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Railway Obstacle Detection Using Unsupervised Learning:

An Exploratory Study

Amine Boussik1, Wael Ben-Messaoud1, Smail Niar2, Abdelmalik Taleb-Ahmed2

Abstract— Autonomous Driving (AD) systems are heavily
reliant on supervised models. In these approaches, a model
is trained to detect only a predefined number of obstacles.
However, for applications like railway obstacle detection, the
training dataset is limited and not all possible obstacle classes
are known beforehand. For such safety-critical applications, this
situation is problematic and could limit the performance of ob-
stacle detection in autonomous trains. In this paper, we propose
an exploratory study using unsupervised models based on a
large set of generated convolutional autoencoder models to de-
tect obstacles on railway’s track level. The study was conducted
based on three components: loss functions, activations and
optimizers. Existing works rely on fixing thresholds to judge the
performance of the model. We propose instead a methodology
based on Multi-Criteria Decision Making (MCDM) to evaluate
the performance of all models. Furthermore, we introduce
the notion of gap-score to evaluate each model by calculating
the average difference between the reconstruction score on
images with and without obstacles. The aim is to find models
maximizing the average of gap-scores and rank them according
to their performances. Experimental results show that the
evaluated models can provide up to 68% average gap-score.

I. INTRODUCTION

Obstacle detection is still one of the most challenging

and critical tasks in computer vision. From autonomous

cars [3] [2], to autonomous trains [23] [22] [24], obstacle

detection plays an important role to enhance the perception

of the autonomous system. This task is of utmost priority,

especially for environment monitoring in autonomous trains.

Thanks to the ever growing deep learning methods and

computing power of embedded systems, the monitoring of

the environment in such systems have become reasonably

easy to handle.

In this paper, we exploit deep learning approaches in order

to detect obstacles for railway applications. We focus only on

the track level using mounted RGB cameras on the train. Due

to the scarcity of works in terms of railway obstacle detection

using deep learning methods and observing that the majority

of works are leaning towards the use of supervised methods

such as object detectors [4], [6] [5] or segmentation models

[7], we aim to explore the use of unsupervised learning

to solve this problem, especially the use of convolutional

autoencoders.

This choice is driven by three factors: First, as aforemen-

tioned, a scarcity of works exploiting unsupervised methods
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in railway obstacle detection is noticeable with the only

exception of the recently published [8]. Second, the use of

supervised methods requires previous knowledge about the

obstacles, hence enumerating all possible obstacles that we

may encounter and labeling them to create classes which is

nearly impossible in a real-life scenario. Third, to the best of

the authors knowledge, railway-oriented datasets describing

real-world obstacles are few to non-existent, but on the other

hand, normal data without obstacles are available.

We propose in this paper an exploratory study using

convolutional autoencoder to discriminate, at frame level,

between normal and anomalous images using reconstruction

score. In our study, we mainly focus on the following

three components: Activation functions, loss functions and

optimizers in order to find the best model that is able to

detect anomalies on railway’s track level.

In our work, we generate 240 models following the

combination of 5 loss functions, 8 activation functions and 6

configuration of 3 different optimizers. We used the architec-

ture depicted in 1 to measure their influence on improving

the results and also to explore which best configuration

gives the best results. We also propose a method to rank

all the models from best to worst by introducing the notion

of gap-score. Gap-score is a percentage-based metric based

on the difference between reconstructions of images without

any obstacles and reconstructions of the same images with

obstacles.

The training process was conducted using a subset of

RailSem19 [11] consisting of Regions of Interest (RoI) of

track levels. In order to rank all the models on gap-scores,

we use a testing dataset consisting of normal images and the

same images with obstacles. Lastly the evaluation process of

the 240 generated models was conducted using the Technique

for Order of Preference by Similarity to Ideal Solution

(TOPSIS) [12] an MCDM algorithm. The used criteria are

the average gap-score on all normal images and the number

of positive gap-scores for each normal image. By doing so,

we avoid relying on arbitrary thresholds to judge an input

whether it is anomalous or not.

The best resulting model was tested on a real world

scenario describing a real obstacle with convincing results

where the gap-score is considerably high on frames where

the obstacle is present and considerably low on normal ones

as described in section VI.

We summarize our contributions as follows:

• First, we propose an exploratory study using 240 con-

volutional autoencoders to detect on frame level railway

obstacles. This large set of convolutional autoencoders
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has been built by combining the most frequently used

activation functions, loss functions and optimizers.

