N
N

N

HAL

open science

Adaptive routing framework for network on chip
architectures.
Naveed Ul Mustafa, Ozcan Ozturk, Smail Niar

» To cite this version:

Naveed Ul Mustafa, Ozcan Ozturk, Smail Niar. Adaptive routing framework for network on chip
architectures.. 8th Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools,

Jan 2016, Prague, Czech Republic. pp.1-5, 10.1145/2852339.2852344 . hal-03384573

HAL Id: hal-03384573
https://uphf.hal.science/hal-03384573

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://uphf.hal.science/hal-03384573
https://hal.archives-ouvertes.fr

Adaptive Routing Framework for Network on Chip
Architectures

Naveed Ul Mustafa
Department of Computer

Ankara, Turkey
naveed.mustafa
@bilkent.edu.tr

ABSTRACT

In this paper we suggest and demonstrate the idea of ap-
plying multiple routing algorithms during the execution of
a real application mapped on a Network-on-Chip (NoC).
Traffic pattern of a real application may change during its
execution. As performance of an algorithm depends on the
traffic pattern, using the same routing algorithm for the en-
tire span of execution may be inefficient. We study the fea-
sibility of this idea for applications such as SPARSE and
MPEG-4 decoder, by applying different routing algorithms.
By applying more than one routing algorithms, throughput
improves up to 17.37% and 6.74% in the case of SPARSE and
MPEG-4 decoder applications, respectively, as compared to
the application of single routing algorithm.

CCS Concepts

eComputer systems organization — Interconnection
architectures;

Keywords

network-on-chip, routing algorithms, throughput

1. INTRODUCTION

A System on Chip (SoC) consists of multiple Processing
Elements (PEs) on a single chip. A NoC is a communication
medium among PEs in a SoC [9]. To communicate between a
source and a destination node of a NoC, a routing algorithm
is needed. Many algorithms have been proposed to establish
a routing path with focus on criterion like path setup latency,
load balancing, throughput and quality of service. However,
a single algorithm cannot give outstanding performance for
all traffic patterns.

The traffic pattern of an application is determined by be-
havior of its active flows. The traffic pattern may change
during execution of an application , as tasks mapped on dif-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

RAPIDO ’16, January 18 2016, Prague, Czech Republic
© 2016 ACM. ISBN 978-1-4503-4072-4/16/01... . $15.00
DOL: http://dx.doi.org/10.1145/2852339.2852344

Ozcan Ozturk
Department of Computer
Engineering, Bilkent University Engineering, Bilkent University
Ankara, Turkey

ozturk@cs.bilkent.edu.tr

Smail Niar
LAMIH-University of
Valenciennes
Valenciennes, Cedex 9,
France

. smniar
@univ-valenciennes.fr

ferent PEs may not communicate always at the same data
rate. For example, a data-producer task may wait for an
external event or a computation to be completed before it
can send data to a consumer task.

Since, a given routing algorithm may perform well for one
traffic pattern but give poor results for others, it is promis-
ing to switch routing algorithms with the changing traffic
pattern. Performance metrics, like throughput, can be im-
proved by applying multiple routing algorithms on a single
application for different execution intervals. In this work,
we explore this idea by switching routing algorithms dur-
ing execution of two real applications, namely SPARSE and
MPEG-4 decoder.

The remainder of this paper is organized as follows. In
section 2, related work is discussed. Static and dynamic
switching of routing algorithms during execution intervals of
an application is discussed in section 3 and 4, respectively.
We provide experimental evaluation of our idea for SPARSE
and MPEG-4 decoder applications in section 5. Conclusion
and future work are given in section 6.

2. RELATED WORK

Many of Dynamically Reconfigurable NoCs (DRNoCs) can
be reconfigured in terms of architecture or routing algo-
rithm, for example, DyNoc [2], CoNoChi [11] and DRAFT
[3]. In order to take care of the dynamically changing ar-
chitecture in DyNoC, XY routing algorithm is adapted to
deal with obstacles created by the dynamic placement and
removal of modules. CoNoChi generates a routing table
whenever topology changes and tables are then distributed
via the network. In DRAFT, a hierarchal level dependent
mask is used by each router to determine if the received flit
is to be moved upward [7].

All of the above mentioned DRNOCSs reconfigure a par-
ticular routing algorithm to make it compatible with the
modified network architecture. In this work, network archi-
tecture is fixed. We used a static mesh network and focused
on switching the routing algorithm to take advantage of vari-
ations in traffic pattern during execution for improvement
in throughput.

