distributed manufacturing 
control; product-driven 
control system; smart 
product; hyper-heuristics; 
dispatching rules

1. Introduction

Recent changes in market needs such as mass custo-
mization and further personalization of products 
require factories to be smarter than ever (Kim et al. 
2020). To handle dynamic scheduling in constantly 
changing environments, the advances in computing 
in industry have enabled the advent of distributed 
architectures to control relevant activities. Indeed, 
with global trends such as Industry 4.0, Internet of 
things, or Cyber-Physical Manufacturing Systems, 
modern factories often host more and more compu-
tational entities and decisional nodes that affect glo-
bal performance. In addition, changes in design and 
manufacturing processes occur ever more frequently 
with increasingly complex divisions between produc-
tion activities and tasks within manufacturing organi-
zations (Chen et al. 2020). Thus, decentralized 
architectures are more flexible and deal with distur-
bances better than conventional centralized ones. 
Nonetheless, these distributed approaches are histori-
cally resource-oriented, i.e. the decisional nodes are 
tied to ‘smart’ machines that choose the jobs to be 
performed on ‘passive’ products (Leitão 2009). Over 
the last decade, studies have proposed assigning the 

decisional abilities to the products to be manufac-
tured (Keddis, Kainz, and Zoitl 2015). Products within 
Product-Driven Control Systems thus become intelli-
gent entities that can autonomously and, ideally, 
effectively contribute to the achievement of the dif-
ferent manufacturing stages. In such PDCS, one of the 
main challenges is defining and improving behavior 
while facing the risk of inefficient decision-making 
due to the myopia effect (Blunck et al. 2018).

In that perspective, Hyper-Heuristics seem interest-
ing. Ochoa, Qu, and Burke (2009) define this group of 
methodologies as ‘heuristics to choose heuristics’. 
Thus, they are research methodologies aimed at auto-
mating the process of selecting or combining simple 
heuristics to solve complex problems. From there, the 
main idea of this paper is to investigate how a HH can 
explore and learn the most suitable product beha-
viors in a dynamic manufacturing system. Indeed, 
using simulation, the proposed approach can provide 
the PDCS with a set of behaviors that try to enhance 
the global performance and reactivity of the manu-
facturing control system.

The rest of the paper is structured as follows. 
The second section reviews contributions that 
address solving the dynamic scheduling of 
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manufacturing systems. Various existing control archi-
tectures are also overviewed with a focus on product- 
driven approaches. In section 3, a novel HH approach 
is presented and linked with a PDCS using smart 
products (SP) based on a generic model of 
a decisional strategy. Section 4 describes the applica-
tion to multi-stage manufacturing systems with the 
specific implementation of a decisional strategy and 
scheduling rules. Then section 5 details the experi-
ments on two hybrid flexible flow-shops inspired by 
the pharmaceutical industry. A comparative study 
with 168 combinations of scheduling rules taken 
from the literature to minimize the Mean 
Completion Time is presented and discussed. Finally, 
the paper is rounded off with a conclusion and 
a summary of possible future research.

Optimization tools and control architectures for 
dynamic scheduling of manufacturing systems: 
a literature review

Manufacturing environments are far from being static 
and numerous unpredictable real-time events can 
occur that perturb the activities and, therefore, sche-
duling. According to (Vieira, Herrmann, and Lin 2003), 
events can be classified into two categories:
1. Job-related events: in dynamic scheduling, jobs can

arrive at some known or unidentified future time.
This contrasts with static scheduling in which jobs
are known at time 0.

2. Resource-related events: these kinds of events
concern machine breakdowns, machine unavailabil-
ity, loading limits, raw material deficiencies, defective 
materials, etc. For example, when a breakdown 
occurs, it implies that the machine cannot process 
anything for a specific duration that can be known 
or not.

Both types of events frequently imply scheduling 
adjustments, which is called dynamic scheduling. In 
the literature, the dynamic scheduling and reschedul-
ing environment, also noted (re)scheduling, involves 
an unknown (possibly infinite) set of jobs arriving over 
an unbounded rolling time horizon (Fattahi and 
Fallahi 2010). Vieira, Herrmann, and Lin (2003) provide 
a framework to classify the rescheduling approaches. 
The authors underline that classical static determinis-
tic scheduling can be viewed as a special case of (re) 

sch eduling: ‘a finite s et o f j obs w ith  no uncertainty 
about future events or processing duration’.

Dynamic scheduling can be grouped into three 
categories depending on the type of schedule gener-
ated (Ouelhadj and Petrovic 2009). Firstly, in the case 
of completely reactive scheduling, no detailed sche-
dule is generated in advance. So, a priority rule is used 
to select the next job among a set of waiting ones by 
picking the job with the highest priority. Secondly, in 
predictive–reactive scheduling, the scheduler gener-
ates an initial schedule and then applies a scheduling 
and/or rescheduling process in which the schedules 
are revised to cope with the occurrence of real-time 
events. Thirdly, robust pro-active scheduling tries to 
generate schedules that satisfy performance predict-
ability requirements in a dynamic environment. The 
main difficulty is then determining the predictability 
measures.

Over the past few decades, researchers have pro-
posed different optimization approaches and manu-
facturing control architectures to handle multiple 
constraints, especially in a dynamic environment. 
The next section provides an overview of studies 
relating to dynamic scheduling and the subsequent 
section reviews control architectures with a focus on 
product-driven approaches.

2.1. Optimization tools for dynamic scheduling

In recent years, many techniques, from simple heur-
istics to artificial intelligence techniques (e.g. dis-
patching rules, fuzzy logic, neural networks, multi- 
agent systems), have been applied to solve dynamic 
scheduling problems, especially for job shop and flow 
shop manufacturing plants. The choice of the algo-
rithm applied to the scheduling problem mainly 
depends on the specificities of the dynamic environ-
ment (Kalinowski, Krenczyk, and Grabowik 2013):

(1) Exact approaches: As discussed above, a dynamic
manufacturing system comprises numerous entities
with the occurrence of many real-time events. The
resulting interactions between entities lead to emer-
ging proprieties. Therefore, according to (Framinan,
Leisten, and Ruiz García 2014), to be called ‘exact’ 
a method fulfilling the requirements of the formal
optimization problem must deliver the solution
within a finite (possibly large) number of computation
steps and in a deterministic manner. Using exact
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approaches in the dynamic context addressed is hard 
to achieve. Indeed, modeling the system as a whole 
involves models that are more complex than theory 
can solve (Corning 2002), i.e. the mathematical mod-
els are often too complicated to be resolved. 
Nevertheless, many papers have used mathematical 
models to calculate a boundary, in particular using 
relaxation techniques, to make comparisons with 
more complex methods or to generate a primary 
schedule that is adjusted later using other algorithms 
such as meta-heuristics in hybridized approaches. For 
example, to minimize the total tardiness in a flexible 
job shop scheduling problem with sequence- 
dependent setup times, Mousakhani (2013) devel-
oped a Mixed Integer Linear Programming mathema-
tical model. First, the model was compared with 
a mathematical model from the literature. Then, 
a metaheuristic based on an iterated local search 
was proposed and compared with Tabu Search and 
Variable Neighborhood Search algorithms.

