
HAL Id: hal-03388479
https://uphf.hal.science/hal-03388479

Submitted on 26 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Software Testing Process in a Test Factory - From Ad
hoc Activities to an Organizational Standard

Rossana M.C. Andrade, Ismayle S. Santos, Valéria Lelli, Káthia Marçal de
Oliveira, Ana Regina Rocha

To cite this version:
Rossana M.C. Andrade, Ismayle S. Santos, Valéria Lelli, Káthia Marçal de Oliveira, Ana Regina
Rocha. Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational
Standard. ICEIS 2017, 19th International Conference on Enterprise Information Systems, Apr 2017,
Porto, Portugal. pp.132-143, �10.5220/0006333301320143�. �hal-03388479�

https://uphf.hal.science/hal-03388479
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Software Testing Process in a Test Factory
From Ad hoc Activities to an Organizational Standard

Rossana Maria de Castro Andrade1,∗, Ismayle de Sousa Santos1,†, Valéria Lelli1,
Káthia Marçal de Oliveira2 and Ana Regina Rocha3

1Federal University of Ceará, GREat, Fortaleza, CE, Brazil
2University of Valenciennes, LAMIH, CNRS UMR 8201, Valenciennes, France

3Federal University of Rio de Janeiro, COPPE, Rio de Janeiro, RJ, Brazil

Keywords: Software Testing, Test Factory, Test Process.

Abstract: Software testing is undoubtedly essential for any software development. However, testing is an expensive
activity, usually costing more than 50% of the development budget. Thus, to save resources while performing
tests with high quality, many software development companies are hiring test factories, which are specialized
enterprises for the delivery of outsourced testing services for other companies. Although this kind of organi-
zation is common in the industry, we have found few empirical studies concerning test factories. In this paper,
we report our experience in the definition, use, and improvement of a software testing process within a test fac-
tory. To support the implantation of the test factory, we applied the PDCA (Plan-Do-Check-Act) cycle using
the lessons learned in the PDCA check phase to improve the testing process. As a result, we have decreased
the number of failures found after the software delivery and thus a higher value for DRE (Defect Removal
Efficiency) measure. We also present 12 lessons learned that may be applicable by other test factories.

1 INTRODUCTION

Software testing is one of the most expensive and
time-consuming activities during software develop-
ment (Shamsoddin-motlagh, 2012). The costs associ-
ated with this activity can reach more than 50% of the
total costs of producing software (Myers et al., 2011).
This high cost is because test requires time, knowl-
edge, planning, infrastructure, and skilled personnel
(Myers et al., 2011). Also, as the software often has
to be delivered as soon as possible, the time avail-
able for the testing activity is usually compromised.
Besides, the testing of particular kinds of applications
(e.g., mobile applications) can be challenging (Dantas
et al., 2009; Bezerra et al., 2014).

Currently, hiring testing services from indepen-
dent organizations, named test factories (Sanz et al.,
2009), has become common in the industry. Test fac-
tories can be seen as software factories specialized in
software testing. By leveraging test factories services,
a software development project can benefit from tests
∗Researcher Scholarship - DT Level 2, sponsored by

CNPq
†PhD Scholarship (MDCC/DC/UFC) sponsored by

CAPES

with high quality and low cost since a software project
does not need to invest in its own test team. There-
fore, we decide to implement a test factory to provide
testing services not only for the Research and Devel-
opment and Innovation (R&D&I) projects executed
in our research group1 but also to external companies.
With this belief in mind, we have been working in the
software testing process definition in a test factory2

since 2013.
We highlight that test factories should work in a

close relation with their customers (other software or-
ganizations that develop the software system to be
tested) to be efficient. Thus, the definition of roles, re-
sponsibilities and competencies should be clearly de-
fined in both parties: the test factory and the customer
(software organization). Moreover, the control and
tracking of the correction of bugs detected should be
made to ensure traceability. Unquestionably, a soft-
ware process that defines all activities, roles, and arti-
facts (used and produced in the activities) is a good

1Group of Computer Networks, Software Engineer-
ing and Systems (GREat) - http://www.great.ufc.br/
index.php/en/

2http://fabricadetestes.great.ufc.br/

132
Andrade, R., Santos, I., Lelli, V., Oliveira, K. and Rocha, A.
Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard.
DOI: 10.5220/0006333301320143
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 132-143
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



practice to address all these requirements. We ar-
gue that the definition and institutionalization of a
testing process should be performed on a continuous
improvement cycle mainly in the case where two or
more organizations should interact to assure the exe-
cution of the activities and their internalization in all
parties involved.

This paper presents how software testing activities
were continually integrated using a process continu-
ous improvement cycle based on the lessons learned
collected. So, the main contribution of this work is
to report our experience on a definition, use, and im-
provement of a standard test process within a test fac-
tory. We also present 12 lessons learned that can
be applicable by other test factories or in-house test
teams to improve their software testing process.

The paper is organized as follows. Section 2 re-
ports our experience in software testing process im-
provement from the ad hoc testing to the standard
test process. Section 3 discusses the results achieved.
Section 4 present the related work and, finally, Sec-
tion 5 presents our conclusion and future work.