In [8], DyAD routing technique is described which se-
lects between two routing algorithms (a deterministic and an
adaptive one) based on the congestion threshold and conges-
tion flags. However, we investigate the possibility of mak-
ing selections among a deterministic algorithm, such as XY
routing, and more than one adaptive algorithm (for exam-

. Router Logic

. Processing Element
D Empty Buffer

M Full Buffer

Congestion level at a node = Number of full buffers = 9

Figure 1: An NxNN mesh, congestion level at a node
is a measure of occupancy level of input FIFOs.

ple, west first, negative first and north last routing) based
on the measurement of congestion level.

3. STATIC SELECTION

Static selection of routing algorithms is performed in two
phases. In the first phase, all candidate algorithms are ap-
plied on the application individually and values for perfor-
mance metrics are obtained. In our case, performance metric
is throughput and candidate algorithms are XY, west first
and negative first.

In the second phase, performance graphs generated by
applying candidate algorithms individually on the applica-
tion are analyzed to find “Switching Points” and “Next Algo-
rithm” for each switching point. “Switching Points” are the
time instants at which a new algorithm (other than one cur-
rently active) is to be selected. Switching points and next
algorithm should be selected in such a way that new per-
formance is higher than that given by candidate algorithms
individually.

A major feature of static selection is that switching points
and their corresponding next algorithm is determined off-
line. Furthermore, selection is made at NoC level, which
means that all nodes execute same routing algorithm. Static
selection is elaborated in section 5 with simulation results
for SPARSE and MPEG-4 decoder applications.

4. DYNAMIC SELECTION

Performance of an algorithm depends upon congestion
level of the network at a given time and adaptivity of that
routing algorithm for a particular application. Therefore
it is more logical to make dynamic selection of routing al-
gorithms based on their adaptivity and congestion level of
the network. Adaptivity of an algorithm is the number of
shortest paths an algorithm allows from a source node to a
destination node [5].

Dynamic selection can be made either at the level of re-
gions or nodes. In the case of regional selection, congestion
can be measured by using one of the three techniques de-
scribed in [6]. However, for the sake of simplicity, in this
work we select algorithms at the node level. As shown in
Figure 1, Congestion Level (CL) at a node is measured as
the total length of occupied FIFOs for that node.

For a given application, we first define an Adaptivity List
(AL) of algorithms for that application and a set of Conges-
tion Threshold Points (CTPs). AL is a listing of candidate

algorithms in such a way that the adaptivity of algorithm
i for the given application is less than that for the algo-
rithm ¢+1. N number of CTPs are defined using trial and
error method, where N is the total number of candidate al-
gorithms. CTPs are ordered in such a way that CTP; <
CTPit1 .

Algorithm 1 describes the selection of routing algorithm
for NoC based on CL, CTPs and AL. Application of algo-
rithm 1 is demonstrated in section 5.

Algorithm 1 to switch routing scheme based on congestion
level
1: procedure ADAPTIVE(CL,CTP,AL,N)

2: 10

3: for every simulation cycle do

4 if i < N then

5: if CL < CTPJi] then

6: Switch routing algorithm to AL[i].
7 else

8 if CTP[i] < CL < CTP[i+ 1] then
9: Switch routing algorithm to AL[i+1]
10: 14— (i+1)

11: end if

12: end if

13: end if

14: end for
15: end procedure

In dynamic selection, different nodes may run different
routing algorithms simultaneously. A node can switch to
next routing algorithm based on the congestion level infor-
mation.

S. EXPERIMENTAL EVALUATION

In this work, we used Noxim which is a simulator for NoC,
developed using SystemC [4]. In Noxim, we can apply a
given routing algorithm on a user defined traffic pattern
which is specified as an input traffic trace file. An input
traffic trace file must follow the format which is predefined
by designers of Noxim. When a given algorithm is applied
on an input traffic trace file, Noxim generates values for per-
formance metrics and writes those values in an output trace
file which can then be used to generate performance graphs.

We demonstrate the idea of switching routing algorithms
during execution of an application by using traffic trace files
of SPARSE and MPEG-4 decoder applications. Traffic trace
file for SPARSE is extracted from MCSL benchmark suite
[10], while traffic trace file for MPEG-4 decoder is based on
[1]. These files are processed using MATLAB to make them
compatible with the required input format of Noxim.