2. Heuristics: Anuradha and Sumathi (2015) define
heuristic as a method that tries to find good solutions 
at a reasonable computational cost without being 
able to guarantee optimality. However, in manufac-
turing scheduling problems, some ambiguity with 
Dispatching Rules (DR) emerged when reviewing the 
literature. To avoid any confusion, Trentesaux et al. 
(2013) distinguished between assignment heuristics 
(also called allocation rules) and sequencing heuris-
tics. DR are well-known solutions in the literature and 
are quick and easy to implement (Branke et al. 2016). 
Nevertheless, they may also provide poor global per-
formance due to real-time local decisions. DR can be 
significantly enhanced by considering problem speci-
ficities (e.g. explicitly taking into account setup times 
in the decisional process). In (Pickardt and Branke 
2012), setup-oriented rules were classified into three 
categories: purely setup-oriented, the most simple, 
such as the ‘shortest setup time’ rule (Gavett 1965), 
composite rules characterized by a priority index inte-
grating a term to avoid setup operations (Chiang and 
Fu 2009), and family-based rules characterized by 
a hierarchical approach. The latter reduce the setup 
times using family information to combine the pro-
cessing of jobs belonging to a specific family (Chern 
and Liu 2003). Thus, it appears that in some cases, DR 
can produce a fast response by providing a good 
balance between reactivity and performance. Choi 

and You (2006) provide a performance analysis of 
DR for dynamic scheduling in one-of-a-kind produc-
tion. The paper also aims to investigate questions 
such as ‘How do we define dynamic dispatching 
rules?’ and ‘How do we analyze performance?’, and 
provide guidelines.

It is also interesting to note that methods combin-
ing scheduling issues with Game Theory have also 
attracted attention from researchers, especially in 
a cloud manufacturing context. Although it does not 
deal with the sequencing aspect of operations, it 
proposes an interesting approach for the allocation 
of tasks to resources. For example, (Zhang et al. 2017) 
propose a real-time allocation strategy using the Nash 
equilibrium. The proposed algorithm improves effi-
ciency while reducing the processing cost for 
a flexible job shop scheduling problem. Another 
example is provided by Carlucci et al. (2020). In the 
context of Cloud Manufacturing, the authors propose 
a noncooperation model based on the Minority Game 
Theory, especially when few information is provided 
by competitors (i.e. resources). The simulation results 
show how the proposed model generates a better 
solution than a classic formulation taking into account 
merely experience. The performance obtained is as 
close to the centralized benchmark as when informa-
tion is freely available among the participants.

3. Meta-heuristics: Henderson, Jacobson, and
Johnson (2006) define meta-heuristics as solution 
methods that orchestrate an interaction between 
local improvement procedures and higher-level stra-
tegies to create a process capable of escaping from 
local optima and performing a robust search in 
a solution space. Indeed, exact methods such as 
Branch & Bound can, under certain conditions, find 
an optimal solution but at the cost of lengthy compu-
tation. Other approaches such as Random Walk or 
Gradient Search are simple random search and gradi-
ent descent approaches that evaluate one solution at 
a time. In contrast, some meta-heuristics such as 
Genetic Algorithms (GA) make the search process 
computationally efficient by simultaneously evaluat-
ing multiple solutions (named population or off-
spring) (Jorapur et al. 2016). For example, to 
minimize the makespan (Cmax) for a hybrid flow 
shop scheduling problem with sequence-dependent 
setup times, Pan et al. (2017) proposed 9 algorithms: 
three iterated local search variants, three iterated 
greedy variants, and three population-based 
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metaheuristics. The results obtained showed that dis-
crete Artificial Bee Colony Optimization was the best- 
performing algorithm, improving 126 of the 240 solu-
tions referred to as ‘best-known solutions’ in the lit-
erature. In recent years, an increasing number of 
solutions based on hybridized techniques have 
appeared, in contrast with pure heuristics or meta-
heuristics approaches. The idea is to take advantage 
of the strengths of one or more methods. For exam-
ple, Liou and Hsieh (2015) proposed a hybrid algo-
rithm for scheduling a multi-stage flow shop. They 
combined Particle Swarm Optimization and GA con-
sidering both sequence-dependent setup and trans-
portation times.

4. Hyper-Heuristics: The neologism ‘Hyper-Heuristic’
was first introduced in a conference paper by 
Cowling, Kendall, and Soubeiga (2001). Being 
a group of methodologies for selecting or generating 
heuristics, several definitions can be found in the 
literature (Nguyen et al. 2013; Zhang and Roy 2019). 
However, the common feature that distinguishes 
hyper-heuristics is that they operate in a search 
space composed of heuristics. Starting from a set of 
basic heuristics, they try to select existing ones or 
generate new ones. Then they apply the appropriate 
rule considering each decisional point. To classify 
HHs, a paradigm given by Burke et al. (2010) differ-
entiates between constructive and perturbative 
searches. Firstly, constructive methods work itera-
tively starting from partial solutions with one or 
more missing components that are progressively 
filled in. Secondly, perturbative methods consider 
complete candidate solutions and modify one or 
more of the solution components.

