
HAL Id: hal-03396017
https://uphf.hal.science/hal-03396017v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Why did developers migrate Android Applications from
Java to Kotlin

Matias Martinez, Bruno Gois Mateus

To cite this version:
Matias Martinez, Bruno Gois Mateus. Why did developers migrate Android Applications from Java
to Kotlin. IEEE Transactions on Software Engineering, 2021, �10.1109/TSE.2021.3120367�. �hal-
03396017�

https://uphf.hal.science/hal-03396017v1
https://hal.archives-ouvertes.fr


Why Did Developers Migrate Android
Applications From Java to Kotlin?

Matias Martinez and Bruno Gois Mateus

Abstract—Currently, the majority of apps running on mobile devices are Android apps developed in Java. However, developers can 
now write Android applications using a new programming language: Kotlin, which Google adopted in 2017 as an official programming 
language for developing Android apps. Since then, Android developers have been able to: a) start writing Android applications from 
scratch using Kotlin, b) evolve their existing Android applications written in Java by adding Kotlin code (possible thanks to the 
interoperability between the two languages), or c) migrate their Android apps from Java to Kotlin. This paper aims to study this last 
case. We conducted a qualitative study to find out why Android developers have migrated Java code to Kotlin and to bring together their 
experiences about the process, in order to identify the main difficulties they have faced. To execute the study, we first identified commits 
from open-source Android projects that have migrated Java code to Kotlin. Then, we emailed the developers that wrote those 
migrations. We thus obtained information from 98 developers who had migrated code from Java to Kotlin. This paper presents the main 
reasons identified by the study for performing the migration. We found that developers migrated Java code to Kotlin in order to access 
programming language features (e.g., extension functions, lambdas, smart casts) that are not available with Java for Android 
development, and to obtain safer code (i.e., avoid null-pointer exceptions). We also identified research directions that the research 
community could focus on in order to help developers to improve the experience of migrating their Java applications to Kotlin.

1 INTRODUCTION

CURRENTLY, Android from Google is the mobile platform
used on most smartphones around the world [1]. Tradi-

tionally, Android applications were developed using Java
programming language. However, in 2017, Google adopted
Kotlin, a new programming language (v1.0 released in 2016),
as an official language for developing Android applica-
tions [2]. Since then, Android developers have been able to
develop Android apps using: a) Java, b) Kotlin, or c) both
languages.

Kotlin is a programming language that combines object-
oriented and functional features, some of them not present
in Java or not available for Android development.1 Kotlin is
compiled to Java byte code, which means that a) an applica-
tion written in Kotlin can be executed on the Java virtual
machine (JVM), and b) Kotlin is fully interoperable with
Java, i.e., Kotlin code can invoke programs written in Java
and vice versa.

The adoption of Kotlin as an official development lan-
guage for buildingAndroid applications has resulted in three

main scenarios. Android developers can: 1) start writing an
application from scratch in Kotlin, 2) evolve their Android
apps, initially written in Java, by adding Kotlin code and
maintaining the existing Java code, 3) totallymigrate an appli-
cation, initially written in Java, to Kotlin. Recently, Coppola
et al. presented the first characterization of migrations of
Android apps from Java to Kotlin [3]. They studied the evolu-
tion of such apps by using metrics based on the amount of
Kotlin and Java code (LOC) and numbers of files. Their results
show that the transition from Java to Kotlin was in general a)
fast (rapid transition between languages), and b) unidirec-
tional (the ratio of Kotlin over total code was often increasing
during their evolution).

In this paper, we go one step further on regarding the char-
acterization of the migration of Android apps to Kotlin. We
conduct a qualitative study to study why Android developers
havemigrated their applications from Java to Kotlin and bring
together their experiences about the migration process. This
study is important for understanding the limitations of the tra-
ditional way of writing Android apps (i.e., using Java lan-
guage) from the Android developers’ perspective. Moreover,
we focus on developers who have begun migrating but have
not finished at themoment of carrying out this study (i.e., their
Android apps contain both Java andKotlin code).

To perform the study, we first executed code analysis to
identify commits on open-source Android applications that
have migrated Java code to Kotlin. From those commits, we
found the developers that wrote them, i.e., that migrated
code from Java to Kotlin. Second, we contacted those devel-
opers via email to ask them why they migrated their Java
code to Kotlin and their main reasons for doing so.

In total, we received responses from 98 developers that
had migrated code on open-source Android apps published

� Matias Martinez is with the Universite� Polytechnique Hauts-de-France,
59313 Valenciennes, France, and also with the LAMIH UMR CNRS 

8201, 59313 Valenciennes, France. E-mail: matias.martinez@uphf.fr.
� Bruno Gois Mateus is with the Federal University of Ceara� - Campus of

Quixad, Quixada� 63902-580, Brazil. E-mail: brunomateus@ufc.br.

1. https://kotlinlang.org/docs/reference/comparison-to-java.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 11, NOVEMBER 20221

DOI : 10.1109/TSE.2021.3120367



on app stores. This study complements the one carried out by
Oliveira et al. [4], where seven developers were interviewed
to gain knowledge about the adoption of Kotlin in mobile
development. We also complemented the interviews with a
study of the grey literature to detect problems related to the
adoption of Kotlin thatwere notmentioned by developers.

A focus on migration from Java to Kotlin in Android
development is crucial because we believe that, since the
official adoption of Kotlin, Android development has
entered a new era. We hypothesize that, given the increas-
ing support that Google has given to Kotlin on Android, all
Android development could eventually move from Java to
Kotlin. For this reason, we consider that it is essential to
understand why developers migrate Android apps from
Java to Kotlin, in order to a) uncover the difficulties devel-
opers have encountered and b) help and support them with
documentation, techniques and tools for development and
migration activities. In this paper, we identify potential
directions that the research community could focus on to
help developers overcome such difficulties.

The contributions made by this paper are:

� A detailed list of the main reasons that Android
developers give for migrating to Kotlin. This could
encourage other Java developers tomigrate to Kotlin.

� A list of experiences, takeaways and recommenda-
tions from our study, that could be used by both
Android developers (e.g., to decide whether to
migrate to Kotlin or not) and by researchers (e.g., to
propose solutions that overcome the current prob-
lems developers face).