5.1 Results for SPARSE

MCSL benchmark suite provides traffic trace files for map-
ping of SPARSE application on mesh networks of different
sizes. SPARSE is a medium size application with 96 tasks
and 67 communication links. A communication link repre-
sents the flow of data from a task mapped on a source node
to a task mapped on a destination node.

We simulated SPARSE on Noxim for simulation time of
100K cycles with the warm up period set to the initial 10K
cycles. A 10x10 mesh NoC is selected with the buffer size of
four and the packet size fixed to eight flits.

3600 XV Routing : i 7
West Fist Routing| ; ; : j

Pox 20K 30K 20K 50K 60K 70K 80K 90K 100K

Time intervals

Figure 2: Number of received packets in the case of
XY and west first routings for SPARSE application.

Figure 2 shows the number of packets received after each
interval, when XY and west first routings (i.e. two candidate
algorithms) are applied on the SPARSE traffic trace file.
In this plot, simulation period of 100K is divided into 100
intervals each with the length of 1000 cycles.

In Figure 2, we observe that for simulation period of 11K
to 71K, number of received packets in the case of west first
routing is more than or closer to that of XY routing al-
gorithm. However, after 71K simulation cycles, number of
received packets in the case of west first routing is signifi-
cantly lower than that of XY routing. This can be explained
by the nature of traffic pattern formed by the active flows
after the time point of 71K cycles. The graph in Figure 2
suggests that the application of west first routing on the po-
tential traffic pattern decreases number of received packets
after the time point of 71K cycles, while XY routing per-
forms better for that potential traffic pattern. Therefore we
should apply west first algorithm from the start of simula-
tion to 71K cycles and then switch to XY routing algorithm
to enhance total number of received packets.

Figure 3 shows the number of received packets in the case
of static and dynamic selection between XY and west first
algorithms for SPARSE application. We observe that from
the start of simulation to 71K cycles, number of received
packets in the case of static selection is exactly the same as
that for the west first routing (see Figure 2) but after 71K
cycles, number of received packets is higher than that for
both XY and west first routings.

To apply the dynamic selection between XY and west first
algorithms, we first define CTPs for a node based on the
congestion level on that node. In our setting of Noxim,
each node has five FIFOs, each one with the length of four.
Hence, the total length of five buffers is 20. We define CTPs
as given below using the trial and error approach.

CTP = {4, 20}
AL = {XY, West First}

Figure 3 shows that the dynamic selection of two routing
algorithms performs better as compared to the static selec-
tion. This is due to the fact that changes in the congestion
level are monitored at the runtime and routing algorithms
are selected accordingly.

Table 1 compares the throughput of individual application
of XY and west first routing algorithms with the static and
dynamic selection between them. Throughput is calculated

Figure 3: Number of received packets in the case of
static and dynamic selection between XY and west
first routings for SPARSE application.

Table 1: Comparison of Throughput for XY, West
First Routings and Static & Dynamic Selection Be-
tween Them for SPARSE Application.

Algorithm Number of Received | Throughput
Packets in Steady
State
XY 39264 0.4908
West First 42032 0.5254
Static Selection 42539 0.5317
Dynamic Selection 46086 0.5760

as a ratio of the total number of packets received in the
steady state phase to duration of the phase.

We observe that the static selection of XY and west first
algorithms improves throughput by 8.3% as compared to the
XY routing and 1.2% as compared to the west first rout-
ing. For the dynamic selection case, throughput improves
by 17.37% as compared to the XY routing and by 9.64% as
compared to the west first routing.

5.2 Results for MPEG-4 Decoder

MPEG-4 decoder is another application for which we se-
lected routing algorithms during its execution to improve
throughput. We simulated the MPEG-4 decoder’s task set
on Noxim for a simulation time of 100K cycles with the warm
up period set to the initial 10K cycles. A 4x4 mesh NoC is
used with the buffer size of four and the packet size fixed to
eight flits.

K
H
g
s
]
3
£
2

140p | i i i i i
0K 20K 30K 40K 50K 60K 70K 80K 90K 100K
Time intervals

Figure 4: Number of received packets in the case
of west first and negative first routings for MPEG-4
decoder application.

Figure 5: Number of received packets in the case of
static and dynamic selection between west first and
negative first routings for MPEG-4 decoder applica-
tion.

Figure 4 shows the number of received packets when west
first and negative first routing algorithms are applied in-
dividually on the MPEG-4 decoder application. It can be
noted that the performance of these routing algorithms varies
during simulation. For example, from the time point of 61K
cycles to 74K cycles west first routing performs better than
the negative first routing. On the other hand, after 74K
simulation cycles, negative first routing exhibits better per-
formance.