Although the term is recent, the idea is not new. 
For example, Hershauer and Ebert (1975) devel-
oped a standardized approach to select simple 
sequencing rules for a job shop. The proposed 
sequencing rule is a linear combination of decision 
factors, each of which is initially assigned a relative 
weight. The rule is then used to determine the 
priority of each job in the queues. Each rule gen-
erates a shop cost calculated using simulation. 
A further application of HH can be found in 
(Ochoa, Qu, and Burke 2009). As previously men-
tioned, the authors defined HH as “heuristics that 
choose heuristics” to solve a given combinatorial 
optimization problem. Thus, the optimization of 

two objective functions using different HH repre-
sentation sizes (named block sizes) was explored. 
The study concluded that the proposed heuristic 
search spaces were suitable for developing solu-
tions to a production scheduling problem. Other 
papers have explored search spaces composed of 
heuristics such as DR. For example, Çakar and Cil 
(2004) used Artificial Neural Networks to design 
a manufacturing system considered as 
a composite system combining four different prior-
ity rules. The alternatives were evaluated in terms 
of performance measures and then the best design 
alternative was selected from the possible alterna-
tives. The proposed system also determines which 
priority rules can be used in the evaluation and 
these priority rules directly contribute to measur-
ing system performance. Another example is pro-
vided in (Vázquez Rodríguez, Petrovic, and Salhi 
2007). A HH was proposed for the optimization of 
Cmax in a hybrid flow shop considering sequence- 
dependent setup times and uniform parallel 
machines. The representation used consisted of 
a sequence of DR to be called one after the other 
to complete a schedule. Note that Grammar-based 
representations are also popular. They allow the 
generation of priority functions of variable format 
and length (Mascia et al. 2013).

More recently, the term hyper-heuristic has also been 
used to refer to a learning mechanism for selecting and/ 
or generating heuristics to solve computational search 
problems (Burke et al. 2013). An additional classification 
framework of HH approaches was proposed by Burke 
et al. (2019). The definition of HH was extended by 
considering them as learning algorithms when they 
use feedback from the search process. If it exists, this 
learning can be online when learning takes place while 
the algorithm solves an instance of a problem or offline 
when the algorithm gathers knowledge before trying to 
generalize it later during the execution of the system. An 
example of this reinforcement feedback is tested in 
(Bouazza et al. 2015). The authors propose 
a distributed approach based on intelligent products 
that use Q-learning to select dispatching rules. The 
heterarchical control architecture uses simulation to per-
form Reinforcement Learning and enhance product 
behavior.
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2.2. Centralized and Product-Driven Control 
Systems

Classical solutions based on mathematical analysis 
and other exact methods have shown their limits in 
dealing with complex manufacturing environ-
ments. Furthermore, the choice of an optimization 
tool is directly linked to the type of schedule tar-
geted. Another important point is the manufactur-
ing environment and more particularly the 
information available while the scheduling task is 
being performed. This is also a crucial point that 
must be considered for the manufacturing control 
system architecture.

Various architectures have been proposed to handle 
the combinatorial problems of scheduling in dynamic 
manufacturing environments of which the most com-
mon are centralized or hierarchical approaches. Entities 
within centralized architectures broadcast decisions 
hierarchically from the higher levels down to opera-
tional level. In stable industrial environments, they 
offer good production scheduling optimization 
(Thomas, Trentesaux, and Valckenaers 2012) but are 
generally unable to deal with unexpected events. In 
such cases, when the dynamics of the manufacturing 
systems vary significantly, heterarchical architectures 
enabling distributed control are more flexible and pro-
vide more agility (Morariu et al. 2014). This shift from 
centralized to decentralized control, ideally in real- 
time, offers many possibilities for managing dynamic 
and complex systems (Windt et al. 2010).

PDCS focus automation on product flow as 
opposed to conventional resource-oriented 
approaches that focus on the control of manufacturing 
cells. Decisions regarding product scheduling and 
routing can be decentralized. Such product-centric 
approaches aim to bring intelligence and autonomy 
as close as possible to the physical system. The deci-
sional entities can then work together to react quickly 
and autonomously within constraints instead of 
requesting control decisions from a centralized con-
troller (Borangiu et al. 2014). Based on products 
endowed with decisional capabilities and using differ-
ent techniques including agent-based approaches 
(Akkiraju et al. 2001), holonic architectures (Lei and 
Yang 2013), or other concepts such as ‘active products’ 
(Sallez et al. 2010), PDCS completely transform the 
products from passive entities to active participants 
in the decisional process (Herrera and Berraf 2011).

However, studies also exhibit some weaknesses 
such as ‘myopic behavior’ that can appear and is 
caused by local decisions (Zambrano Rey et al. 
2014). The fact that each unit inside a heterarchical 
system has its own objectives and a narrow view of 
the global system results in selfish behavior affecting 
overall performance. In (Pannequin, Morel, and 
Thomas 2009), a benchmark analysis showed that 
PDCS can perform at least as well as classical centra-
lized control architectures. The authors concluded 
that the robustness of the solutions depends on 
local decisions.

To support PDCS, HH appears to be a very interest-
ing solution that can combine fast and responsive 
heuristics such as DR with an optimization- 
simulation mechanism. Thus, simulation can be 
a key tool for exploring and discovering the most 
suitable decentralized behavior. At this point, optimi-
zation via simulation becomes a very promising solu-
tion to suppress or at least reduce myopic behavior 
while keeping the system reactive.

In the next section, an approach based on comple-
tely reactive scheduling using HH is proposed. The 
goal of the developed HH is to provide a solution 
using both fast scheduling rules and an optimization- 
simulation mechanism to ensure the good global 
performance of a manufacturing system.

3. Proposed approach

In this section, the key elements of the approach are 
detailed.

3.1. Mathematical formulation

In th is paper, th e following notations describing the 
parameters and the variables are used (Table 1).

4. Choice and motivations

Considering the discussion in the review section, the 
contribution must meet the two following 
requirements:

● Need for reactivity: one of the main characteristics
of the environment considered is its rapidly
changing nature, in particular the unavailability
of information on future products before they
arrive in the system and unpredictable
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breakdowns. This makes it almost impossible to 
apply conventional methods as predictive meth-
ods. The solution must be reactive to deal with 
the numerous disturbances in an uncertain 
environment.

● Need for overall performance: in addition to the
need for responsiveness, the solution must also
be effective. This need, however, involves con-
trolling the emerging behaviors of complex and
dynamic interactions.

To meet these requirements, our proposal is based 
on the integration of two pillars depicted in Figure 1. 
The synergy resulting from their integration makes it 
possible to build a global solution consistent with the 
main requirements:

(A) PDCS based on smart products (Figure 1-A): the
highly dynamic and uncertain environment
addressed has encouraged reactive management.
The latter is supported by a purely distributed control
architecture based on SPs, providing reactivity, flex-
ibility, and agility. In the proposed approach, products
make decisions and resources are considered as pas-
sive entities with no decisional capabilities. This pro-
duct intelligence can be embedded using
microcontrollers or other electronic devices with
transmission, storage, and information processing
capabilities (e.g. using SoC, RFID, ZigBee), as well as
remote, i.e. the decisional entity does not physically
follow the product around the shop floor but controls
it remotely (e.g. a distant entity running on an indus-
trial application server). The SP can then act autono-
mously in the manufacturing system to undergo
manufacturing operations depending on its manufac-
turing process. However, this choice of distributing
the decisional nodes induces another issue, namely
myopia control. Indeed, this effect must be consid-
ered to limit its negative impact on overall
performance.
(B) Hyper-heuristic (Figure 1-B): a HH is proposed to
provide the SP in the manufacturing system with
efficient behavior. As highlighted in Figure 1, the HH
is based on the coupling of decisional strategies with
an optimization-simulation mechanism. Indeed, to
increase the reactivity of the PDCS, the heart of the
solution is based on scheduling rules. In addition to
their relative simplicity, they can be applied very

Figure 1. Global view of the proposed approach.