• Second, we propose a methodology for ranking all the

generated models using multi-criteria decision making

from best to worst. The ranking is based on the gap-

score which is the average of all gap-scores for differ-

ent images. This comparison can help the designer to

choose the most efficient model in obstacle detection.

• Third, we used RailSem19 [11] to extract RoIs to train

the convolutional autoencoder instead of training on the

whole image. This helps the model to concentrate only

on features present on track level and avoid learning

varieties on the whole image. By this way, we built a

large input-data for training, testing and comparing the

240 convolutional autoencoders.

The remainder of this paper is organized as follows.

Section II gives an overview of the state of the art in the

domains of unsupervised models and Railway obstacle detec-

tion applications. In section III, we present our methodology

for obstacle detection based on convolutional autoencoders.

Section IV is devoted to the evaluation methodology. Ex-

perimental results are presented in Section V. Finally, the

conclusion and future work will be given in section VI.

II. RELATED WORKS

Existing works in the domain of this paper can be divided

in two parts:

A. Unsupervised models for anomaly detection

In the literature, there is an important number of works

that uses unsupervised models for anomaly detection. Deter-

ministic models, such as [1], propose an autoencoder for

anomaly detection using non linear data. The authors in

[13] use a convolutional autoencoder to detect anomalies on

image logos of mobiles. They identify the input image as

negative when it exceeds a predefined threshold. The authors

in [14] exploit the use of convolutional autoencoders to detect

defects in concrete. Their work relies on thresholding on

pixel level where the mean value of the anomalous class is

supposed to be as high as possible.

In addition to deterministic models, generative adversarial

networks (GANs) have also been used in image anomaly

detection. The authors in [15] propose Ano-GAN, one of the

first works that exploits a GAN [16] in anomaly detection.

The authors propose an iterative method to map input images

to their corresponding noise in order to create their corre-

sponding generated image and compare it with the original

input. While the work in [17] is not being a method to detect

anomalies using generative models, it represents a stepping

stone for a lot of works using generative models in anomaly

detection such as [19]. It uses a Bidirectional-GAN [17]

to learn the mapping from the image to its corresponding

latent representation automatically without the need of an

iterative step. The authors in [18] propose GANomaly. Their

work proposes enhancements in contrast to previous works

in terms of the architecture and the used loss function. They

use an autoencoder followed by an encoder in the generator

and a novel loss function consisting of three components:

adversarial loss, contextual loss and encoder loss.

B. Railway obstacle detection applications

In the context of using deep learning methods to detect

railway obstacles, the majority of projects use image process-

ing approaches and rarely rely on deep learning methods. In

[20] a study on the feasibility of detecting railway obstacles

at crossing level is presented. Their proposed method focuses

on a charge-coupled device (CCD) greyscale camera and

image processing to implement the detection method. The

validation step is carried over by using a miniature crossing.

The authors in [21] list a set of existing solutions and

methods in the field of obstacle detection on railway’s

crossings. Among those methods are image processing based

methods and sensor-based such as optical beams and 3D-

laser radars. The work in [22] proposes a method based on

background subtraction. Their method computes frame-by-

frame correspondences between the current and the reference

image sequences. Obstacles in their method are detected

by applying image subtraction to corresponding frames. In

[23], the authors apply hough Transform to detect possible

obstacles using frontal mounted cameras.

As aforementioned, a scarcity in terms of the application

of machine learning models in railway obstacle detection

is considerably discernible. Nevertheless, some works tried

to exploit supervised methods in order to detect obstacles.

The authors of [24] exploit Fast Region-based Convolutional

Network (Fast R-CNN) [5] on a predefined set of obstacle

labels such as animals, persons, trains. While not proposing a

specific detection method for obstacles, [25] proposes a new

architecture to detect only rail tracks with high accuracy.