2 SOFTWARE TESTING
PROCESS DEFINITION, USE
AND IMPROVEMENT IN
PRACTICE

To define software testing activities, we followed the
well-known cycle for process continuous improve-
ment proposed by Johnson (Johnson, 2002): the
PDCA (Plan-Do-Check-Act). The PDCA has four
steps. It begins with the planning and the definition
of improvement objectives. Next, the planning is exe-
cuted (Do) and then evaluated (Check) to see whether
the initial objectives are achieved. Actions are taken
based on what was learned in the check step. If the
changes are successful, they are included in the pro-
cess. If not, it is necessary to go through the cycle
again with modifications in the original plans. Figure
1 shows the PDCA cycle used during the testing pro-
cess improvement described in this paper. We high-
light that the several Do in that figure represent the
application of the planning in more than one testing
project. We followed this strategy to acquire more
data to support the Check phase.

It is worth noting that we have applied our test-
ing process on several software projects (e.g., mobile
and web projects) from the same company, but they
have different product owners and/or project man-
agers. Thus, this scenario enabled us to collect feed-
back from several customer’s teams while we ran the

Figure 1: PDCA Cycle used in the testing process improve-
ment.

PDCA cycle.
Next section describes the study object, i.e., the

testing process used before the improvement. Then,
the following sections present the two cycles of the
improvement performed. Each cycle was started by
the definition of goal (planning), and finalized with
the definition of actions to be carried out in the next
cycle. These actions were defined by the analysis of
lessons learned collected after the execution of the
planning in different projects.

2.1 Before the Test Factory: Ad hoc
Testing

The creation of our test factory was motivated by
the need of one mobile manufacturer company, our
main client, who does not have expertise in soft-
ware testing. Once this client worked with Scrum
methodology (Schwaber and Sutherland, 2016), we
have started by identifying how to integrate testing
activities as a service in its agile process. Scrum
works with the concept of sprint, a time boxed effort
during which a potentially releasable product incre-
ment is created, and with three roles (Schwaber and
Sutherland, 2016): (i) Product Owner, responsible
for maximizing the value of the product; (ii) Devel-
opment team, consisting of professionals who do the
work of delivering a potentially releasable increment
of “Done” product at the end of each sprint; and (iii)
Scrum Master, responsible for ensuring Scrum is un-
derstood and enacted.

In the Scrum, the testing (now “agile”) is inte-
grated with development efforts, being required tests
for each product backlog item (e.g., a software func-
tionality) (Myers et al., 2011). Thus, our initial goal
was to encourage our customer to incorporate more
test procedures in the software development. To do
so, a test analyst was allocated to work closely with
the software development team performing test activ-
ities as required. Following the Scrum, the test an-

Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard

133



alyst performed functional testing at the end of each
sprint. Furthermore, the developers created both unit
and system tests without planning or documentation.
One complete software project with eight developers,
named here P1, was developed and tested following
this structure. The duration of this project was about
ten months (August 2013 until May 2014). With re-
gard to the system tests, most of them failed (47%)
and the failures were classified as critical, i.e., bugs
that block the software. This high percentage of failed
tests and the delay to find critical bugs motivated us to
investigate how to improve our test process to identify
the bugs as early as possible.

2.2 First Cycle: Establishing Test
Procedures

As mentioned in Section 2.1, the analysis of the re-
sults obtained from the ad hoc testing approach moti-
vated us to adopt some practices and to formalize our
testing process.

The first practice is to allocate the test analyst to
support the implementation of both unit and integra-
tion tests performed by the developers. First, the test
analyst pointed out the basic tests scenarios, which the
developers should implement by using JUnit tool3. In
some cases, the test analyst also performed “Pair Test-
ing”4 with each developer until they can create good
tests cases at both unit and integration level.

The second practice is regarding the validation of
the backlog items. For each activity from the sprint
backlog, it was added a validation with the test ana-
lyst to get the status “done”. We also included in this
backlog specific activities for creating unit tests, em-
phasizing their importance within the sprint. When
the development activity did not generate executable
code, a review of the application code was made. On
the other hand, if it is possible to execute the code,
then automated tests or manual tests were performed
to validate the functionality implemented in the ac-
tivity. For each development activity, 1 or 0.5 points
were added in the activity estimation for the valida-
tion of the product increment developed. Addition-
ally, it was also added in the sprint Backlog one activ-
ity for the system testing of all products developed in
the sprint.

The last practice concerns the test specification.
The test scenarios were documented in spreadsheets
that were frequently updated by the test team and
shared among the client. For the sake of simplicity,

3http://junit.org/junit4/
4It is a kind of “Pair Programming activity (Zieris and

Prechelt, 2016) applied on the software testing.

the test case specification in such spreadsheets con-
tains only three columns: test scenario, step-by-step
and results.

Regarding the testing process, it was defined ac-
cording to the sprint phases of the Scrum. Figure 2
shows the test process defined in the first improve-
ment cycle. In the Sprint Planning phase, the test
team estimates the testing effort and defines the test
strategy according to the product requirements. Next,
in the Sprint Execution, the test analyst creates the
test scenarios, which are used: (i) by the developers
to create both unit and integration tests; and (ii) by
the testers to create automated tests scripts or perform
manual tests. After the execution of the tests, their re-
sults are documented. Once a bug is found and fixed,
the regression tests should be run again. Finally, in
the Sprint Revision, the test team discusses the lesson
learned to improve the testing process.

We applied (Do phase from PDCA) the test pro-
cess defined and the practices aforementioned in two
development projects, named here P2 and P3. The
project P2 was conducted between July 2014 and
September 2014 with 12 developers, while the project
P3 had 10 developers and occurred from September
2014 to December 2014.