The paper continues as follows. Section 3 presents the
methodology. Section 4 presents the responses of the
research questions. Section 5 discusses the threats to validity.
Section 6 presents a discussion and future work. Section 7
presents the relatedwork. Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this paper, we focus on the migration of applications from
Java toKotlin. This type ofmigration has some particularities,
and differs from other types of migrations, e.g., of legacy sys-
tems. A legacy system can be defined as “a system that signif-
icantly resists modification and evolution” [5]. Bisbal et al. [6]
mention that legacy systems can cause problems, since they
usually run on obsolete hardware and lack clean interfaces to
interact with other systems. The migration of Java to Kotlin
has some key differenceswith legacymigration. For example,
the underlying run-time environment (i.e., the Java virtual
machine, ART and Dalvik machines for Android) does not
need to be updated: Kotlin and Java are compiled to Java
bytecode. In addition, the communication between migrated
and unmigrated components in legacy migrations (e.g.,
COBOL to web [7]) needs wrappers ([6], [7]) or gateways ([5],
[6]). Conversely, the interoperability between Java andKotlin
means that wrappers and gateways are not necessary for
migrating from Java to Kotlin. Consequently, developers can,
for instance, introduce Kotlin code into their Java apps with-
out changing either the environment infrastructure or the
Java code. According to Oliveira et al. [4], developers seem to
consider this interoperability one of the great benefits of

adopting Kotlin, even though there are inconveniences and
disadvantages to be tackled, such as some problemswith lan-
guage features and development tools.

In any case, since it was declared an official language for
Android development in 2017, Kotlin has been increasingly
adopted ([3], [8]) and some developers have decided to
totally or partially migrate their apps from Java to Kotlin.
The transition from Java to Kotlin was recently examined in
two previous studies, one by Coppola et al. [3], and another
by Gois Mateus et al. [8]. Both studies report that once Kotlin
is introduced into open-source Android applications that
had initially been written in Java, most of them evolve by
having more Kotlin code and less Java code.

Moreover, Coppola et al. [3] report that most projects that
featured Kotlin in their latest release showed a rapid transi-
tion from Java to Kotlin during their lifespan.

Beyond the recent progress on characterizing the develop-
ment of Android apps that use Kotlin, we note that there are
gaps in our understanding about migrations to Kotlin: to our
knowledge, no previous work has focused on capturing the
motivations of migrating to Kotlin, or the experiences of
developers that have already migrated code from Java to
Kotlin in Android applications published in app stores.

This paper aims at filling those gaps. In order to do this, the
research questions that guide our study are the following:

RQ 1: Why (for what reasons) have developers migrated
their Android applications from Java to Kotlin?

RQ 2: Why do developers not fully migrate their Android
applications from Java to Kotlin?

RQ 3: What are the main takeaways from developers
about migrating to Kotlin?

3 METHODOLOGY

In order to respond to the research questions, we carry out a
qualitative study with the main goal of collecting data from
software developers about the migration of Java code to
Kotlin in the context of Android development.

In this study, we choose to directly ask to the developers
their motivations behind deciding to migrate from Java to
Kotlin. The most suitable approach for obtaining this infor-
mation is to employ qualitative data collection and analysis
techniques, rather than other techniques such as experi-
ments or quantitative surveys [9].

In Section 3.1 we present the overall research design.
Then, in Sections 3.2, 3.3 and 3.4 we describe the methods
for responding to each research question.

3.1 Overall Research Design

Our research design was articulated as follows.
First, in order to sample the population that was able to

participate in our study, we performed code analysis to
detect commits that migrated code from Java to Kotlin.
Using these commits, we identified the developers who had
written them. This step is explained in Section 3.1.1.

Second, we performed a qualitative study, consisting of
contacting the previously identified developers with the
goal of asking them about the migration process that they
had carried out. We contacted all the previously identified
developers by email, presenting them with a short semi-
structured interview. We defined these interviews as semi-

2



structured because the interviewees were free to answer the
questions without pre-coding the answers, as usually done
in a questionnaire [9]. The methods that we applied in exe-
cuting the study are explained in Section 3.1.2.

Third, we carried out content analysis to highlight the
developers’ main motivations for opting to migrate from
Java to Kotlin. The methods we applied in this analysis are
explained in Section 3.1.3.

Fourth, we complemented the qualitative analysis
described in Section 3.1.2 with an analysis of the grey litera-
ture about Kotlin migration. This analysis aims to detect
topics discussed and not discussed by developers during
the mentioned interviews. We present the methodology for
collecting and analyzing the grey literature in Section 3.1.4.

3.1.1 Identifying Developers That Have Migrated Code

3.1.1.1 Definition of Migration Commits. In this work, a migra-
tion commit is a commit that removes a piece of code written
in Java and introduces code written in Kotlin. For example,
commit 3638be from application Chicago Commutes

removes a file named GPSUtil.java, written in Java and
introduces a new one, GPSUtil.kt, written in Kotlin. Both
files provide the same functionality: a method that returns
the position given by a smartphone’s GPS.2

3.1.1.2 File-Level Migration Commit. This paper focuses on
one type of migration, which we call file-level migration, that
corresponds to commits that migrate code by removing one
Java file and adding one newKotlin file with the same name.

The heuristic for detecting such commits checks, for a
given commit C, whether it removes a Java file named
F:java and adds a file named F:kt.

3.1.1.3 Collecting Migration Commits Using the MigA Tool.
To identify developers that have written migration commits
from open-source repositories, we implement an open-
source tool called MigA [10].

MigA is built on top of Coming [11], a framework for
studying the evolution of applications. Coming provides
functionality to, for instance, extract and analyze the source
code changes introduced by each commit from a GIT reposi-
tory. In particular, MigA aims to detect commits that
migrate code from Java to Kotlin.

MigA takes the location of a cloned GIT repository as its
input. It navigates each branch from the repository in chro-
nological order, starting from the oldest one.

During the commit navigation, MigA analyzes each com-
mit by calling a pipeline of commit analyzers. Commits
belonging to several branches are analyzed only once. For
each commit, an analyzer from MigA inspects the source
code files that are added, removed and modified by the
commit. More specifically, it applies the heuristic described
in Section 3.1.1.2: it stores a commit if it removes a Java file
and also adds a new Kotlin file with the same name.

Finally, it outputs a list of the migration commits previ-
ously filtered. For each commit, MigA reports: a) commit ID
(SHA-1), b) developer’s user name, c) developer’s full name,
d) developer’s email, e) branch(es) it belongs to, and f) date.
That information allows us to contact developers that have
migrated code.