Table 1. Parameter and variable notations.
Notation Description

Parameters P
F
R
fj

pj

pr(fj)

sr(fj)

δr

brt

Variables εjr

Cj

set of products (or jobs), P = {1, 2 . . . |P|}
set of product families, F = {F1, F2 . . . |F|}, F � P 
set of resources, R = {1, 2 . . . |R|}
family of product j, fj ∈ F et j ∈ P
priority of product j, pj ∈ �*, j ∈ P 
processing time of a product from family fj on 

resource r, fj ∈ F, r ∈ R
setup time of a product from family fj on resource 

r, fj ∈ F, r ∈ R
set of product families that can be processed by 

resource r, δr � F
breakdown duration on resource r, at time t, brt 

∈ �, r ∈ R
binary variable set to 1 if family of j is different 

from current one configured on resource r ; 0 
otherwise, εjr ∈{0,1}

completion time of job j, Cj ∈ �
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quickly in numerous situations. Nevertheless, their 
global performance is often poor. To lift this impor-
tant limitation and improve global performance, one 
solution may lie in combining several rules. As illu-
strated by the example in Figure 2, it may be interest-
ing, under certain conditions, to combine different 
rules by switching from one to the other at the appro-
priate time.

The decisional strategies are then built by combin-
ing a set of both sequencing and allocation rules. 
These candidate rules, called “atomic rules”, are 
implemented and grouped in a structure called 
“rules repository”. In this perspective, the concept of 
“Decisional Context” (DC) that is suggested makes it 
possible to select the rules according to the status of 
one or more significant indicators (e.g. size of the 
waiting queue above or below a certain threshold) 
(Bouazza et al. 2019). The DC allows the state of the 
manufacturing environment to be characterized at 
a given moment to determine which rule is the most 
suitable to be applied.
The idea of the overall process is illustrated in Figure 1 
(yellow numbered circles), and unfolds as follows:

(1) Starting from a given manufacturing system, mod-
eling allows both its characteristics through the shop
floor configuration and dynamic scenarios with pro-
duct arrivals and possible disturbances to be
described.
(2) Using a set of rules within the rules repository, the
HH starts an optimization-simulation mechanism.
Once the optimization via simulation is completed,
a unique decisional strategy is generated that is
intended to be applied by all SPs. This mechanism is
not detailed in this paper, but the application section

contains an example implemented using a genetic 
algorithm.
(3) Finally, the best decisional strategy thus obtained
can be implemented in SPs in the real manufacturing
system. However, this work does not concern the last
phase of online implementation, which has only been
validated th rough  simulation for th e time being as
well.
The next two sections provide a detailed description
of the main components of the proposed approach.

4.1. Control system based on smart products

As illustrated in Figure 1, to make the SP autonomous 
and responsive, an internal architecture is proposed.

The architecture comprises four modules as follows:

● I/O module: this communication module man-
ages interactions between the SP and its
environment.

● Perception module: processes incoming data to
identify the current decisional context.

● Decision module: considering the current DC, and
using its decisional strategy, the SP chooses the
appropriate scheduling rule.

● Action module: translates the rules selected by
the decision module into a set of actions.

Figure 1 (numbered circles on the right) and Figure 
3 highlight the decisional process applied by 
the SP:

(1) After collecting and processing data relating to
the state of the manufacturing system to determine
the current DC, the SP applies the allocation rule to
select a resource from the set of candidates.

Figure 2. Performance of two rules vs rule switching.
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The next section describes the generic decisional 
strategy model embedded in the SP.

4.2. Hyper-heuristic proposed

As illustrated in Figure 4, the decisional strategy is 
composed of two policies, one for the resource allo-
cation sub-problem and one for the sequencing sub- 
problem. Each policy comprises a set of heuristics. 
Each heuristic is in turn composed of one or more 
scheduling rules. Therefore, discriminating variables 

Figure 3. Activity diagram of the smart product.

(2) \After joining the waiting queue of the selected
resource, as with the previous allocation rule, the
sequencing rule corresponding to the new DC is
selected then applied. The new waiting queue (i.e.
a sequence of operations corresponding to the differ-
ent products waiting to be processed on the resource)
is configured on the resource. The SP then waits until
the end of the required operation. Once the operation
is completed, if there are still operations to be per-
formed, the SP repeats the decisional process.
Otherwise, the SP is considered finished.

Figure 4. Generic model of the proposed decisional strategy.
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are used to characterize the different DC conditioning 
the selection of one rule or another. To formalize the 
proposed generic model of the decisional strategy 
based on intervals, two parameters and two variables 
are defined: 

h1 number of allocation heuristics in the resource allocation policy
v1 discriminating variable for selecting allocation heuristics
h2 number of sequencing heuristics in the sequencing policy
v2 discriminating variable for selecting sequencing heuristics

Four levels within the decisional strategy are dis-
tinguished as follows:

Level-0: this is the lowest level, comprising the so- 
called ‘atomic’ scheduling rules.

● Allocation Rule (AR): allows the SP to select
a resource from a set of candidate machines
(e.g. LQE for ‘Least Queued Elements’).

● Sequencing Rule (SR): is used to define the
sequence of operations on a given resource by
sorting its waiting queue (e.g. FIFO for ‘First in
First Out’).

Level-I: this level is composed of a set of rules to 
which intervals are added.

● Allocation Heuristic (AH): composed of a set of
AR with two bounds. These intervals correspond
to the ranges of values of the discriminating
variable v1 conditioning the use of an allocation
rule (e.g. if v1 ∈]0,5] use AR1, else if v1 ∈]6,11]
use AR4, etc.).

● Sequencing Heuristic (SH): similar to AH, it is
composed of one or more SR plus intervals of
values that condition its triggering (e.g. if v2 ∈]
0,7] use SR2, else if v2 ∈]7,11] use SR3, etc.).