Moreover the specific use of unsupervised learning meth-

ods is still unexploited for railway obstacle detection. The

closest work to the work we present here is a recently

published in [8]. In this paper, the author propose a frame-

work to detect obstacles in night-time using a convolutional

autoencoder by producing absolute and gradient differences

of the reconstructed image. The framework is consisting of

a convolutional autoencoder, a CNN to predict on the frame

level whether the image is anomalous or not. The CNN is

also used to extract the corresponding heatmap to locate the

anomaly. They use a pre-trained CNN on their own dataset

entitled vesuvio [8] to predict the classes and evaluate the

localisation of the obstacles. An initial version of the same

work by the same authors can be found in [9]

III. OBSTACLE DETECTION USING CONVOLUTIONAL

AUTOENCODER

We use a convolutional autoencoder where only normal

unlabeled data is required to extract knowledge without any

labels. In terms of anomaly detection, the model is trained

on healthy inputs only. Given an input x, the model tries to

encode it by compressing it to extract its latent data then

decode it by comparing it to the original input generating

by this its reconstruction x′. The autoencoder is divided in

three components:

2



Encoder: The encoder part maps an input sample x to the

bottleneck layer z.

Bottleneck Layer: The bottleneck z layer stores the low-

dimensional latent representations for every sample x.

Decoder: The decoder part maps back the data from z to

generate a reconstruction x′ of the input x.

We use backpropagation algorithm to minimize the dif-

ference between the input data x and its reconstruction x′

jointly for both the encoder and the decoder.

argmin
ω,θ

L(x, x′) (1)

Where ω and θ are respectively the parameters to optimize

for the encoder and the decoder. L is the used loss function.

A. Loss functions

In this subsection, we present the different loss functions

we consider in our comparison: Mean squared error (MSE)

[26] is a pixel-wise loss function measuring the square

difference between the ground truth and predicted labels.

Mean absolute error (MAE) [26] is a pixel-wise loss function

measuring the absolute difference between the ground truth

and the predicted labels. Peak signal-to-noise ratio (PSNR)

[27] is an image quality assessment metric used to compare

the quality of two images. Often, the ground truth is referred

to as signal and the prediction is referred to as noise.

Structural similarity (SSIM) [28], [27] is a patch-wise quality

metric used to measure the similarity between two images.

Instead of using traditional error summation methods, this

metric is designed by modeling any image distortion as a

combination of three factors that are structure, luminance and

contrast. Multi-scale Structural similarity (MS-SSIM) [28] is

a variant of SSIM. MS-SSIM takes into consideration many

levels of resolution and distortion and can be more robust

with regard to variations in viewing conditions.

B. Activation functions

For the second component of our exploratory study, we

explore the influence of the used activation functions. We

compare 8 different activation functions : Rectified linear

unit (relu) [33], Exponotial linear unit (elu) [34], Scaled

Exponential Linear Unit (selu) [34], Mish [36], Swish [37],

Hyperbolic tangent (tanh) [32], Mila [38] and Sharkfin [39].

C. Used Optimizers

For the last component of our exploratory study, we ex-

plore the importance of the used optimizers and their impact

on the model’s end results. In this study we compare three

different optimizers: Adam [29], RAdam [30] and Novograd

[31]. Further information regarding the used configurations

is described in section V-A

IV. EVALUATION METHODOLOGY

A. The Proposed Methodology

Most works which use convolutional autoencoders to

detect anomalies are relying on its performance and the used

training loss in order to set a fixed threshold to categorize

the input as being anomalous or not. If the score generated

by comparing the input and its reconstruction exceeds the

threshold, it is flagged as anomalous. On the contrary, if

the input does not exceed this threshold, it is categorized

as a normal input. We assume that the key idea of image

anomaly detection using a score-based unsupervised model

is to discriminate well between normal and anomalous inputs

by giving a minimal score on normal inputs and a maximal

score on anomalous input. In existing works, every input

is compared to an arbitrary fixed threshold without further

assessment on the performance of the model on images

with and without anomalies. We instead propose a method

to rank and evaluate the models using gap-scores. These

gap-scores correspond to the percentage gaps between the

2 reconstructions: the one obtained from the normal image

without obstacle and the one obtained from the image with

the obstacle. In other words, the gap-score is a percentage

metric measuring how much the normal and anomalous

images are different from each other. We then generate

for each model two criteria described in section IV-B and

maximize them using TOPSIS [12] as described in section

IV-C.