In the project P2, the low failures rate (15% of
the total number of system tests) at the end of sprint
shown us the greater participation of all developers in
the product quality. It is worth mentioning that were
not implemented automated tests in P2. In project
P3, despite the failed test rate of 28%, none of them
were of the critical type, representing an improvement
comparing with the results obtained in project P1. We
highlight that in this project the test automatization
with tools (e.g., Robotium tool 5) made easier the re-
gression testing.

Regarding the tests documentation, the test team
report that it is easier to document, plan and prioritize
the tests according to changes in the sprints and the
customer requests. Furthermore, they also reported
that a bug tracker is crucial to to follow the fixed bugs
and thus perform the regression testing efficiently.

The main benefits that we obtained in the first im-
provement cycle are: (i) greater participation of all
developers in the product quality; (ii) greater integra-
tion between developers and testers; and (iii) greater
integration between the code and its test, once the test
has become a part of the development of a feature.

The main lessons learned from the execution of
Do phase of PDCA in two projects (P2 and P3) were:

• LL01: Test Documentation is essential. Our ex-
perience in the project P1 corroborates with our

5http://robotium.com/

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

134



Figure 2: Test process defined according to sprint phases.

feeling that the lack of test documentation makes
it difficult to monitor, replicate and evaluate them;

• LL02: There is no need for specialized roles, but
it is essential both to follow a test process and to
have a team of experts. During the testing of P1,
where developers and testers do testing without
planning, many of the defects found at the end of
the sprint were critical. In projects P2 and P3, the
participation of an expert test analyst and the use
of a testing process enabled critical defects to be
identified in the early stages of development;

• LL03: It is not always possible to automate the
tests, but it is advisable. Automating tests is inter-
esting because it facilitates continuous feedback.
The planned use of a systems test automation tool
in P3 supported the fast defect identification;

• LL04: Pair Testing is a good practice to exchange
experience between novices and expert testers.
The application of Pair Programming to imple-
ment tests during P2 had a very positive impact,
resulting in qualified developers involved with test
activities and better communication among testers
and developers;

• LL05: The client should be aware of the testing
activities. When the customer cannot participate
in a decision at some point, we realized as a good
practice to document the decisions taken concern-
ing the testing activity to confirm them with the
customer afterward (e.g., regarding test prioriti-
zation). We employed this practice in the three
projects P1, P2, and P3 and we obtain a good feed-
back from the clients.

Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard

135



Based on the aforementioned lessons learned, the
next step (i.e., the Action phase in PDCA) is to define
a standard software testing process.

2.3 Second Cycle: Defining a Standard
Software Testing Process

Based on the previous experience, we decided to
evolve the test procedures for a formal software test-
ing process that establishes activities, responsibilities,
roles, and artifacts to be used and produced. To that
end, several specific policies were created based on
the Reference Model for Brazilian Software Process
Improvement (MPS.BR) (SOFTEX, 2006)

For the test project management, we defined the
following policies:

• The project planning of the test factory results in
the test plan and should be carried out by the test
factory manager;

• The test plan should have the approval by the
stakeholders and client aiming to establish com-
mitments to the project;

• The test factory manager should monitor the
project continuously, based on the test plan and
schedule;

• The final phase constitutes project milestones;

• Any changes in the test plan and schedule can
only be implemented after obtaining new commit-
ments with the client and all involved in the test
factory.

For the requirements management, the policies es-
tablish that:

• All the testing requirements should be evaluated
by the client and the stakeholders of the test fac-
tory;

• Any change in the testing requirements should
have impact assessment before being approved;

• The plans, artifacts, and activities of the testing re-
quirements management process should be main-
tained to assure their consistency;

• The specification of the testing requirements
should have the approval and commitment of all
stakeholders;

• The change requests in testing requirements must
be recorded in e-mail or meetings and should be
stored.

Finally, for the quality assurance, all the test fac-
tory projects should be audited for adherence to the
process and product quality, and the non-compliance

that are not resolved in deadlines (up to three days)
should be scaled to higher hierarchical levels.

The standard process is organized as a work
breakdown structure where phases are decomposed in
activities and those in their turn in tasks. Figure 3
gives an overview of the activities of our test factory
process. This process is based on the iterative and
incremental lifecycle. Three main phases (planning,
elaboration and execution) were defined as follows.

1. Planning phase aims at starting a project and per-
forming the planning activities. The first activity
“Initiate project” involves kick-off/initial meet-
ings to understand and review (if applicable) the
product requirements to be tested. In the “Plan
Project”, the test factory manager elaborates the
test plan with test requirements as agreed with the
client. Also, the SQA (Software Quality Assur-
ance) analyst must manage the adjustments, for
instance, if nonconformities related to the testing
process exist, such as a non-written confirmation
that both parties agreed with the test plan, they
should be solved in an established period.

• The main artifacts produced in this phase are
minutes of the kickoff meeting, test plan with
schedule, process and product checklists for
phase 1, and project status report.

2. Elaboration phase aims at preparing the test ex-
ecution. This phase starts with an initial meet-
ing involving the test team to align the test plan.
Then, test scenarios and the test cases are spec-
ified by the test analysts in the “Design Tests”
activity. This specification is based on product
and test requirements provided by the client. To
be approved, the test specification must be exam-
ined by another test analyst as a peer review task.
Other tasks carried out in this phase are the estab-
lishment of traceability matrix, the environment
configuration, and the creation of automated test
scripts (if applicable).

• The main artifacts produced in this phase are
traceability matrix, test specification with test
scenarios/cases, test environment with load test
mass (if applicable), checklists for phase 2
(change control, audit) and test artifacts eval-
uation reports, such as test cases evaluation re-
port.