The intervals must be contiguous to cover the set of 
values that the discriminating variable can take, and 
this for both AH and SH.

Level-II: this level is used to group the different 
heuristics according to the scheduling sub-problem 
handled by each policy.

● Resource Allocation Policy: composed of h1 AH.
Depending on the context (e.g. the current cell),
the corresponding AH is called (see ‘ITV’ in the
next section).

● Sequencing Policy: composed of h2 SH, it is also
triggered depending on the context (e.g. current
resource).

Level-III: this is the highest level of encapsulation. 
It represents the entire decisional strategy comprising 
the two policies.

This model makes it possible to encapsulate the 
scheduling rules and the DC that will condition their 
triggering by the SP. It is also intended to be as 
generic as possible and independent of the produc-
tion system configuration as well as the scheduling 
rules implemented in the rules repository. In this way, 
the HH goes through a search space composed of 
instances of decisional strategies. The aim is to pro-
duce the most efficient one possible.

Th e next section details th e application to multi- 
stage manufacturing systems with  constraints 
inspired by the pharmaceutical industry.

5 . Application to multi-stage manufacturing
systems

First, the context of the study and the multi-stage 
manufacturing systems addressed are presented, 
then the implementation of the hyper-heuristic 
through a specific decisional strategy model is 
described.

5.1. Context of the study

This case study was inspired by the pharmaceutical 
industry. Indeed, some characteristics frequently 
encountered in this sector such as multiple product 
families and heterogeneity of resources are high-
lighted. In addition, this type of production system is 
interesting in terms of flexibility and complexity, and 
exhibits the following specific characteristics:
(1) Variety of processes: an essential factor is the flex-
ibility of the manufacturing system that can result
from the variety of products and/or resources.

(a) Variety due to products: although production
lines are most often dedicated to a specific
pharmaceutical class (e.g. analgesic, anti- 
inflammatory, antibiotic), multiple product
families can coexist on the shop floor. It is not
unusual that the same unit can produce
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different drug molecules (e.g. ibuprofen, keto-
profen) and the same molecule can be pro-
duced in different galenic forms (e.g. tablet, 
capsule, injectable). These particularities have 
a strong impact on the number and order of 
operations constituting the manufacturing 
processes.

(b) Variety due to resources: due to the rapid evolu-
tion of manufacturing processes but also pro-
duction tools, heterogeneous machines using
very different technologies can be found within
the same manufacturing cell. If there is any
incompatibility between at least one resource
and a product family, then the cell is partially
flexible, otherwise, it is fully flexible.

(c) Process variety: This diversity in terms of both
quantity and nature of the products implies
variations in processing times and setup
times. These setup operations tend to be fre-
quent and mandatory (e.g. calibration, tool
change, cleaning and/or sterilization opera-
tions). In addition, these operations can be par-
ticularly time-consuming.

2.Variation in production orders: pharmaceutical
production is subject to numerous variations in pro-
duction orders.

(a) Market fluctuations: uncertainties for example
linked to shortages, epidemics, natural disas-
ters, etc.

(b) Complex composition of the products and their 
perishable nature: this can lead to disruptions in
the supply chain.

(c) Technical and regulatory constraints: indeed,
production is subject to the approval of inter-
nal quality assurance departments and control
bodies of health authorities. These variations
can, among other things, lead to unexpected
arrivals of product orders due, for example, to
authorizations sometimes issued progressively
over time.

3. Breakdowns: finally, relatively frequent break-
downs must also be considered. These perturbations 
can also involve safety shutdowns to avoid any risks 
regarding product quality.

5.2. Manufacturing systems and performance 
indicators retained

The multi-stage manufacturing systems to which the 
proposed method has been applied, as well as the 
indicators used to measure the performance, are pre-
sented here. For that purpose, extra parameters and 
variables have been added (Table 2).

Table 2. Notations of extra parameters and variables.
Notation Description

Parameters L set of cells, L = {L1, L2 . . ., L|L|}, L � R
Ij ordered set of operations for product j, Ij 

= {1,2, . . ., |Ij|}, j ∈ P
Oij operation i of product j, i ∈ Ij, j ∈ P

variables aij arrival of product j in cell for operation i, j ∈ P
wij waiting time before starting setup or processing 

operation Oij of product j, wij ∈N �
pijr processing time of operation Oij on resource r, Pijr 

∈ �
sijr setup time of operation Oij on resource r, Sijr ∈N 

�

Figure 5. Example of a multi-stage manufacturing system.
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As depicted in the example in Figure 5, three main 
components of the multi-stage manufacturing system 
are considered: |L| cells, |R| resources, and |P| pro-
ducts. At each stage, a manufacturing cell groups 
one or more resources according to their similarities 
(i.e. operations they can process). Each cell has 
a waiting area containing products not yet allocated 
to a resource. Moreover, each resource has a specific 
waiting queue. The waiting time wij of each operation 
Oij corresponds to the total time the products spend 
in these waiting areas, i.e. between the arrival in the 
cell aij and the start of the processing operation (or 
setup if needed).

The two most commonly used means of measuring 
performance in the scheduling literature are 
Makespan (Cmax) and Mean Completion Time (MCT). 
However, for dynamic scheduling problems with dif-
ferent product arrivals, focusing on the MCT is more 
suitable. Indeed, in many industries such as electro-
nics or pharmaceuticals, minimizing the MCT may 
help reduce inventory, holding costs, and/or increase 
customer satisfaction (Aydilek and Allahverdi 2012). 

Thus, for a product j starting its process on resource 
r and ending on resource r’, the completion time is 
calculated as follows: 

Cj ¼ a1j þ W1j þ εjrxS1jr
� �

þ p1jr
� �

þ w Ijj jj þ εjrxS Ijj jjr
� �

þ p Ijj jir
� �

(1) 

According to equation (1), the completion time of 
each product j corresponds to the sum of the arrival 
time in the first cell (a1j) plus, for each operation (i.e. 
from 1 to |Ij|), the waiting time, setup time (if any), and 
processing time.

Then: 
X

Cjis the total completion time;
X

Cj 2 N (2) 

X
Cj= Pj jis the Mean Completion Time MCTð Þ;

X
Cj= Pj j

2 R

(3) 

To illustrate the mathematical notations used, 
Figure 6 provides an example of a Gantt diagram of 
the scheduling of 3 products showing the main para-
meters and variables.

Figure 7. Example of rule encapsulation for the proposed ‘ITV’ strategy.