B. Respected Criteria

We denote by background image the normal image without

obstacles. We also denote by inlaid image the same normal

image with inlaid obstacles. Let X = {x1, x2, x3, . . . , xn}
be the dataset of background images containing N images

and X̂ = {x̂1,1, x̂1,2, x̂2,1, x̂2,2, . . . , x̂n,m} the dataset of

inlaid images containing M images with M ≥ N . Each

background image xi can have at least one or many inlaid

counterparts xi,1, xi,2 ... xi,m. A good model is a model that

maximizes the following two criteria:

• For every background image and its generated inlaid

counterparts, the model should maximize the average

of the the gap-score between every inlaid image and its

original background:

si = d(xi, x
′

i), ∀xi ∈ X (2)

si,j = d( ˆxi,j , ˆx′

i,j), ∀xi ∈ X, ∀xj ∈ X̂ (3)

C1 =
1

N

n
∑

i=1

m
∑

j=1

si,j − si

si
(4)

Where xi and x′

i are respectively a normal image and

its reconstruction by a given convolutional autoencoder

model using a unique metric d. ˆxi,j and ˆx′

i,j are

respectively an inlaid counterpart of image xi and its

reconstruction by a given convolutional autoencoder

model using a unique metric d. Here d is MSE [26].

si and si,j are respectively the MSE scores for both a

background image and its inlaid counterpart. We denote

by C1 the average gap-score criterion.

• For every background, a model should maximize the

number of positive gap-scores generated for every back-

ground:
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Ci =

{

1, if
∑m

j=1

si,j−si
si

× 100 > 0, ∀ xi ∈ X

0, otherwise

(5)

C2 =
n
∑

i=1

Ci (6)

We denote by C2 the positive scores criterion.

C. Multi-criteria decision making for model evaluation

In order to evaluate the models generated from our ex-

ploratory study, we use MCDM methods, especially TOPSIS

[12]. The evaluation matrix (xij)m×n is composed of n

criteria and m alternatives. In our case, the criteria are the

ones described in (section criteria), and the alternatives are

the generated models. We fix a maximization strategy to

know which model maximizes both criteria following the

attributed weights for every criteria. Finally we calculate the

distance d between each alternative, the ideal and anti-ideal

solution extracted from the evaluation matrix to attribute a

score for every alternative in order to rank them according

to their distance to the ideal solution.

We summarize the steps used in TOPSIS [12] as the

following:

• Let’s consider T = (xij)m×n our evaluation matrix

consisting of m = 240 and n = 2 where m is the

number of generated models and n the number of

criteria. We normalize the matrix as follows:

rij =
xij

√

∑m

j=1
x2
ij

, i = 1, ...,m; j = 1, ..., n. (7)

• Multiply the columns of the normalized decision ma-

trix by the associated weights to obtain the weighted

decision matrix:

vij = wj .rij , i = 1, ...,m; j = 1, ..., n (8)

Knowing that we have two criteria, we chose two

weights, w1 and w2 where w1 + w2 = 1.

• Determine the ideal and anti-ideal solutions. The ideal

solution, denoted as A+, and the anti-ideal solution,

denoted as A−, are defined as follows (reformulate):

A+ = {v+1 , v
+

2 , .., v
+
n } (9)

A+ = {(max
i

vij |j ∈ Kp)}{min
i

vij |j ∈ Kp)} (10)

A− = {v−1 , v
−

2 , .., v
−

n } (11)

A− = {(min
i

vij |j ∈ Kn)}{max
i

vij |j ∈ Kn)} (12)

Where Kp and Kn are respectively the set of criteria

having a positive impact, and the set of criteria having

a negative impact.

• Next, we calculate the L2 distance between the target

alternative i and the ideal and anti-ideal solution respec-

tively:

S+

i =

√

√

√

√

n
∑

j=1

(v+j − vij)2, i = 1, ...,m; j = 1, ..., n.

(13)

S−

i =

√

√

√

√

n
∑

j=1

(v−j − vij)2, i = 1, ...,m; j = 1, ..., n.