3. Execution phase aims at carrying out the execu-
tion (manual or automated) of the tests artifacts
specified previously (e.g., test scenarios/cases).
Similarly, to the elaboration phase, the test team
attends an initial meeting. In the next activity, the
tests are executed, and their results are reported to
be evaluated. It is worth noting that, the tests can

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

136



Figure 3: Overview of our test factory process.

be executed by a tester (e.g., a testing intern) but
the test leader must determine in the “Analyze test
incidents” activity whether the reported incidents
are actual bugs. Once the incident is confirmed
as a bug, it is registered in a bug/issue tracking
tool. The Execution phase ends with a meeting
with those involved in the project to record lessons
learned.

• The main artifacts produced in this phase
are test incident reports, bugs/failures report,
checklists for phase 3 (audit, adherence to pro-
cess), lessons learned, and project closing state-
ment.

Our test factory process is adherent to the MR-
MPS-SW (Rocha et al., 2005) and includes the qual-
ity assurance process and activities related to config-
uration management and verification. As depicted in
Figure 3, two management activities are presented in
all phases. The first one is “Manage Phase” that is ex-
ecuted throughout the phase. The second one, “Mon-
itor project on milestones”, is the activity for moni-
toring the project in the final milestone of the phase.
For example, this activity registers the project status,
stores the phase artifacts (e.g., test plan, project status
report) and audits the adherence of the process at a
phase following a specific checklist.

The organizational chart of our test factory is
shown in Figure 4. The factory test team is composed
of a high quality team with academic and professional
experience on software such as PhDs with exper-
tise in Software Testing, certified professional testers
(International Software Testing Qualifications Board
- ISTQB certification), usability experts, software
quality experts, postgraduate and graduate students

of Computer Science/Software Engineering courses.
The roles and the main activities within the factory
test process are described in Table 1. Also, the ar-
tifacts that should be produced by each role are pre-
sented in this table.

Figure 4: Organogram of our test factory.

We have applied the second improvement cycle
on two projects (P4 and P5) that performed sev-
eral sprints. Both were developed under the Scrum
methodology and, therefore, we have considered a
release with one or more sprints as a whole testing
project. Indeed, the development process adopted
by the client is transparent and thus independent of
our test factory process. The main difference is the
kinds of artifacts that we have to produce. In a Scrum
project, we start by attending the planning meetings to
understand the functional requirements and to have an
overview of the test scenarios must be covered. Once
the test scope is defined, the project manager elabo-
rates the test plan with the test requirements, sched-
ule, human resources, and risks.

Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard

137



Table 1: Roles, main activities and artifacts.

Role Main Activities Artifacts
Coordinator Coordinate the test factory project (decision making, fundraising, con-

flict resolution); develop and/or review artifacts; organize, participate
and conduct meetings

Test project work
plans, budgets

Test Manager Apply the test factory process and define measures appropriate to col-
lect the test project status; elaborate process artifacts; plan and control
the team activities

Test plans, meeting
minutes, project sta-
tus reports

Consultants Conduct the research activities in test project; organize and conduct
training of advanced testing techniques; audit the adherence to the
process and the product quality; provide new testing techniques (qual-
ity measures or fault models) to be applied to advanced application
domains (ubiquitous/IoT domain)

Usability test re-
port, checklists,
technical/researcher
reports

Test Leader Ensure compliance with planning execution; disseminate the technical
information to the test team; evaluate test artifacts/deliverables

Test artifacts evalua-
tion reports

Test Analyst Elaborate test artifacts; support the test leader to verify technical prob-
lems raised by the client; report the impediments to the test leader;
validate the incidents reported by testers

Test specification, test
scripts, failures report

Tester Execute the tests; report the test results (incidents) and submit to the
test analyst to be validated

Incidents report

We have faced several challenges in the imple-
mentation of the second cycle. Firstly, we have
worked on several maintenance projects, whose the
maintenance requirements are organized as a backlog
of users stories. In these projects, most of the func-
tional requirements are not specified or there is no
previous test specification. To minimize the risks, we
have to define the test scenarios according to some test
criteria provided by the client and thus ensure mini-
mal test coverage.

Secondly, the phases defined in the second cycle
require several test artifacts. Then, we have imple-
mented this cycle incrementally. We have started by
defining the test templates that must be followed in
the elaboration/execution phases. Then, we have pro-
vided training sessions to explain the process and the
artifacts that must be produced. This task was crucial
since the test team of the previous cycles has a limited
experience in test case specification.

As previously mentioned, we applied (Do phase)
the test process defined and the practices aforemen-
tioned in the testing of two development projects,
named here P4 and P5. We conducted their test
projects in four months (March 2016 to June 2016).
The project P4 involved the development of three
software systems (A, B and C) and was organized in
ten sprints, while the project P5 concerns three other
systems (D, E, and F) developed in the total of six
sprints.

The application domains of projects P4 and P5
are mostly mobile and web, respectively. Thus, the
number of tests depends on systems requirements and
also their domains. For example, we have tested for
Software A and Software C, both the client (mobile)

and the server (web). However, they are simpler than
Software D, which is a game mobile that requires the
testers’ skills to play it, and also the tests must cover
the game rules. In some sprints, the tests only focus
on bug fixed and their impact.

We highlight that these results do not cover the
unit and integration tests performed by the develop-
ers team and the acceptance testing executed by the
client test team (if applicable). We have experienced
in the second cycle a better control of our test activi-
ties since we have more tests documented and, there-
fore, we could leverage them for the next sprints, for
instance, to perform regression tests.