Figure 6. Example of a Gantt diagram of a scheduling.
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● For AH, the number of products in the cell, so v1 

∈ N*
● For SH, the number of products in the resource

waiting queue, so v2∈ N*

Thus, the SP can adapt its behavior not only according 
to the current cell and resource but also according to 
the number of products in the different waiting areas 
and queues.

5.3.2. Atomic rules implemented
The HH builds strategies using the atomic rules listed 
in Table 3. These 26 rules (i.e. 14 AR and 12 SR) were 
taken from the literature e.g. (Panwalkar and Iskander 
1977; Sh ah zad and Mebarki 2016) and combined to 
serve as a basis for comparison of HH performance.

6. Experiments

The experiments aim to provide a comparative study 
of the performances of PDCS using HH with ITV stra-
tegies compared to PDCS in which the SPs use 
a combination of just two scheduling rules (i.e. 
AR+SR).

In this section, the experimental protocol, the tools, 
and the key parameters used to generate the different 
instances are presented. The results of the 24 different 
scenarios are then summarized and discussed.

6.1. Experimental protocol

To evaluate the proposed approach and its imple-
mentation, it is necessary to study the different beha-
viors of the SPs composing the PDCS under different 
conditions. The problem instances in this paper were 
inspired by the pharmaceutical industry. A set of tools 
was specifically developed to model different config-
urations enabling the use of dynamic manufacturing 
scenarios with various unexpected events. For each 
scenario, 168 executions (i.e. 14 AR x 12 SR) of atomic 
rule combinations were tested to determine the Best 
Rules Combination (BRC) each time. Additionally, as 
the HH ITV is a non-deterministic algorithm (due to 
GA), 30 independent runs were conducted for each 
scenario. This number is considered to be statistically 
sufficient in many studies, e.g. (Pérez-Rodríguez and 
Hernández-Aguirre 2018).

Furthermore, two-way Analysis Of Variance 
(ANOVA) was systematically conducted for each con-
figuration to set up the HH in the best possible way. 
ANOVA considers two mains parameters of the GA: 
the size of the population ‘Pop’ and the replacement 
rate ‘Rate’. These two factors can have 5 values: 100, 
250, 500, 750, and 1000 for ‘Pop’, and 98%, 95%, 90%, 
80%, and 50% for ‘Rate’. The 25 possiblecombinations 
of factors were evaluated 30 times for each 
configuration.

6.2. Generation of problem instances

As illustrated in Figure 8, each instance is composed of 
two elements: the first ‘static’ part concerns the man-
ufacturing system configuration (cells, resources, pro-
cessing and setup times, etc.). The second ‘dynamic’ 
part consists of a scenario describing the different 
events (product arrival rates, breakdowns, etc.).

Table 3. Basic rules repository.
Allocation Rules Sequencing Rules

# Name Signification # Name Signification
1 LQE Least Queued Elements 1 FIFO First In First Out
2 MQE Most Queued Elements 2 LIFO Last In First Out
3 STPT Shortest Total PTa 3 FASFO First At Stage First Out
4 LTPT Longest Total PT 4 LASFO Last At Stage First Out
5 STST Shortest Total STb 5 HPF Highest Priority First
6 LTST Longest Total ST 6 LPF Lowest Priority First
7 QTG Quickest Total Gross 7 SJF Shortest Job First
8 LTG Longest Total Gross 8 LJF Longest Job First
9 QPT Quickest PT 9 SST Shortest ST first
10 LPT Longest PT 10 LST Longest ST first
11 QST Quickest ST 11 SGOS Shortest Gross first
12 LST Longest ST 12 LGOS Longest Gross first
13 QG Quickest Gross
14 LG Longest Gross

aProcessing Time 
bSetup Time

5.3. Implementation of the hyper-heuristic

To minimize the MCT in a multi-stage manufacturing 
system, the proposed implementation of the decisio-
nal strategy model is detailed, as well as a list of the 
different atomic rules composing the rules repository.

5.3.1. ‘ITV’ strategy implemented
As depicted in th e example in Figure 7, th e ‘ITV’ 
strategy (so named in reference to its structure using 
intervals) makes it possible to describe th e behavior 
of th e SP th rough out th e different s tages of 
a manufacturing system via several decisional con-
texts. The heuristics are applied as follows: an AH for 
each  cell (h1 = |L|) and an SH for each  resource (h2 

= |R|). For th e discriminating variables, we consider:
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configurations are frequently encountered in real- 
world industries but remain generic enough to inves-
tigate the validity of the proposal. These configura-
tions allow different levels of ‘routing’ flexibility (i.e. 
the ability to use alternative paths within the 

Figure 8. Control of experimental parameters for instance generation.

Figure 9. Hybrid flexible flow shop configurations HF1 and HF2.

6.2.1. Conf igurations of  multi-stage manufacturing 
systems
As exhibited in Figure 9, two multi-stage manufactur-
ing systems were retained. These are two hybrid flex-
ible flow s h ops named H F1 a nd H F2. T h ese types of 
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manufacturing system) and ‘machine’ flexibility (i.e. 
switching from one operation to another by 
a machine without requiring excessive effort in 
terms of time, cost, or performance). Furthermore, 
the distinction is made between two cell types: ones 
with homogeneous processing times, i.e. the same 
processing time regardless of the machine selected 
by the product, and heterogeneous cells where this 
time varies from one resource to another.

For both configurations |R| = 10 and |L| = 4, which 
corresponds to 10 resources grouped in 4 cells:

(1) Hybrid flexible flow shop HF1: in this configuration,
the first and the last cells comprise 2 machines,
whereas cells #2 and #3 comprise 3 machines. Cells
#1 and #4 are fully flexible whereas the other two cells
are partially flexible. The processing times are hetero-
geneous, except for the first cell where they are iden-
tical regardless of the machine. Setup times vary by
product family for the first two cells but vary by
resource for the third and are zero for the last cell.

2. Hybrid flexible flow shop HF2: as in the HF1 con-
figuration, the first and last cells comprise 2 machines, 
whereas cells #2 and #3 comprise 3 machines. Similarly, 
cells #1 and #4 are fully flexible whereas cells #2 and #3 
are only partially flexible. The processing times are 

homogeneous for cells #2 and #3, and heterogeneous 
for cells #1 and #4. The setup times are independent of 
families for the first cell, zero for the second cell, and 
dependent on product families for cells #3 and #4.

Each product family has a set of operations to be 
carried out in a well-defined order. Configuration HF1 
has |F| = 3 product families, whereas HF2 is a bit more 
complex with |F| = 5 product families. The precedence 
constraints defining the number and order of opera-
tions Oij of each family are described in Table 4.