The architecture of MigA (inherited from Coming)
allows users to add new commit analyzers via its extension
mechanism. Using them, researchers could, for instance,
encode new heuristics in MigA for detecting migrations
that are not covered by this paper.

3.1.2 Data Collection

To address our research questions, we conduct a qualitative
study [12]. Our study is exploratory [13] and applies short
semi-structured interviews, following a purposive sampling
strategy [14] based on the data retrieved in Section 3.1.1.

First, from each migration commit previously retrieved,
we glean the name and username of the developer that
made the commit. Emails addresses are collected by query-
ing GitHub API, using the username as input.

Then, we send a personalized email to each developer,
that mentions that we have analyzed the code of her/his
application (mentioning the app name), and that we have
detected that she/he wrote at least one commit that migrates
code from Java to Kotlin.3 We first ask developers a single
question via email: “Why did you migrate code from Java to
Kotlin?”. When we receive an answer from that developer,
we identify the main points discussed in the answer, using
content analysis, and we ask new questions accordingly. In
addition to these questions, we ask other questions that we
have predefined. Examples of those are: a) “Which Kotlin fea-
tures do you like the most?” b) “Did you use the auto-converter
code tool provided by the IDE?”, c) “Which was the criterion (if
any) to choose to migrate those classes?”. The complete list of
questions is available in our appendix [15].

We choose a qualitative study format, composed of an
initial question, and followed by a semi-structured inter-
view, following the recommendations given by [13], which
indicates that giving the interviewee freedom to answer
open-ended questions such as the ones proposed in our
semi-structured interviews offers a number of advantages,
such as observing the answers and asking further questions
according to what is observed.

Moreover, we choose to carry out a qualitative study
because, as suggested by [13], it can be used as a pre-study
for a more thorough investigation, and may provide new
possibilities that could be analyzed. In Section 6.2, we dis-
cuss new possibilities raised by our qualitative study.

3.1.3 Collection of Results and Summary

To summarize the results from the study, we carried out
content analysis [12]. We first carefully read through all the
answers received, identifying their main motivations and
assigning them a code. This process of coding allows us to
summarize the answers from our interviewees inductively
in order to discover new perspectives and insights.

Our approach follows two ways of coding derived from
grounded theory [16]: Open coding and Axial coding. Here
we explain the steps.

Open Coding. The open-coding process consists of break-
ing down the content to be analyzed (e.g., responses to our
emails) into different parts, each identified by a code. Then,

2. Migration commit: https://github.com/carlphilipp/chicago- 3. Even if a developer has performed different migrations, we send
commutes/commit/3638be60c8bd144b968f044c0ded218e19697d69 only one email.

 

3



we label them with words or short phrases, which we
denominate codes. To carry out this step, we collect all codes
discussed in each email thread (i.e., the original emails with
answers and responses, if any). For example, from a state-
ment such as:“I moved on from Java to Kotlin because I liked the
features that are present in Kotlin and C++, but not in Java, [...]
also because of extension functions” we extract the codes Like
features from C++, and Like new feature extension

functions. More examples are listed in our appendix [15].
At the same time, we also label the emails that contain valu-
able information for responding to the research questions,
e.g., why developers migrated to Kotlin.

Axial Coding. Once we have read all the emails and col-
lected all the codes, we merge the codes that are equivalent
or related. For example, the codes Limitation of JVM/

JDK and Java development stuck with old Java ver-

sion were extracted from two emails. However, they refer
to the same issue: migration due to the limitations of Java
source code version (Java 6) when targeting all Android
devices. These are merged resulting in a new code: Find
Java a limitation from Android development. Once
we obtain the final list of codes, we categorize them. In total,
we find 74 codes, which are available in our appendix [15].

Classification of Emails. Once we obtain the final list of
codes, we look through all the emails again to assign each
with a code. To do this, we create a spreadsheet where each
column is a code C and each row corresponds to a devel-
oper D that we have interviewed. Then we read each email
E from developer D: for each code C, we mark the cell D;C
if the code is present in any of the emails from developer D.
Otherwise, we leave that cell empty.

3.1.4 Analysis of the Grey Literature

We complement the qualitative studywith a secondary anal-
ysis [9] of the grey literature. The main goal of this analysis is
to identify which of the reasons for migration mentioned by
developers were also mentioned by the grey literature. In
this paper, we focus on tutorials and blog entries.

To collect them, we execute two queries on Google: 1)
Android Java Kotlin migration, and 2) Android

Java versus Kotlin. Then, we inspect the top-25 sites
returned, and apply the methods explained in Section 3.1.3
to extract codes from them. Our appendix includes the links
to all sites analyzed in the grey literature.

Please note that the study of the grey literature does not
aim to report the codes that are most discussed, but to detect
those that the developers mentioned. To respond to our
research questions, we carry out a secondary analysis [9]
based on an additional source (the grey literature), rather
than a triangular study (which involves using two or more
methods of data collection [17]).

To complement the study, in the discussion Section 6.1,
we present codes from the grey-literature that have not
been mentioned by developers.

3.2 Method for Responding to RQ 1: Why Have
Developers Migrated Their Android Apps to
Kotlin?

To respond to RQ 1, we inspect each code Ci (determined by

whether the code could be a reason for migrating or not. If
it is, we read all the emails associated with code Ci and vali-
date if the developer who wrote each email mentions Ci as
a reason. It should be noted that it might be the case that
some codes are related to one another. For example, one
code states that developers like the Extension Functions fea-
ture, and another code does the same with the Data Classes
feature. In those cases, we report a single reason that covers
both codes. Finally, we report the 10 most frequent reasons
that we find.

3.3 Method for Responding to RQ 2: Why not Fully
Migrated?

To identify why some developers have not yet finished a
migration, we first identify the applications that have been
partially migrated: ones whose latest versions contain both
Kotlin and Java. In order to do so, we analyze the amount
of code written in Java and in Kotlin from the first and last
commit in each app. If the application has Java code in the
initial version but none in the last one, we consider it fully
migrated. Conversely, if the application has both Java and
Kotlin code in the latest one, we consider it partially
migrated.

Then, we apply the methods explained in Section 3.1.1 to
the set of partially migrated apps,4 to retrieve developers
that have migrated code. Finally, we ask them about their
reasons for not having finished the migration process, and
why they still have Java code in their codebases.