With the execution (Do phase of PDCA) in 16
software releases in projects P4 and P5, the main les-
son learned were:

• LL06: Process templates adjustment could be
needed to some specific client. Although we stan-
dardized the test documents used in our testing
process, in some cases new fields (e.g., indicating
if the test is for basic, alternative or exceptional
flow of use cases) are added to meet the needs of
specific clients;

• LL07: The application of the test process should
be supported by the test team, which needs to be
trained firstly. We have adopted an implementa-
tion of our test process in a bottom-up way start-
ing by the test documents used daily (e.g., test sce-
nario/case specification) to minimize the impacts.
Also, we have provided intensive training to bal-
ance the test team that had never done documen-
tation and regular evaluations of both test docu-
mentation and test scripts quality;

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

138



• LL08: The hierarchical structure and
roles/activities were essentials to centralize
and manage the demands for the test factory.
Besides, the inclusion of roles helps the team
focuses on its objectives (e.g., test manager moni-
tors all the activities, testers run tests specified by
test analysts);

• LL09: At the first moment, the test process in-
creased the time spent and costs in the testing ac-
tivity. For instance, the test analyst took a longer
time to produce the test artifacts (e.g., test sce-
narios and their test cases) when we implemented
the Elaboration/Execution phases. We have ob-
served that the evaluation report took a meaning-
ful time (between 1 hour and 3 hours). More-
over, this activity works as a round trip process:
check-correct-check until the test specification is
satisfactory. One improvement here is to provide
checklists to support this activity;

• LL10: In spite of the testing process that we fol-
low rigorously, we observed that the experience-
based testing (IEEE, 2015) is interesting for a first
interaction with the application by using, for in-
stance, the exploratory testing. In our process, we
have started with this kind of testing when the re-
quirement specifications or user stories (in Scrum
projects) are not provided by the client. In such a
case, the client must provide at least the test ac-
ceptance criteria.

• LL11: Sharing the same database between tester
team and development team could lead to rework,
especially in the test documentation because the
test data defined before could not be more avail-
able (e.g., if a developer deletes a database while
implementing some new feature). Such problem
also impacts on several test scripts that have to be
updated. Furthermore, the previous versions of
the application could be used as test oracle in the
regression testing and also to verify intermittent
bugs; and

• LL12: An emergency release called “Hot fix” re-
quires a fast test feedback. We call “Hot fix” the
time box for fixing and testing critical bugs that
often have to be deployed to a client in less than
24h. In such releases, the test team usually does
not have time to run all the process as defined, so
the team just creates the main test artifacts, for in-
stance, the test scenarios/cases specification.

Currently, we have worked on the specific check-
lists defined by the activities “Manage the phase”,
and “Monitor the project in the final milestone of the
phase”.

2.4 Results

To evaluate the effectiveness of our test factory
process, we used a well-known metric called Defect
Removal Efficiency (DRE) (Jones, 1996), which is
given as follows:

DRE (%) = TestFailures
TestFailures+ProductionFailures ×100

TestFailures are the number of total failures
found by the test team before the software delivery.
ProductionFailures are the number of failures found
by clients and/or users after the software delivery.

Figure 5 shows the DRE results collected for three
software projects: software A, B, and C. We have
measured the DRE in the first cycle (without the stan-
dard test process) and the second cycle (with the stan-
dard test process), with a total of 28 software releases:
13 without and 15 with the process. We did not dis-
tinguish the different software phases (e.g., require-
ments, design) to collect the DRE.

Table 2 gives an overview of the software size, to-
tal of failures, DREs, and standard deviations results
per software. The average DREs for the software A is
30,50% (first cycle) and 30,72% (second cycle). The
average DREs for the software B is 15,58% (first cy-
cle) and 35,08% (second cycle). The average DREs
for the software C is 11,67% (first cycle) and 37,78%
(second cycle).

We can observe that the highest value of DRE was
37,78% (Software C) against the great value 95% sug-
gested by Jones (Jones, 1996). However, the DRE
values had increased for the three software when our
test factory process was implemented in the second
cycle. Also, the standard deviation value is low for
the Software A (8.62%) in the second cycle. By con-
trast, the deviation values have increased for the Soft-
ware B - from 18.31% (first cycle) to 38.14% (sec-
ond cycle) and Software C - from 14.53% (first cycle)
to 43.32% (second cycle). We believe that this re-
sult was affected by the small sample size (e.g., the
number of failures and releases) and also by the team
experience in applying the process as we discussed in
the next section.

Although the standard deviation was a little high
for Software B and C, we conclude that our testing
process had improved their quality since their DREs
had increased more than 100% in the second cycle.

3 DISCUSSION

The implantation of the test factory process has sev-
eral lessons learned as we presented in the previous

Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard

139



Table 2: Total of Failures, DREs, and Standard Deviations per Software.

Software Size Total of DRE (%) Std. Deviation(%) DRE (%) Std. Deviation(%)
ID (KLoC) Failures (#) without proc. without proc. with proc. with proc.
A 384 152 30.50 21.59 30.72 8.62
B 101 94 15.58 18.31 35.08 38.14
C 117 58 11.67 14.53 37.78 43.32

Figure 5: DRE results in the first cycle (without process) and the second cycle (with process).

sections. Such lessons help us to evolve from ad hoc
testing activities to a standard testing process. We dis-
cuss some lessons below.