6.2.2. Scenario generator
To generate manufacturing scenarios for each config-
uration, a tool developed using stoch astic models 
allowed parameters such as the number of products, 
their arrival rates, priorities, and families, as well as the 
number and duration of disturbances (i.e. machine 
breakdowns), to be varied. All th e scenarios gener-
ated are available online.1 Th e files i n C SV format 
describe the dynamic events in discrete-event simula-
tions of a manufacturing system with  both  dynamic 
job arrivals and breakdowns. Figure 10 sh ows the 
scenario generation process:

(1) First, files called scripts, describe |P| products
(identifier, family fj, and priority pj) and their arrival
times, a1j. Each script is named in the format ‘x.y’
where x represents the manufacturing system config-
uration (1 or 2) and y the script number (from 1 to 6).
Figure 11 shows the different product arrival rates per
script.

2. Secondly, each script allows two scenarios to be
generated:

Table 4. Precedence constraints according to product families. 
Configuration F amily Operation Sequence

#1 F1 O1j� O2j � O3j � O4j

F2 O1j�O3j�O4j

F3 O1j�O2j �O4j

#2 F1 O1j� O2j � O3j � O4j

F2 O1j � O3j � O4j

F3 O1j� O2j � O4j

F4 O2j � O3j � O4j

F5 O3j � O4j

Figure 10. Scenario generation process.
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Figure 11. Product arrival rates per script.

Figure 12. GUI of the probabilistic tool developed for scenario generation (with Java/JavaFX).

Figure 13. Plot of main effects (data means) of ITV on HF1.
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(a) A first scenario, indicated by the suffix ‘a’, takes
the script as is, with no perturbation.

(b) The second scenario, indicated by the suffix ‘b’,
takes the script and adds a certain number of
disturbances. The latter are generated accord-
ing to two parameters: the probability of occur-
rence and the duration of the disturbance
determined at random.

Thus, for each configuration, the 6 scripts give rise to 12 
scenarios. The product family distribution determines 

the number of operations for each scenario. Each pro-
duct may require between 2 and 4 operations (see 

Table 4). So, each scenario requires between 177 and 
410 operations, which is quite a significant number 
compared to the literature but still realistic in industry. 
The results obtained through simulations are given in 
the following section.

6.3. Experimental results

Regarding the simulation tool, the proposed 
approach, which is based on a distributed architec-
ture, conditioned the choice of the multi-agent plat-
form. Simulations were conducted with specific tools 
(Figure 12) developed using Java Eclipse IDE and 
a JADE (Java Agent DEvelopment framework) multi- 
agent platform. The simulations were performed on 
a workstation with an Intel® Xeon® E3-1230 v3 
@3.30 GHz CPU and 8GB of RAM. For each configura-
tion, the simulations required between 60 and 
120 minutes of computing time depending on the 
complexity of the configuration and the length of 
the scenarios. These relatively low execution times 

Table 5. Results of the two-way ANOVA on HF1.

Source of 
variation

Sum of 
squares 
mean

Degrees of 
freedom

Mean of 
squares Fcalc Prob.

Pop 4.9148 4 1.2287 22 4.7777E- 
13

Rate 0.1610 4 0.0402 0.7210 0.5795
Pop*Rate 0.9552 16 0.0597 1.0689 0.3944

Figure 14. Products in HF1 over time for scenario S1.1a.

Figure 15. Products in HF1 over time for scenario S1.4b.
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were made possible by th e parallelization of the 
multi-agent containers.

6.3.1. Configuration HF1
For the HH ITV, the two-way ANOVA (Figure 13) shows 
that the size of the population ‘Pop’ has a statistically 
significant impact with a p-value < 0.05 (Table 5). The 
replacement rate h as a sligh t impact on the 
performance.

Considering these ANOVA results, the parameters 
used to set up the GA of the HH are Pop = 1000 and 
Rate = 80%.

Figure 14 shows the evolution of the number of 
products in the manufacturing system for scenario 
S1.1a. For this first scenario, the best combinations con-
sisted of the LQE rule associated with FIFO. Using this 

combination, the 60 products were produced with an 
MCT of 129.42 min. The HH ITV lowered the MCT to 
128.28 min.

Another example is depicted in Figure 15. For sce-
nario S1.4b with 10 resource breakdowns, the best rule 
combination was QTG+LJF with an MCT of 139.18 min. 
The HH ITV lowered it significantly to 118.29 min.

An important aspect is shown in Figure 16, which 
presents the relative performance of ITV compared to 
BRC for each of the 12 scenarios in HF1. It appears that 
ITV still performs better than BRC. This gain varies 
according to the scenarios.

6.3.2. Configuration HF2
The two-way ANOVA results presented in Table 6 
and Figure 17 show that the Pop factor has 
a statistically significant i mpact i n c ontrast t o the 
replacement rate.

Taking into account the above results, the para-
meters used to set up the HH are Pop = 1000 and 
Rate = 90%.

Figure 18 shows the trends in the amounts of 
products for scenario S2.2a for which the BRC was 
LPT+LIFO with an MCT of 106.23 min. ITV was more 
efficient with an MCT of 104.67 min.

Figure 16. Mean completion times for HF1.

Table 6. Results of the two-way ANOVA on HF2.

Source of 
variation

Sum of 
squares 
mean

Degrees of 
freedom

Mean of 
squares Fcalc Prob.

Pop 44.6935 4 11.1733 14.9304 1.3371E- 
09

Rate 1.9945 4 0.4986 0.6662 0.6168
Pop*Rate 9.9512 16 0.6219 0.8310 0.6479

Figure 17. Plot of main effects (data means) of ITV on HF2.
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Figure 20 shows the average MCTs for the 12 sce-
narios in HF2. As with HF1, the HH outperforms each 
time the 168 combinations of atomic scheduling rules.

Figure 18. Products in HF2 over time for scenario S2.2a.

Figure 19. Products in HF2 over time for scenario S2.6b.

Figure 20. Mean completion times for HF2.

One last example is provided in Figure 19. 
Scenario S2.6b includes 3 breakdowns. Compared 
to S2.6a, the LPT allocation rule is in both BRCs. 
However, the sequencing rules are LST and LASFO 
for S2.6a and S2.6b, respectively. ITV provides an 
MCT of 70.88 min, whereas the BRC LPT+LASFO 
provides a considerably higher MCT of 94.26 min.
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6.4. Discussion

The purpose of this section is to discuss the results of 
the simulations presented above. Two main aspects 
are considered. The first concerns the pertinence of 
rule switching. The second aspect concerns the per-
formance of the proposed HH.