(14)

• Lastly, we calculate the similarity to the ideal solution:

S∗

i =
S−

i

S−

i + S+

i

(15)

V. EXPERIMENTS

A. Architecture and Hyperparameters

In terms of the convolutional autoencoder’s architecture,

we set the number of layers, depth, hyperparameters, upsam-

pling, maxpooling, transposed convolutions, strided convolu-

tions and the bottleneck size as shown in 1. The encoder and

decoder parts consist of 6 convolutional layers respectively to

downsample and upsample the image. For each layer in the

encoder, we use strided convolutions to reduce the size of

the image by 2 for each step. We observed that avoiding

maxpooling helped generating good reconstructions. with

each layer we set the filters from 32 to 128 with kernels

of size 3x3 except for the bottleneck layers that has 48

filters. We observed that below this value, the performance

of the model becomes weaker, and above this value, the

model tries to easily reconstruct unusual segments of an

anomalous image. For each layer of the decoder part, we

use Upsampling instead of transposed convolution and filters

ranging from 128 to 32 with kernels of size 3x3 (figure

architecture). The aim of this part is to get the adequate

architecture depending on the used training dataset to initi-

ate our exploratory study. Using the same architecture, we

generate each time a model following a combination of

the aforementioned components of our exploratory study.

In terms of the activation functions’ hyperparamters, MSE

[26], MAE [26] and PSNR [27] are without parameters.

Only SSIM [28] and MS-SIM [28] are concerned. We set

their parameters to the default parameters recommended in

their original papers. Every activation function is paired with

uniform glorot initialization [40] except for selu [35], which

is paired with normal lecun initialization [35]. Regarding the

used optimizers, we differentiate different kinds of configu-

rations for each optimizer used. For Adam [29] we use only

one configuration with a learning rate = 10−3. For RAdam

[30] we set two different configurations, a raw configuration

using the following parameters, learning rate = 10−3, steps

= 0, warmup = 10−1 and minimum learning rate set to 0.

The other configuration is the parameterized configuration

with learning rate = 10−3, steps = 105, warmup = 10−1 and

4



� Bottleneck layer 4x4 with 48 filters � Upsampling layer 2x2

� 2D Convolution layer with 3x3 kernels � Stride 2x2

� 2D Convolution layer with Sigmoid.

Fig. 1. Convolutional autoencoder architecture, all layers use 3x3 kernels, the latent layer represents the bottleneck layer of the model. The input of the
encoder is a normalized image of size 256x256 of track level regions of interest. The last layer of the decoder represents the output of the whole model
and uses sigmoid [42] as activation to output pixel values ranging between 0 and 1.

minimum learning rate set to 10−5. For Novograd [31] we

distinguish three kind of configurations with the following

parameters, a raw configuration with learning rate = 10−3,

decay = 0 and without using gradient averaging. A second

parameterized configuration with learning rate = 10−3, decay

= 10−1 with gradient averaging and the last configuration for

Novograd [31] is an averaged parameterized configuration

with learning rate = 10−3, decay = 10−3 with gradient

averaging.

Each generated model uses the same architecture and

configurations described above and is trained using the

dataset described in section V-B for 300 epoches. Figure

1 shows the final architecture of each generated model.

B. Training Dataset

The used dataset in training the convolutional autoen-

coders is a subset of RailSem19 [11] where rail tracks

are extracted as regions of interest. The original dataset

is processed beforehand where we omit unexploitable and

tramway scene images leaving only the railway images.

Then, we generate the corresponding masks for each region

of interest by connecting the polygons in the corresponding

json file for each image scene instead of working with the

corresponding predefined masks of each image. By doing

so, we can individually extract each rail track present on the

scene. By applying the extracted mask for each scene, we

generate a dataset consisting only of regions of interest. Each

region is then cropped and resized to a resolution of 256x256

pixels. Figure 2 shows a preview of the extracted dataset.

The resulting dataset consists of 1353 images of track level

regions of interest and split into 80% for training and 20%

for validation.

C. Test Dataset

In order to calculate the gap-score and due to the lack of

a railway-driven dataset describing real world obstacles over

rails, we generate our test dataset using Gaussian-Poisson

Fig. 2. Preview of our dataset of RoIs using RailSem19 [11].

Generative Adversarial Network (GP-GAN) [10] which is

a generative model capable of blending images with high-

resolution and generating realistic blends to inlay obstacles

synthetically on RailSem19 [11] images. The dataset consists

of 19 background images where no obstacle is inlaid, this

represent our reference in order to calculate the gap-score.

Then for each background, we inlay on it obstacles by

means of GP-GAN [10] in order to create inlaid counterparts.

Each background have an average of 10 inlaid counterparts.

The resulting dataset consists of 19 regions of interest for

the background and 181 regions of interests for the inlaid

counterparts. The regions of interests are extracted following

the same fashion described in V-B. Figure 3 shows a

preview of the dataset with some reconstructions results.