As we identified early (LL01), the test documen-
tation is crucial. When we introduced the standard
testing process and their artifacts, we have identified
several problems related to the test specification such
as uncovered test scenarios, duplicated test cases, etc.
Furthermore, we have observed that the elaboration
of the test artifacts has impacted on the team pro-
ductivity (see LL09), mainly when the new test ar-
tifacts are introduced. To overcome this problem, we
analysed the artifacts elaborated by the test team and
also monitored the time spent to produce them. So,
we provided some adjusts in the documentation (see
LL06) to meet the needs of both the clients and the
test team. Also, we provided several training ses-
sions (see LL07) to ensure that some misunderstand-
ing does not impact on the team productivity.

Currently, we have used a simple spreadsheet to
specify the test scenarios/cases. Such specification
contains: (i) test scenario (what is being tested); (ii)
test steps; (iii) expected output; and (iv) actual result.
However, we have observed that a spreadsheet is not
a good choice when we have several test cases (e.g.,
more than 50 longer test cases). Also, we cannot use
version control efficiently with spreadsheets. As a fu-
ture improvement, we intend to adopt a tool that al-
lows the test analysts specify the tests directly on it

and stores them on a server (e.g., TestRail6). With re-
gard to the failures, they are reported in both JIRA7

software, which is shared with the development team,
and spreadsheets. Note that, only the bug repository
is shared with both teams. Our experience shows that
we have to clearly separate the development and test
environments (see LL11). In such a case, the config-
uration manager is responsible to handle the changes
in both environments. Moreover, the repository’s per-
missions are strictly managed, i.e., none of the team
have permission to delete bugs. For example, once a
bug is registered, it is analysed by the test analyst, if
the bug is invalid, only its state changes in that repos-
itory.

Another important point to be discussed is the
team qualification (LL02). In the first cycle, the test
team works together with the development team as a
“Pair Testing” approach (LL04). This kind of work
helped developers to create good unit and integration
tests. In the second cycle, we applied the “Pair Test-
ing” between the experienced test analysts and the
novices, and the results were also positive.

Furthermore, the hierarchical structure of the team
(LL08) by including the consultants is important to
improve the test factory process. For example, the
researchers are responsible for investigating new test-
ing techniques (e.g., test automation - LL03) or mea-

6http://www.gurock.com/testrail/
7https://www.atlassian.com/software/jira

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

140



sures while the test analysts are responsible for ap-
plying them. The other important role is the SQA
analyst who must ensure that the process is followed
by the test team. In some cases, the nonconformities
pointed out by the SQA analyst in early stages of the
testing process (e.g., a non-written confirmation that
the client agreed with the test plan - see LL05) help
us to identify several problems that may compromise
the test quality.

We also would like to highlight that we could not
apply the standard testing process in Emergency Re-
leases (LL12). The most difficulty is to elaborate all
test artifacts and execute, for example, the functional
and regression tests within one working day. In such
a case, we only execute the tests already specified and
perform the exploratory testing. Indeed, this kind of
test plays a vital role in our testing process when the
requirement specification is not provided (LL10). We
rely on such test to explore the application and thus
elaborate the test scenarios and their test cases.

The lesson learned presented above are not quan-
titatively measure. However, we leverage DRE mea-
sure to show the benefits of the standard testing pro-
cess. We observed that the DRE results have in-
creased in the second cycle, but they do not achieve
the great value (e.g., 95%). We identified several rea-
sons as follows:

• The test team does not have any experience in ap-
plying testing process. Also, most of the team are
novices in the projects;

• The software (i.e., A, B, and C) that we ap-
plied the standard testing process are maintenance
projects, and most of them had no documentation.
In this case, we elaborated the test artifacts incre-
mentally according to the release plan. We per-
formed this cycle until the test documentation was
complete; and

• The whole test process have been not imple-
mented. We have adopted this process on March
2016, and incrementally the test artifacts are in-
troduced in the projects. So, we believe that when
all test artifacts can be produced, the DRE results
will be better. However, we have obtained good
results until the present moment.

4 RELATED WORK

We have found several test factories (CWI, 2017)(Cy-
ber:con, 2017) but none of them describe their testing
process in a literature. Thus, we also investigate pa-
pers related to testing processes. In this section, we

discuss the related work into two categories: Test Fac-
tory and Software Testing Process.

4.1 Test Factory

We have found several test factories that offer test ser-
vices for software development companies. For in-
stance, there are the CWI’s test factory (CWI, 2017),
Cyber:con’s test factory (Cyber:con, 2017) and FH’s
test factory (FH, 2017). The main characteristic of
these enterprises is to have a dedicated test team able
to provide specialized testing services (e.g., test case
specification, test case execution). Those test facto-
ries, however, do not present their testing process in
scientific or white papers since they want to protect
their business from the competitors. Therefore, we
cannot do any relation between our testing process
and their test factory processes.

By contrast, we have found two papers (Sanz
et al., 2009; Cooper-Brown, 2015) that focus on only
the implantation of test factories. For example, Sanz
et al. (Sanz et al., 2009) define a process model to
create a test factory, determining the roles, capaci-
ties, and responsibilities for each specified process.
In their paper, Sanz et al. present succinctly 11 pro-
cesses (e.g., Testing Planning) that are classified into
three categories: Management, Technical and Sup-
port. Thus, this model provides the key elements of
the process of a test factory. In our work, we focus
on describing the experience for defining a standard
testing process in an test factory from ad hoc testing
activities performed in-house.