3.4 Method for Responding RQ3: Migration
Takeaways

To answer RQ 3, we follow the same methods as for
responding to RQ 1 (Section 3.2), but include an additional
step. When we manually analyze each email, we also cap-
ture the codes that are related to the experiences of the
developers during the migration. For example, from the
statement: “Auto-converter does its job only half, still need to go
through and fix some things”, we mark that the developer
wrote a takeaway related to the code: Had issues when con-
verting using auto-converter.

3.5 The Data Under Study

In this section, we first present the applications that we ana-
lyze to respond to these research questions. Then, we report
the amount of migration commits we find in those apps.

3.5.1 The Dataset of Android Applications

We define two main construction criteria in our dataset of
applications. First, the version history of the applications to
study must be tracked on the Git system and publicly avail-
able in development platforms such as GitHub. These crite-
ria allow us to apply the heuristic discussed in Section
3.1.1.2. Second, to avoid analyzing “toy” projects that devel-
opers might upload to such platforms, the apps must be
published on an app market, i.e., official ones such as Goo-
gle Play or unofficial ones such as F-Droid.

4. At the moment the study was done, the partially migrated apps
using the method explained in Section 3.1.3), and decide analyzed still had Java code.

 

4



To collect the largest number of open-source Android
applications, we focus on two datasets: 1) F-Droid,5 an
app market of open-source apps, and 2) Android Time
Machine [18], a dataset of apps published onGithub.

In total, we collect 2,167 open-source Android applica-
tions that fulfill the criteria mentioned above. Then, we use
the heuristics for filtering Kotlin applications presented
in [8]. At the moment the study was performed, the partially
migrated apps analyzed contained Java code. We find 374
out of 2,167 that have at least one line of code written in Kot-
lin. Those apps have a median of: a) 331 commits, b) 139
files, and c) 7951 lines of code. More statistics are available
in our appendix [15].

To respond to RQ 2 (why apps are not fully migrated),
we first detect the applications that have not been fully
migrated. We find 214 out of 374 apps initially written in
Java that have been partially migrated (i.e., that have both
Kotlin and Java code in the latest commit).

3.5.2 Finding Migration Commits and Developers

We execute MigA on the 374 apps that have at least one
commit with at least one line of code written in Kotlin. We
mine commits from all branches, following the suggestion
from [19]. In total, we find 3520 migration commits written
by 362 different developers. 95.7% of these commits (3368/
3520) belong to the active branch (usually named master or
development). The remaining 152 commits belong to other
unmerged branches. Finally, from those migration commits,
we retrieve the usernames, full names, and emails of the
developers. In total, we find 362 distinct developers, who
will form the target of our study.

4 RESULTS FROM THE QUALITATIVE STUDY

We received responses from 98 developers, �27% of the
total contacted (98/362), with all having developed distinct
applications.

Table 1 shows an extract of the summary of the codes
obtainedusing themethods described in Section 3.2. The com-
plete table is presented in our appendix [15].We now respond
to the research questions based on those results.

4.1 RQ 1: Why (for What Reasons) Have Developers
Migrated Their Android Applications From Java
to Kotlin?

We present the 10 most frequent reasons for migrating Java
code to Kotlin that we were able to identify from the inter-
views. We recall that a qualitative study (like ours) is not
statistically representative of the whole population under
study. Consequently, what we find are the 10 most relevant
reasons among the interviewees.

Each reason, i, is related to a code labeled as ‘RS: i’ in
Table 1. In this section, reasons are sorted according to the
number of developers that mention each reason. We also
group the codes according to different categories: e.g., Sup-
port (i.e., from Google and/or JetBrains), Design, and Lan-
guage features.

4.1.1 Reason: To Avoid Errors by Using Safer Code

(RS: 1)

One of the biggest problems in Java is the way it handles
nulls. Incorrect manipulations of them lead to java.lang.Null-
PointerException (NPE). As reported by Coelho et al. [20],
java.lang.NullPointerException was the most reported root
cause (27.71%) found in issues reported in over Android
projects. Moreover, they found that 51.96% of those projects
reported at least one exception stack trace on which the
NPE was the root cause.

Kotlin eliminates the possibility of empty pointers from a
compilation perspective: potential NPEs are detected at
compile time instead of crashing apps at runtime.

Forty-two developers stated that they decided to migrate
to Kotlin to obtain safer code (i.e., null safety). For example,
one developer wrote: “I researched a bit on the language and
the focus on null safety and immutability sold me on trying to
avoid some past bugs”. Another says: “One of the reasons that
motivated me to migrate to Kotlin is Null Safety: reduces errors
and I don’t have to think if an object may become null”.

This reason is related to the maintainability of applications
and is discussed by articles from the grey literature, e.g.,
[21], [22].

4.1.2 Reason: To Follow Google (RS: 2)

Thirty-two developers told us that one of the main reasons
for migrating to Kotlin was the fact that Google had
adopted it as an official Android programming language.6

This adoption means that Google: a) expands documenta-
tion, resources and support for Kotlin development, b)
enriches the IDE Android Studio to support Kotlin, c) pro-
vides Android KTX, a set of Kotlin extensions for the
Android platform. One developer told us: “I liked Kotlin but
Kotlin was an unofficial language for Android development in
Dec 2016. But after one year, Google announced Kotlin was first-
class language for Android development. So no more worry about
Kotlin being banned and I migrated Java to Kotlin”. Another
developer told us: “Kotlin being announced as the primary lan-
guage by Google, we wanted to keep the product up to date with
the latest innovations available in the market”.

Google’s adoption of it boosted the popularity of Kotlin [4].
For example, one developer told us: “I got interested in Kotlin
after I saw some Kotlin snippets in the Android API documentation
so I looked into it a bit more and I liked some of the codes I saw”.

Eight developers also remarked on the role of JetBrains,
the company that created both the Kotlin language and the
IDE IntelliJ IDEA. One of them told us: “Another reason that
influenced me into deciding to migrate to Kotlin was the support
Kotlin has, being backed up by JetBrains and Google [...]. Since
Google is pretty much the Android authority, it’s wise to follow
the best practices they recommend”.