VI. RESULTS

In this section, we show the results of our exploratory

study on background images and their inlaid counterpart.
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Fig. 3. Preview of the test dataset showing four different scenarios. The first and third rows show four examples of background images without any
obstacles followed by their region of interest and the reconstruction of the same region by a picked model. The second and the last rows show the inlaid
counterparts of the previously shown backgrounds, each with their respective regions of interest and reconstructions by the same model.

Then we show the results of every model in relation to the

corresponding calculated gap-scores and their ranking using

TOPSIS.

For the sake of simplifying the results of every model

generated in our study, we take only the 10-best generated

models from the 240 models. Furthermore, to simplify show-

ing the results, a naming convention is used for each model

to combine it with the corresponding components as follows:

optimizers loss activation. For optimizers, as described in

as described in section V-A, we distinguish the following

naming conventions:

• radam [par,raw]: Here ’par’ label signifies custom

RAdam optimizer with the parametrized configuration

and ’raw’ signifies the raw configuration.

• novograd [par,raw] [avg]: Here ’par’ label signifies

Novograd optimizer with the parameterized configura-

tion, ’raw’ signifies the raw configuration and ’avg’

signifies the use of gradient averaging.

A. Models Evaluation and Ranking

This section shows the final results generated from the two

previously shown results. It represents as well the output of

TOPSIS [12] method to rank all models according to the

respected criteria. ’Average gap-scores’ column represents

the first criterion shown in section IV-B where calculate

the average of all gap-scores for each background, ’Positive

scores’ represents the second criterion shown in section IV-

B. By applying TOPSIS [12] on both criteria we get the third

column ’Rank’ in order to rank the top models from best to

worst.

For the first table I, we observe that the majority of models

have a combination of RAdam [29] as an optimizer and

psnr [27] as a loss function with the exception of the best

model that has Adam [29] as an optimizer and two other

models having MSE [26] as a loss function. With regard

to Gap-scores, all models have scores ranging from 52.97%

to 68.17%. In terms of average positive scores of the test

dataset, none of the 240 generated models reaches a perfect

score of 19 positive backgrounds with the maximum reached

is 18 of 19. The corresponding weights of TOPSIS [12]

method are of equal importance for both criteria i.e w1 = 0.5,

w2 = 0.5. With that, the method tries to find the best models

that respect an equal trade-off between maximized gap-

scores and positive scores respectively. Finally we observed

a variety of activation functions for every model such as mila

[38], relu [33], mish [36], elu [34], selu [35] and tanh [32].

However, for the second table II, by giving much impor-

tance to positive scores, i.e w1 = 0.1, w2 = 0.9, we observe

the emergence of new models having different combinations

such as the pairing of RAdam [29] with MS-SSIM [28] and

swish [37], the pairing of RAdam [29] with SSIM [28] and

as well as the pairing of Novograd [31] and MSE [26]. Those

same models are the only ones having the most of positive

score with the exception of the model using SSIM [28] by

reaching 18 out of 19 positive scores on all backgrounds,

but at the cost of average gap-score ranging from 36.93% to

44.62%. We observe the same tendency concerning the top

model which stays the same even when changing the weights

for every criterion.
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B. Testing on a real world scenario

We test our best evaluated model with the configuration

’adam psnr mila’ on a video [41] describing a rare event of

a real-life scenario of railway obstacle. The video shows a

scenario where a horse tries to trespasses the railway level

along with the driver of train. We extract from the video two

segments that highlights both the obstacle and the driver on

track level. We then extract the corresponding regions of

interest of each frame for each segment to prepare them for

the model. For the sake of showing the results as gap-scores

on each frame, we calculate the score for only one image on

the beginning of the video that shows no sign of obstacle in

order to calculate the gap-score for other frames containing

obstacles. Figure 4 and 5 are diagrams showing the results

of the best evaluated model (first in rank) using gap-scores

for the first and second segment respectively. Each diagram

shows the gap-score of each frame in percentage along the

Y-axis, and the frame number in segment along X-axis. Both

results can be found at the following video links in [43], [44]

Fig. 4. Results of the gap-score on the first segment. The gap-score stays
relatively constant for frames at the beginning and the end and rises with
the obstacle reaching peak values up to 69%

Fig. 5. Results of the gap-score on the second segment. The gap-score
stays relatively constant for frames at the beginning and the end and rises
with the obstacle reaching peak values of 114%, 230% and 52% respectively.