Cooper-Brown et al. (Cooper-Brown, 2015)
present a process to setup a test factory. This pro-
cess is organized into three major phases: (i) Solution
Definition, in which the existing organizational test
processes are evaluated; (ii) Solution Design which
involves designing processes (e.g., related to test strat-
egy, organizational structure, etc.); and (iii) Solution
Implementation, which could be executed by steps or
by using a big bang approach. In our work, we fo-
cus on the definition, use and improvement of a test-
ing process to implement a test factory based on the
lessons learned.

Additionally, Xia et al. (Xia et al., 2015) inves-
tigate the challenges in test outsourcing. To do so,
the authors perform a empirical study through a sur-
vey with testers and interviews with SQA managers
and team leaders. In our paper, we report the expe-
rience by applying the test factory process in real-
world daily use involving several stakeholders (e.g.,
tester, client, research, SQA analyst). Furthermore,
the benefits of our test factory are evidenced by the
positive results of DRE collected from industry soft-

Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard

141



ware projects.

4.2 Software Testing Process

Regarding the software testing practices, we have
identified several research studies in the literature, we
discuss them below.

Engstrom and Runeson (Engström and Runeson,
2010), for instance, present the results of a qualitative
survey conducted by using focus group meeting with
15 industry participants and an online questionnaire
with 32 respondents. Based on this survey, the authors
identified weaknesses and strengths in regression test-
ing practices and also their good practices such as
“run automated daily tests on module level”. Collins e
Lucena Jr. (Collins and de Lucena, 2012) describe the
experience with the use of open source testing tools in
automation testing into two development projects us-
ing Scrum. Santos et al. (Santos et al., 2011) also
describe the use of testing practices in agile environ-
ments. In contrast to our work, they focus on specific
issues within the software testing process (e.g., the
use of testing tools) whereas we present an overview
of our testing process and how we evolve this process
over two years.

Ramler and Felderer (Ramler and Felderer, 2015)
propose a process for risk-based test strategy devel-
opment that consists of seven steps: (1) definition of
risk items, (2) probability estimation, (3) impact esti-
mation, (4) computation of risk values, (5) determina-
tion of risk levels, (6) definition of test strategy, and
(7) refinement of test strategy. Our testing process
is not a risk-based test strategy. Instead, our process
is adherent to the MR-MPS-SW(SOFTEX, 2006) and
thus the risks are described in the test plan and man-
aged during all the process.

Afzal et al. (Afzal et al., 2016) present the re-
sults of a systematic literature review (SLR) which
identified 18 software test process improvement ap-
proaches. Furthermore, they perform an evaluation
with two of that approaches using an industrial case
study. In contrast to this work, our goal is to apply
PDCA (Plan-Do-Check-Act)(Johnson, 2002), which
is an process improvement approach, to establish a
standard testing process into a test factory.

5 CONCLUSIONS

Several development enterprises have hired services
of test factories to reduce the costs related to the soft-
ware testing activities. These test factories are then an
opportunity to reduce the costs and improve the qual-
ity of the tests. We presented in this paper our expe-

rience over two years by leveraging the PDCA cycle
to define a standard testing process into a test factory.
First, we identified the current ad hoc testing activi-
ties in Scrum projects and pointed out the main weak-
ness of our testing approach. Next, the improvements
were proposed based on the lessons learned to define
a standard testing process. This process is adherent
to the Brazilian Software Process Reference Model
(MR-MPS-SW) and it is independent of the software
development process. Last, we applied our standard
testing process on 15 industry software releases and
obtained good results for DRE.

We have also presented 12 lessons learned that can
help practitioners to improve their test process. As fu-
ture work, we aim to continuous improvement process
to perform an official CMMI appraisal for the test fac-
tory organization unit. Also, we aim at expanding the
services of our test factory to advanced domains (e.g.,
Ubiquitous and Internet of Things) focusing on the
human-computer interaction quality of such domains
(Carvalho et al., 2016)(Andrade et al., 2017)(Rocha
et al., 2017) and their advanced graphical user inter-
faces (Lelli et al., 2015b)(Lelli et al., 2015a).

ACKNOWLEDGEMENTS

We would like to thank the GREat’s test factory team
for the technical support on this work. The authors
thank the research groups involved in the CAcTUS
- Context-Awareness Testing for Ubiquitous Systems
project supported by CNPq (MCT/CNPq 14/2013 -
Universal) under grant number 484380/2013-3.

REFERENCES

Afzal, W., Alone, S., Glocksien, K., and Torkar, R. (2016).
Software test process improvement approaches: A
systematic literature review and an industrial case
study. Journal of Systems and Software, 111:1 – 33.

Andrade, R. M. C., Carvalho, R. M., Oliveira, K. M., Maia,
M. E. F., and Arajo, I. L. (2017). What changes from
ubiquitous computing to internet of things in inter-
action evaluation? In 5th International Conference
on Distributed, Ambient and Pervasive Interactions,
DAPI 2017. Held as Part of the 19th International
Conference on Human-Computer Interaction 2017.

Bezerra, C., Andrade, R. M. C., Santos, R. M., Abed, M.,
de Oliveira, K. M., Monteiro, J. M., Santos, I., and
Ezzedine, H. (2014). Challenges for usability test-
ing in ubiquitous systems. In Proceedings of the 26th
Conference on L’Interaction Homme-Machine, IHM
’14, pages 183–188, New York, NY, USA. ACM.