Also, developers underlined the importance of the IDE
Android Studio (which is based on the JetBrains’ IDE IntelliJ
IDEA). One told us: “The IDE support, debug information, and
bytecode viewer is a killer for senior Android devs to play with”.
There is one prominent functionality that it provides: a tool
for automatically converting a Java file to Kotlin “with the

6. Kotlin official language for Android: https://developer.android.
5. F-Droid: https://f-droid.org com/kotlin

 

5



TABLE 1
The Most Frequent Codes Mined From the Survey With Developers

Category Code #Dev

Support Like Google support (RS: 2) 32
Like JetBrains support (RS) 8
Highlight Importance of IDE for Kotlin 6
Adopted due to coolness factor (RS) 4

Advantage of Kotlin Reduce code (RT: 1) 34
code with respect Easier to read/clear/write/syntactic sugar/easier to maintain (RT: 1) 23
to development Kotlin has clear syntax 17
and maintainability Less Redundant/less verbose 12

Little-to-no boilerplate code 9
Kotlin is a modern language/has features from modern languages (RS) 5
Code more dense/heavy 4
Efficient language 2

Design Ease of implementing MVI (Model-View-Intent) architecture (RS:3) 6
Ease of implementing MVVM (Model-View-ViewModel) architecture (RS) 1
Availability of Built-in design patterns (e.g., with Extension functions) 1

Relation with other Don’t want to use Java anymore (RS: 7) 13
languages Find Java a limitation for Android development (RS:8) 10

Like Scala (RS: 6) 5
Like Kotlin Features from C++ (RS: 10) 4
Kotlin has more extensions than Java native package 3
Don’t like Java (RS) 2
Like Koltin Features from Haskell (RS) 2
More similarity with Java w.r.t other JVM languages (RS) 2
Not a fan of Kotlin 2
Like Python 1
Similar to Swift (RS) 1

Language Features Like Null safety/Nullability support (RS:1) 42
Like Extension functions (RS: 3) 23
Like Coroutine (RS:3, RT: 2) 21
Like Data class (POJO) (RS: 3) 16
Highlight Interoperability with Java (RS: 5) 15
Like lambdas (RS: 6) 14
Like Functional programming available in Kotlin (RS: 6) 11
Use Coroutines instead of ReactiveX (RS) 8
More features than Java (RS) 7
Like Function as parameters/Higher-Order functions 6
Like Immutability 5
Highlight Kotlin standard/built-in library 5
Like no getters/setters 4
Like streams 4
Like built-in API for manipulating collections 4
Like default parameters 4
Find Kotlin safer than Java 3

Productivity with Kotlin Increase productivity 5
Faster development 4
Faster delivery 3

Running platforms Like Kotlin to write server side apps� (RS) 7
Interested in multiplatform with Kotlin (RS:9) 6
Kotlin Android Extensions plugin (Android KTX) (RS) 2

Auto-converter Use the auto-converter alongside the migration process 36
Had issues when converting using the auto-converter (RT: 2) 24
Use the auto-converter first, then manual conversion 2

Migration process App migrated to learn Kotlin (RS: 4) 19
Migrating using ”Boy scout rule” (RNM: 1) 14
Only new features would be implemented in Kotlin (RNM: 2) 10
Migrated in one step (i.e., one single commit) 9
Migrated only by hand (only manual coding) 6
No time to finish (RNM: 3) 5
Only new files in Kotlin/Old code kept in Java (RNM) 3
Started migration with data class (POJO) 2

Performance Affirm no overhead in performance 2
Affirm no overhead APK size 1

�We don’t discuss this code in this paper as we focus on Android development.
Annotations RS, RNM, and RT refer to codes used for responding to research questions 1, 2 and 3, respectively. Those numbered are detailed in Section 4.The full
table is available in our appendix [15].

 

6



click of a button”. One developer told us: “Thanks to JetBrains,
I migrated it in several hours, and it worked on the first launch,
which was very promising”.

This reason is related to the Android development support
and discussed by articles in the grey literature such as [23],
[24], [25].

4.1.3 Reason: Waiting to Use a Modern Programming

Language (RS: 3)

Most developerswho answered our questions foundKotlin to
be a modern programming language that provides several
built-in features that are not available natively in Java. Some
of them are: a) Extension functions (23 developers highlighted
this), b) Coroutines (21) c) Data classes (16), d) others features
(Smart casts, Type inference, Control flow). For instance, the
Extension function feature provides the ability to extend a class
with new functionality without inheriting from the class.7

One developer wrote this about it: “apart from providing a clean
way to refactor the code, extensions allow an alternative to Abstrac-
tion/Inheritance in order to achieve the Open/Closed Principle,
which is invaluable”.

Six developers remarked on the built-in design patterns
provided by Kotlin, which enforce some of the best practices
of Java by design. For example, the Singleton pattern using
the keyword ‘Object’ and the Decorator pattern using the
keyword ‘by’.

This reason is related to the development of applications.
The grey literature we inspected also highlighted those fea-
tures, for example, extension functions were mentioned
by [23], [24], [26], [27], [28], and coroutines by [23], [28], [29].

4.1.4 Reason: For Learning Purposes (RS: 4)

Sixteen developers mentioned to us that they started devel-
oping their apps with for learning purposes: they generally
try and test new technologies such as Kotlin while they
develop an app. (Note that, beyond that this purpose, as
our inclusion criteria indicate (Section 3.5.1), all analyzed
apps were published on apps stores such as Google Play).

Those developers migrated Java code to Kotlin while
they were learning to program in Kotlin. One of them told
us: “I migrated my mobile application from Java to Kotlin mainly
for learning purposes. Even though this project is in production,
it is a great playground to stick with the last Android technologies
and experiment new tools”.

This reason is related to developers’ training education and
skills and is discussed by articles in the grey literature, e.g.,
by [26].

4.1.5 Reason: To Use a New Language That is 100%

Interoperable With Java (RS: 5)

Fifteen developers mentioned the advantage of full interoper-
ability between Kotlin and Java. This interoperability allows
developers to mix Java and Kotlin code. Thus, the migration
can be performed gradually, i.e., a commit migrates some
classes which can interact with unmigrated classes. As one
developer said: “We could implement new functionality in Kotlin
while leaving the existing Java classes intact. Otherwise, the port to

Kotlin would have been infeasible”. This is aligned with the find-
ing from Oliveira et al. [4]: their interviews with seven devel-
opers present interoperability as a great benefit of adopting
Kotlin. Interoperability is a key factor for conducting low-risk
migrations by gradually migrating the code. For instance, the
Android app of Duolingo,8 a language education platform,
was fully migrated from Java to Kotlin in two years [30]. This
was possible due to the interoperability of the languages: dur-
ing that period, Duolingo apps contained both Kotlin and
Java code. As Duolingo’s developers report, this gradual
migration allowed them to apply strict testing, code review
and code style of each part of themigrated application.