Models Average gap-score Positive scores Rank

adam psnr mila 68.17% 17 1

radam par psnr mila 66.62% 16 2

radam par mse relu 62.88% 15 3

radam par psnr mish 61.14 % 15 4

radam raw psnr mila 61.14% 15 5

radam raw psnr elu 57.42 % 14 6

radam raw psnr selu 55.00% 16 7

radam par mse tanh 53.62 % 17 8

radam raw mse relu 53.12 % 15 9

radam par psnr elu 52.97 % 14 10

TABLE I: Results of evaluation based on the generated

models (top 10) with equal importance to both criteria with

the following weights, w1 = 0.5 for gap-scores and w2 = 0.5

for positive scores.

Models Average gap-scores Positive scores Rank

adam psnr mila 68.17% 17 1

radam par mse tanh 53.62% 17 2

radam par msssim relu 44.62% 18 3

radam raw psnr mish 49.78% 17 4

radam raw ssim relu 45.21% 17 5

radam par psnr mila 66.62% 16 6

radam raw mse mila 42.78% 17 7

novograd par avg mse tanh 36.93% 18 8

radam par msssim swish 41.67% 17 9

adam mse tanh 40.72% 17 10

TABLE II: Results of evaluation based on the generated

models (top 10) with more importance given to the number

of positives scores for each background with the following

weights, w1 = 0.1 for gap-scores and w2 = 0.9 for positive

scores.

VII. CONCLUSION

In this paper, we have explored the use of convolutional

autoencoders for railway obstacle detection by generating

240 models with different components. We introduced gap-

score which is a percent-based metric dedicated to evaluate

the performances of the generated models. We also used

MCDM algorithms to rank them. The top 10 models showed

performances reaching an average gap-score up to 68% on

the test set. The best model was tested on a rare event of

an obstacle over rails, the model shows high values when

encountering an obstacle and low values on normal frames.

The remaining models have also proved their efficiency on

the same real scenario. The ranking of the models stayed the

same on both synthetic and real cases.

The next step will be the development of a segmentation

model to locate in real time the RoIs as well as adding more

decision criteria tailored specifically for railways.
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for detection of obstacles on the railway level crossing.” Proc. 17th
Scientific-Expert Conference on Railways RAILCON ‘16. 2016.

[22] Mukojima, Hiroki, et al. ”Moving camera background-subtraction
for obstacle detection on railway tracks.” 2016 IEEE international
conference on image processing (ICIP). IEEE, 2016.

[23] Rodriguez, LA Fonseca, Jonny Alexander Uribe, and JF Vargas
Bonilla. ”Obstacle detection over rails using hough transform.” 2012
XVII Symposium of Image, Signal Processing, and Artificial Vision
(STSIVA). IEEE, 2012.

[24] Yu, Mingyang, Peng Yang, and Sen Wei. ”Railway obstacle detection
algorithm using neural network.” AIP Conference Proceedings. Vol.
1967. No. 1. AIP Publishing LLC, 2018.

[25] Wang, Zhangyu, et al. ”Efficient rail area detection using convolutional
neural network.” IEEE Access 6 (2018): 77656-77664.

[26] Botchkarev, Alexei. ”Performance metrics (error measures) in machine
learning regression, forecasting and prognostics: Properties and typol-
ogy.” arXiv preprint arXiv:1809.03006 (2018).

[27] Hore, Alain, and Djemel Ziou. ”Image quality metrics: PSNR vs.
SSIM.” 2010 20th international conference on pattern recognition.
IEEE, 2010.

[28] Wang, Zhou, et al. ”Image quality assessment: from error visibility
to structural similarity.” IEEE transactions on image processing 13.4
(2004): 600-612.

[29] Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014).

[30] Liu, Liyuan, et al. ”On the variance of the adaptive learning rate and
beyond.” arXiv preprint arXiv:1908.03265 (2019).

[31] Ginsburg, Boris, et al. ”Training Deep Networks with Stochastic Gra-
dient Normalized by Layerwise Adaptive Second Moments.” (2019).

[32] Manessi, Franco, and Alessandro Rozza. ”Learning combinations of
activation functions.” 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2018.

[33] Nair, Vinod, and Geoffrey E. Hinton. ”Rectified linear units improve
restricted boltzmann machines.” Icml. 2010.
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