It suggests that we can switch the routing algorithm dur-
ing execution of the application, to gain a higher throughput.
This is demonstrated in Figure 5, where curves for number
of received packets are drawn for the two cases i.e. static
selection and dynamic selection between west first and neg-
ative first routings.

For the dynamic selection between two algorithms, CTPs
and AL are defined as given below using the trial and error
approach.

CTP = {4, 20}
AL = {West First, Negative First}

Table 2 compares the throughput of individual applica-
tion of west first and negative first routing algorithms with
the static and dynamic selection between them. Static selec-
tion between two routing strategies provides a throughput
improvement of 5.39% and 1.74% as compared to the in-
dividual application of west first and negative first routing
algorithms, respectively. Dynamic selection between two al-
gorithms performs slightly better providing throughput in-
crease of 6.74% and 3.05% as compared to west first and
negative first routing algorithms, respectively.

6. CONCLUSION & FUTURE WORK

For real applications, throughput improves if we switch
routing algorithms during execution of an application in-
stead of running a single algorithm over the entire execu-
tion span. Next routing algorithm can be selected either in
the static or dynamic way. Dynamic selection of algorithms
performs better as compared to the static one because al-
gorithms are selected at the node level instead of NoC level
and the selection is driven by the congestion information.

In the future work, we shall investigate the switching over-
head and the deadlock problem arising from the transient pe-

Table 2: Comparison of Throughput for West First,
Negative First Routings and Static & Dynamic Se-
lection Between Them for MPEG-4 Decoder Appli-
cation.

Algorithm Number of Received | Throughput
Packets in Steady
State
West First 22142 0.2460
Negative First 22935 0.2548
Static Selection 23335 0.2592
Dynamic Selection 23636 0.2626

riod when a node switches from one algorithm to another.
Another interesting study can be investigating the effects
of local algorithm selection on global congestion of the net-
work. A possible option is dynamic selection of algorithms
at the region level instead of the node level.

7. REFERENCES

[1] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar,

S. Stergiou, L. Benini, and G. De Micheli. Noc
synthesis flow for customized domain specific
multiprocessor systems-on-chip. Parallel and
Distributed Systems, IEEE Transactions on,
16(2):113-129, 2005.

[2] C. Bobda and A. Ahmadinia. Dynamic
interconnection of reconfigurable modules on
reconfigurable devices. Design & Test of Computers,
IEFEE, 22(5):443-451, 2005.

[3] L. Devaux, S. Ben Sassi, S. Pillement, D. Chillet, and
D. Demigny. Draft: Flexible interconnection network
for dynamically reconfigurable architectures. In
Field-Programmable Technology, 2009. FPT 2009.
International Conference on, pages 435—438. IEEE,
20009.

[4] F. Fazzino, M. Palesi, and D. Patti. Noxim-noc
simulator. Online] http://nozim. sourceforge. net.

[5] C.J. Glass and L. M. Ni. The turn model for adaptive
routing. In ACM SIGARCH Computer Architecture
News, volume 20, pages 278-287. ACM, 1992.

[6] P. Gratz, B. Grot, and S. W. Keckler. Regional
congestion awareness for load balance in
networks-on-chip. In High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 1/th
International Symposium on, pages 203—-214. IEEE,
2008.

[7] G. Haiyun. Survey of dynamically reconfigurable
network-on-chip. In 2011 International Conference on
Future Computer Sciences and Application, pages
200-203. IEEE, 2011.

[8] J. Hu and R. Marculescu. Dyad: smart routing for
networks-on-chip. In Proceedings of the 41st annual
Design Automation Conference, pages 260-263. ACM,
2004.

[9] K. Lee, S.-J. Lee, and H.-J. Yoo. Low-power
network-on-chip for high-performance soc design. Very
Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 14(2):148-160, 2006.

[10] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang,
M. Nikdast, and Z. Wang. A noc traffic suite based on

[11]

real applications. In VLSI (ISVLSI), 2011 IEEE
Computer Society Annual Symposium on, pages 66—71.
IEEE, 2011.

T. Pionteck, R. Koch, and C. Albrecht. Applying
partial reconfiguration to networks-on-chips. In Field
Programmable Logic and Applications, 2006. FPL’06.
International Conference on, pages 1-6. IEEE, 2006.