This reason is related to the development and maintainabil-
ity of Android applications. The grey literature also high-
lights interoperability as one of the most important features,
e.g., [22], [23], [27]. Moreover, Sommerhoff [26] states that,
thanks to interoperability, the migration of large projects
can be performed gradually.

4.1.6 Reason: To Use a Functional Programming

Language for Android Development (RS: 6)

Eleven developers migrated to Kotlin because it is a func-
tional-oriented programming language, and it provides sev-
eral functional features that are not available for Android
development using Java 6 (e.g., lambda is available in Java 8
+). The Higher-Order functions feature (i.e., the possibility of
passing a function as an argument) was highlighted by four-
teen developers. Five developers told us they were mainly
Scala developers. Kotlin gives those developers the possibil-
ity to write Android applications using a functional para-
digm, just as they do with Scala.

This reason is related to the development and maintainabil-
ity of applications. Several articles from the grey literature
highlight functional features as one of the main advantages
of adopting Kotlin, e.g., [23], [24], [26].

4.1.7 Reason: To Avoid Java Language (RS: 7)

Some developers migrated their tools because, as they con-
fessed, they do not like the Java language. Thirteen develop-
ers mention that, thanks to the possibility of coding Android
apps with Kotlin, they no longer use Java. For example, one
wrote: “I don’t and haven’t ever really liked Java. I only wrote it
in Java because that’s what Android dictated. When Kotlin came
around, it looked like a nicer language, and was fully compatible”.

Since Google officially adopted Kotlin, developers who
do not like or do not use Java can now develop Android
apps in another programming language. One of them wrote:
“I migrated from Java to Kotlin because I don’t really know how to
work with Java. The app was written in Java because there was no
officially supported alternatives for Android development”.

This reason is related to the development of applications.

4.1.8 Reason: To Avoid Android Platform

Fragmentation and the Limitation of Java

Versions Used for Android Development (RS: 8)

One of the main obstacles that Android developers face is
the fragmentation of the Android platform. To target all

7. Kotlin Extensions: https://kotlinlang.org/docs/reference/
extensions.html 8. Duolingo: https://www.duolingo.com/

 

7



platforms, Android developers who use Java are obliged to
use Java 6, which does not include coding features such as
lambdas and extension functions. We call them modern features
as they are typically available on modern programming lan-
guages such as Scala, Golang, Rust, Swift, etc. To use Java 8
and its modern code features (including collection API,
streams and lambdas), their apps must target one of the lat-
est Android OS versions (API level 24+).9. This implies that
Android devices with older OS versions cannot run applica-
tions written using Java 8.

Ten developers noted their annoyance about program-
ming on Android using Java 6. One of them said: “I was sick
of using Java. As a professional Android developer there is no rea-
son to use Java, especially the incredibly limited version of Java
you get on Android.”

The majority of the developers that answered us stated
that migrating to Kotlin was a way to “hack” this problem:
Kotlin has standard libraries that provide features available
on Java 8+ (such as lambdas and streams). Gois and Marti-
nez [31] describe these Kotlin code features that are not
available in Java for Android development. Moreover, Kot-
lin has as advantage that its source code is compiled to Java
6 bytecode. Thus, apps written in Kotlin can be executed on
any Android device. This simplifies the development task.
For example, one developer wrote: “I forked a library into my
project and it was Java 8 only because it used streams, but with
Kotlin I got that working in Java 6/7 which is how most android
works”.

This reason is related to the development and deployment of
Android applications and is also discussed in the grey liter-
ature, for example, by [23], [32].

4.1.9 Reason: To Achieve Multi-Platform Development

(RS: 9)

It is worth mentioning that, even though no developers
mentioned it as their main reason for migrating, seven of
them pointed out that the migration to Kotlin could allow
them to achieve multi-(cross-) platform development.10 Cur-
rently, mobile developers can write the business logic of a
mobile application using Kotlin and share it in their Android
and iOS projects, allowing them to reduce development time
and effort by reusing business code.11

This reason is related to the portability of Android
applications.

4.1.10 Reason: To Use Features Provided by Other

Programming Languages (RS: 10)

Some developers told us that they master or prefer other
non-Java Virtual Machine (JVM) programming languages
such as C, C++, Python or Haskell. As Android developers
have been “forced” to program in Java, the introduction of
Kotlin for Android development has been an opportunity
for those developers to use some features also available in
their favorite programming languages. Named and default

parameters in Python and Operator overload in C++ are fea-
tures present in Kotlin that developers mentioned in their
answers.

This reason is related to the development and maintainabil-
ity of applications. The grey literature also highlights these
features of Kotlin, e.g., named and default parameters [24],
[26], [33], and operator overload [29], [32].

4.2 RQ 2: Why do Developers not Fully Migrate
Their Android Applications From Java to Kotlin?

Thanks to the interoperability between Kotlin and Java,
developers do not need to migrate their applications
completely. We asked developers of not fully migrated
apps why they had not yet finished the migration. We set
out the most important reasons identified. Each is related to
a code labeled as ‘RNM: i’ from Table 1.

4.2.1 The “Boy Scout” Rule (RNM: 1)

Fourteen developers migrated Java code to Kotlin by fol-
lowing the “Boy Scout Rule”.12 This rule states that the code
is migrated if: a) it is necessary to change a Java file, and b)
migrating it to Kotlin is simple (i.e., it takes little time).

Unlike from those developers that completely migrated
their code, some developers of partially migrated apps only
migrated code when there was a particular reason for doing
so. For instance, some of these developers told us that they
migrated while they were refactoring code. As one wrote:
“Occasionally parts of the application that need refactoring are
identified. When refactored, they are migrated to Kotlin”. Another
refactored while converting: “I converted whenever I had to
touch the file for one reason or another anyway, usually combined
with a refactoring”. This way of migrating causes the amount
and the proportion of Kotlin code to grow along as the apps
evolve.

However, some developers remarked that they do not
always follow that rule. For instance, one told us: “Old clas-
ses were migrated to Kotlin when they had changes. Some classes
are still in Java because they implement hard logic”.