6.4.1. Study of  the rule switching
Th e main focus h ere is on th e impact th e configura-
tions, as well as breakdowns, may have on the BRCs.

(1) Impact of configurations: by observing the BRCs in
the two manufacturing system configurations (Figure
21), it appears that only 4 AR out of the 14 rules
implemented appear in the BRCs: 3 rules for HF1
and 2 rules for HF2. The results for SR are slightly

different; 8 SR among the 12 rules implemented 
appear in the 24 BRCs: 2 SR for HF1 and 7 SR for 
HF2. This reveals that the performance of the rules is 
closely linked to the problem instances, that is to say, 
both configurations and scenarios.

2. Incidence of breakdowns: with identical scripts (i.e.
same configuration and same product arrivals), the 
occurrence of breakdowns may induce a change in 
the BRC. Thus, a combination of rules that perform 
best for a scenario without disturbances is overridden 
by another combination in the presence of break-
downs. Figure 22 shows rule changes by comparing 
the BRCs two by two. Rule changes appear in a third of 
cases. These results show that the need to switch from 
one rule to another also depends on whether break-
downs occur or not.

Figure 21. Occurrences of both Allocation and Sequencing Rules in the BRCs per configuration.

Figure 22. Rule changes in the BRC for scenarios with and without breakdowns.

Figure 23. Average Mean Completion Times (MCTs).
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25): from 0.77% for scenarios S2.1a and S2.1b up to 
26.54% for S2.6a.

It also appears that in addition to being more 
efficient, HH is more resilient to the occurrence of 
breakdowns than BRCs, as shown in Figure 26. 

2. Impact of arrival rates: as the results show, the
performances of the HH are strongly correlated to the 
product arrival rate. However, as shown in Figure 27, 
ITV is particularly efficient with cases of heavily used 

Figure 24. Performance gains with ITV compared to BRC in HF1.

Figure 25. Performance gains with ITV compared to BRC in HF2.

6.4.2. Study of  HH perf ormance
This section discusses the performance of the HH 
from three different a ngles: i nstances ( i.e. both 
configurations a nd b reakdowns), p roduct arrival 
rates, and finally, t he c onvergence o f t he HH.
(1) Im pact of instances: as sh own in Figure 23, HH
always performed better compared to th e BRC
approach, regardless of the configuration.

This performance gain can vary significantly depending 
on the different scenarios tested (Figure 24 and Figure 

Figure 26. Impact of breakdowns on mean completion times.
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products in the cell and the resource queue sizes. 
This contrasts with the behavior exhibited by the SP 
with BRCs, which highlights the fact that the percep-
tion of the DC induces a significant improvement in 
performance.

3. Impact of the precision of the decisional contexts:
the proposed HH is based on a stochastic search and 

Figure 27. Average performance gains compared to arrival rates.

systems. Indeed, high arrival rates lead to SP accumu-
lations within the system and the occurrence of bot-
tlenecks. The ability of SP to combine several rules in 
the decisional strategies enables a more efficient flow 
of products compared to BRC. By taking into account 
the DC, the SP can select and apply the most relevant 
rule, notably taking into account the number of 

Figure 28. Standard deviations of the HH across HF1.

Figure 29. Standard deviations of the HH across HF2.
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discriminating variables allows Smart Products to 
characterize different decisional contexts and thus 
switch efficiently from one scheduling rule to 
another. An implementation was proposed for 
the dynamic scheduling of multi-stage manufac-
turing systems with multiple constraints (prece-
dence, interoperability, setup times, etc.).

To validate the proposed approach, a case study 
inspired by the pharmaceutical industry and based on 
two different hybrid flexible flow shop configurations 
was tested using this implementation. A total of 24 
problem instances were generated with different 
dynamic product arrivals and resource breakdowns. 
The comparative study with 168 combinations of 
classical scheduling rules from the literature high-
lighted the superiority of the proposed ITV strategy 
to minimize the Mean Completion Time. Furthermore, 
the proposed approach enhanced both the global 
performance and reactivity of the manufacturing con-
trol system. However, one limitation of our contribu-
tion is the complexity of the decisional strategies 
implemented. Indeed, the analysis of the standard 
deviations highlights that although intervals allow 
the products to efficiently switch from one rule to 
another, they also increase the search space to be 
explored by the hyper-heuristic.

These first encouraging results open up inter-
esting prospects. Further work must also be car-
ried out to develop more effective decisional 
contexts by exploring other discriminating vari-
ables. In addition, a future implementation on 
the S-mart/AIP-PRIMECA cell (UPHF 2020) is 
under consideration. This one will allow making 
experiments on a real flexible manufacturing cell 
with robots, shuttle conveyors, etc. Some dynamic 

Figure 30. Average standard deviations versus arrival rates.

so it is important to consider the standard deviations 
of different executions. As exhibited in Figure 28 and 
Figure 29, variations were observed in the standard 
deviations of the HH. It also seems to be correlated 
with the arrival rate (Figure 30). In other words, even if 
the HH ends up converging towards efficient solu-
tions, these results reveal a greater ‘difficulty of con-
vergence’ over the 30 independent runs.

Th ese standard deviations draw attention to the 
complexity of th e decisional strategies implemented 
and h igh ligh t th e possible limits of th is type of 
approach  wh en taking into account an ever- 
increasing number of decisional contexts. This is remi-
niscent of th e problem of overfitting i nduced b y an 
excessive inclusion of terms in the models that prove 
to be more complex th an necessary (Hawkins 2004). 
Th e decisional strategies must remain well-balanced 
by allowing th e beh avior of th e SP to be defined in 
detail wh ile avoiding th e combinatorial explosion of 
the search space.
From these experiments, to be pursued and intensified, 
the proposed PDCS integrating a HH was able to face 
perturbations reactively while ensuring the good glo-
bal performance of the production system. However, 
the HH may come up against certain limits as the 
complexity of the decisional strategy, which can lead 
to convergence issues.

7. Conclusion

In this paper, the dynamic scheduling of manu-
facturing systems was addressed. A solution inte-
grating a Product-Driven Control Architecture 
with a hyper-heuristic was proposed. A generic 
model of a decisional strategy using intervals of 
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events such as maintenance tasks and some con-
straints such as transportation times must be 
addressed in the future as well.

Note

1. https://doi.org/10.13140/RG.2.2.30326.11848.
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