Carvalho, R. M., Andrade, R. M. C., Oliveira, K. M., San-
tos, I. S., and Bezerra, C. I. M. (2016). Quality char-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

142



acteristics and measures for human–computer interac-
tion evaluation in ubiquitous systems. Software Qual-
ity Journal, pages 1–53.

Collins, E. F. and de Lucena, Jr., V. F. (2012). Software
test automation practices in agile development envi-
ronment: An industry experience report. In Proceed-
ings of the 7th International Workshop on Automation
of Software Test, AST ’12, pages 57–63, Piscataway,
NJ, USA. IEEE Press.

Cooper-Brown, B.; Ludhani, C. C. S. (2015). Test factory
setup for sap applications. https://www.infosys.com/
IT-services/independent-validation-testing-services/
white-papers/Documents/test-factory-setup.pdf.

CWI (2017). CWI’s test factory. Available: http://www.cwi.
com.br/Services/TestFactory. [Online, Accessed: 19-
Feb-2017].

Cyber:con (2017). Cyber:con’s test factory. Available:
http://www.cybercon.de/en GB/testing. [Online, Ac-
cessed: 19-Feb-2017].

Dantas, V. L. L., Marinho, F. G., da Costa, A. L., and An-
drade, R. M. C. (2009). Testing requirements for mo-
bile applications. In 2009 24th International Sympo-
sium on Computer and Information Sciences, pages
555–560.

Engström, E. and Runeson, P. (2010). A qualitative survey
of regression testing practices. In Proceedings of the
11th International Conference on Product-Focused
Software Process Improvement, PROFES’10, pages
3–16, Berlin, Heidelberg. Springer-Verlag.

FH (2017). Fh’s test factory. Available: http://www.fh.
com.br/en/servicos/technology/software-development/
test-factory/. [Online, Accessed: 19-Feb-2017].

IEEE (2015). IEEE Draft International Standard for Soft-
ware and Systems Engineering–Software Testing–
Part 4: Test Techniques. ISO/IEC/IEEE P29119-4-
FDIS April 2015, pages 1–147.

Johnson, C. N. (2002). The benefits of pdca. Quality
Progress, 35:120–121.

Jones, C. (1996). Software defect-removal efficiency. Com-
puter, 29(4):94–95.

Lelli, V., Blouin, A., and Baudry, B. (2015a). Classifying
and qualifying gui defects. In 2015 IEEE 8th Inter-
national Conference on Software Testing, Verification
and Validation (ICST), pages 1–10.

Lelli, V., Blouin, A., Baudry, B., and Coulon, F. (2015b).
On model-based testing advanced guis. In 2015 IEEE
Eighth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW),
pages 1–10.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The Art
of Software Testing. Wiley Publishing, 3rd edition.

Ramler, R. and Felderer, M. (2015). A process for risk-
based test strategy development and its industrial eval-
uation. In Proceedings of the 16th International
Conference on Product-Focused Software Process Im-
provement - Volume 9459, PROFES 2015, pages 355–
371, New York, NY, USA. Springer-Verlag New York,
Inc.

Rocha, A. R., Montoni, M., Santos, G., Mafra, S.,
Figueiredo, S., Albuquerque, A., and Mian, P. (2005).

Reference model for software process improvement:
A brazilian experience. In Proceedings of the 12th
European Conference on Software Process Improve-
ment, EuroSPI’05, pages 130–141, Berlin, Heidel-
berg. Springer-Verlag.

Rocha, L. C., Andrade, R. M. C., Sampaio, A. L., and
Lelli, V. (2017). Heuristics to evaluate the usability of
ubiquitous systems. In 5th International Conference
on Distributed, Ambient and Pervasive Interactions,
DAPI 2017. Held as Part of the 19th International
Conference on Human-Computer Interaction 2017.

Santos, A. M., Karlsson, B. F., Cavalcante, A. M., Correia,
I. B., and Silva, E. (2011). Testing in an agile product
development environment: An industry experience re-
port. In Latin American Test Workshop, pages 1–6.

Sanz, A., Garcı́a, J., Saldaña, J., and Amescua, A. (2009). A
proposal of a process model to create a test factory. In
Proceedings of the Seventh ICSE Conference on Soft-
ware Quality, WOSQ’09, pages 65–70, Washington,
DC, USA. IEEE Computer Society.

Schwaber, K. and Sutherland, J. (2016). MPS.BR -
Melhoria de Processo do Software Brasileiro, Guia
Geral (v. 1.1). http://www.Scrumguides.org/docs/
Scrumguide/v1/Scrum-guide-us.pdf.

Shamsoddin-motlagh, E. (2012). Article: A review of auto-
matic test cases generation. International Journal of
Computer Applications, 57(13):25–29. Full text avail-
able.

SOFTEX (2006). The scrum guide - the definitive guide to
scrum: The rules of the game. http://www.softex.br/
mpsbr/.

Xia, X., Lo, D., Kochhar, P. S., Xing, Z., Wang, X., and Li,
S. (2015). Experience report: An industrial experience
report on test outsourcing practices. In 2015 IEEE
26th International Symposium on Software Reliability
Engineering (ISSRE), pages 370–380.

Zieris, F. and Prechelt, L. (2016). Observations on knowl-
edge transfer of professional software developers dur-
ing pair programming. In Proceedings of the 38th
International Conference on Software Engineering
Companion, ICSE ’16, pages 242–250, New York,
NY, USA. ACM.

Software Testing Process in a Test Factory - From Ad hoc Activities to an Organizational Standard

143