The grey literature also mentions the style of migration
that follows the “Boy Scout” rule. For instance, Abdelaziz
[34] suggests: “when a Java class raises a bug and needs to be
changed, [...] then you can also convert it on the spot.”

4.2.2 New Functionality is Written in Kotlin, Old

Functionality Remains in Java (RNM: 2)

Some developers told us that they decided to write only
new functionality in Kotlin without migrating the old Java
code. In other words, components written in Java evolved
without any migration, unlike the “Boy Scout” rule. One
told us: “I don’t think I have yet changed any code just for the
sake of rewriting”. Upon encountering a bug in a Java file,
these developers keep the Java code. One mentioned: “I
decided that every new feature would be implemented in Kotlin. I
would add Java code only to fix legacy code”. Another developer
suggested: “not touching the old code unnecessarily. Adhere to
the principle of ‘work, do not touch’. And only when expanding
the functionality of the old Java code, translate it into Kotlin”.

9. Java 8 support: https://developer.android.com/studio/write/
java8-support

10. Kotlin multiplatform: https://kotlinlang.org/docs/reference/
multiplatform.html

11. Mobile cross-platform: https://www.jetbrains.com/lp/ 12. The name ‘Boy Scout Rule’ was coined by a developer during the
mobilecrossplatform/ interview.

 

8



Similarly, one told us: “If it was working in Java, it’d continue
to work”.

This strategy was also discussed in the grey literature.
For example, a post from a development company [35] rec-
ommends, according to their experience, “not to convert Java
to Kotlin when your existing Java code base is large and in main-
tenance mode [...] you are not going to save much by putting old
code in a new form”. Moreover, this strategy was also
observed from a survey by Khadka et al. on legacy system
modernization [36]. There, some practitioners and respond-
ents to our interviews indicated that “if the legacy systems are
working well, then legacy system modernization projects are
unlikely to be initiated”.

4.2.3 Time Factor (RNM: 3)

Some developers told us that their applications have still not
been migrated because they simply have not had time to fin-
ish the migration. This aligns with the finding from the sur-
vey by Khadka et al. on legacy system modernization [36].
They reveal that, according to the practitioners they inter-
viewed, “finishing any legacy system modernization on time is
the biggest challenge”. Others told us they are not in a hurry
to complete the migration. Finally, some developers are
waiting for the release of particular features from the Kot-
lin/Android platform. For example, one developer told us:
“I am not in a hurry to get to ‘100% Kotlin’, at least not until the
future of ‘Kotlin Native’ (for a possible iOS port) is clear”.

4.3 RQ 3: What are the Main Takeaways From
Developers About Migrating to Kotlin?

We list three takeaways reported by developers about their
experience after migrating to Kotlin. They are related to
codes labelled as ‘RT: i’ in Table 1.

4.3.1 Adoption of Kotlin Produced Less, and Clearer,

Code (RT 1)

Thirty-four developers remarked that Kotlin allowed them
to write less code than in Java. Seventeen mentioned that
Kotlin has better and more precise syntax than Java, pro-
ducing less verbose and less redundant code. As one told
us: “Kotlin is a very concise and expressive language” and
“Kotlin strikes a good balance between being concise versus
cryptic”. Articles from the grey literature also remark on the
reduction in lines of code when they compare an applica-
tion written in Java with its equivalent written in Kotlin.
However, the reduction of lines of source code written dif-
fers across the articles. For instance, Trehan [37] and Wilson
[38] both report a reduction of around 7%, Caneco [22]
reports a 23% reduction, and the reduction observed in the
experiment from Uber [39] is 40%. This divergence is a call
to do more extensive research on the measurement of code
reduction due to adopting Kotlin.

Nine developers remarked that Kotlin allows boilerplate
code to be reduced, i.e., code that has to be included in many
places with little or no alteration. One of the features which
aids that reduction is Data classes: a model class can be
declared in one line. Sixteen developers included Data clas-
ses in their favorite Kotlin features.

Furthermore, twenty-three developers remarked that
Kotlin code is easier to read, write and maintain than Java

code. Twelve developers mentioned that Kotlin has a sim-
pler and clearer syntax than Java. (We recall that all devel-
opers we contacted wrote their applications using Java
beforemigrating -totally or partially- to Kotlin).

Nevertheless, among the 98 developers who replied to

us, two developers mentioned that, when they started pro-
gramming in Kotlin, its compact syntax affected code read-

ability. One told us: “Initially, it felt awkward, but after a
month of practice with the language, it was already obvious that
the syntax was much improved over Java”. These findings align
with those of Oliveira et al. [4], which found that the overuse

of lambdas and closures can decrease code readability.
Implication. The developers agreed that Kotlin allowed

them write more concise, less redundant and more precise
code. Kotlin helps developers to write and maintain their
Android applications. However, Kotlin’s concise syntax
might cause difficulties for novice developers.

4.3.2 Careful Use of Auto-Converter Provided by the

IDE (RT: 2)

In total, thirty-six developers told us that they had used the
code converter provided by the IDE, which converts a single
Java file to Kotlin. Some of them indicated that they had
started using it while they were learning to code in Kotlin,
but then, after gaining confidence, they continued the
migration without using the converter. All developers who
used the conversion tool told us that they modified the code
after conversion. They agreed that the converter helped
them to execute the migration and, in general, that the
changes that needed made to the converted code were sim-
ple. Unanimously, the main reasons mentioned for making
such changes after the conversion are: 1) to transform nul-
lable variables into non-nullable, and 2) to make the con-
verted code more idiomatic.

Related to the nullability of variables, developers men-
tioned that they had to modify the converted code to better
support nullability. For example, one told us: “It was also
marking variables and properties as nullable too often, I was able
to make them non-nullable after the conversion”. We recall that
Kotlin, by default, does not allow a variable to hold a null,
and null check is done at compilation time. The developer,
however, can declare nullable variables by using the opera-
tor ‘?’ e.g., val number: Int? = null. Then, using the var-
iable, a developer has two main options: 1) to use the safe
operator ‘?’ i.e., number?.toString(): the method
toString() is not invoked if the variable is null; 2) to use
the unsafe operator !! number!!.toString(): the method
is always invoked, and if number is null, it throws an excep-
tion. Thus, developers should do something that is typically
done in Java: add a guard (an if statement) which checks for
a null reference before accessing that variable. The auto-con-
verter from the IDE outputs the unsafe operator !! in every
variable access of potentially nullable variables. Conse-
quently, to make that transformed code more Kotlin-idio-
matic (i.e., Null safety, one of the main features of Kotlin),
developers would need to remove those !! operators.
Articles from the grey literature, e.g., [40], [41] present dif-
ferent strategies to remove such !! operators.

Implication. The auto-converter tool provided by the IDE
allows Android developers to obtain an initial version of

9



their applications in Kotlin. However, it is necessary to
know Kotlin well in order to modify the code generated to
make it more idiomatic.

4.3.3 Simplification of Asynchronous Tasks Using

Coroutines (RT: 3)

Asynchronous or non-blocking programming is essential on
Android because it allows better user experience and
improves application performance. It is used to perform net-
work calls, execute background jobs and tasks, access the
local database, and run computationally intensive calcula-
tions. There are several manners of implementing asynchro-
nous tasks in Android development with Java: AsyncTasks,
plain old threads, Android’s main looper, Android loaders,
etc. To simplify the development of asynchronous tasks,
some Android developers use external libraries (i.e., non-
native concurrency API) such as RxJava.13 (The survey car-
ried out by Verdecchia et al. [42] shows that RxJava was the
Java library that was most mentioned by the Android practi-
tioners they interviewed).

Kotlin, conversely, provides coroutines: a built-in mecha-
nism, at the language level, for executing asynchronous
tasks. Twenty-one developers highlighted coroutines as one
of the best features that Kotlin provides. As one developer
told us: “In my opinion, coroutines allow developers to write
easy to read and concise code, that can be read top-down, like a
book. I believe that’s a big advantage”. Another developer
remarked: “coroutines were the cleanest way to implement my
complex workflows”.

Eight developers mentioned that they had replaced
RxJava with coroutines. One told us that: “the code with
RxJava looks ‘hacky’ and it quickly becomes a mess”, and
another developer: “Coroutines are also absolutely great. They
have allowed me to drop RxJava, which although very useful, was
annoying to work with in complicated situations. Being able to
write asynchronous code in direct style is wonderful”.

As well as all the positive perceptions collected, just one
developer told us that, although he uses coroutines, he finds
they entail a “lot of complexity”.

Implication. Android developers can simplify the code
for their asynchronous tasks by using the language-level
supported feature called ‘coroutines’. Beyond that, further
research may need to compare coroutines with other con-
currency mechanisms (e.g., RxJava) in terms of other dimen-
sions such as performance.

5 THREATS TO VALIDITY

The Applications Studied Might not be Representative of Open-
Source Applications. We studied 374 open-source Kotlin
Android applications coming from two datasets. There is a
risk that these apps might not be representative of open-
source Android applications written in Kotlin. However,
we apply a methodology to capture and analyze the largest
number of open-source Android applications published on
apps markets.

Open-Source Apps Might not be Representative of All Android
Apps. Our study focuses on publicly available open-source

apps because we need a repository with visible source code
to detect migrations. Thus, we cannot analyze non-open-
source apps published on app stores. For further analysis,
the list of open-source apps analyzed is available in our
appendix [15].

Heuristic for Detecting Migrations. We identify developers
that migrate code by using one particular heuristic (See Sec-
tion 3.1.1.2). There could be other manners of migrating
code that our heuristic cannot detect. Therefore, more
research is required on code migrations, e.g., to define a tax-
onomy of code migrations.

Accuracy of MigA . There might be a risk that a bug in our
tool affects the results we present. We manually inspected a
sample of migration commits detected by the tool and did
not find any anomalies. Our tool is publicly available [10].
Thus researchers can inspect its code, use and extend it.

Sample. Qualitative studies such as ours are performed by
using a representative sample of the population under
study [13]. The target population corresponds to developers
that have migrated code from Java to Kotlin in Android apps.
We create a sampling frame by retrieving developers (detected
in open-source code repositories) that have migrated Java
code to Kotlin. Then, we send emails to all of them. Itmight be
the case that the developers that we contact and that reply to
us represent neither the Android community nor the Kotlin
community. Tominimize this risk, we analyze all applications
from two of the largestAndroid open-source app repositories:
F-Droid andAndroidTimeMachine [18].

Bias in Responses. There is a risk that the responses given
by the developers are biased: our study captures the experi-
ence of developers that successfully migrated and integrated
Kotlin code into their codebases. Our methodological
approach for finding developers is based on commit analy-
sis. Therefore, we cannot identify developers who tried Kot-
lin, but later decided not to adopt it (and thus never
committed any Kotlin code into their repositories). This
would require contacting all developers that had never com-
mitted Kotlin code, somethingwhich is unfeasible.

Research Design. We based our research design on an ini-
tial question to reduce the costs to participants. There is a
risk that the responses we received did not completely cap-
ture participants’ experiences with Kotlin (e.g., a developer
forgot to mention one of her/his favorites Kotlin features).
To mitigate a developer omitting information, we tried to
contact as large a number as possible of developers that
migrated code on open-source Android apps.

Reliability of Answers. Some answers might not reliably
reflect the experiences of the developers that wrote them.
As we have a considerable number of answers from devel-
opers, having a few imprecise or incorrect answers does not
invalidate the overall results.

Verification of Qualitative Research. Our study follows a
qualitative research method that attempts to interpret a phe-
nomenon (i.e., migrations) based on explanations that peo-
ple (i.e., developers) bring forward [13]. We follow a
verification mechanism used during qualitative research to
ensure the reliability and validity of our study. For instance,
the open and axial coding (see Section 3.1.3) applied to
mine codes from the qualitative data (the emails) was per-
formed by one of the authors of this paper and later verified

13. RxJava: https://github.com/ReactiveX/RxJava and validated by the other author.

10



Mining the Grey-Literature. In this paper, we analyze some
articles from the grey literature on Kotlin adoption and
migration. Our study neither aims to nor claim to be a sys-
tematic literature review on those topics. Consequently,
there may be, for instance, migration problems that this
research does not report, but that have been reported by
articles from the grey literature (or other artifacts such as
Audio-Video media [43]) that we did not inspect. Neverthe-
less, in order to be transparent about the process, in our
appendix [15] we report the query we use and the links to
analyzed sites.

6 DISCUSSION AND FUTURE WORK

6.1 Additional Codes From the Grey Literature

We list some codes we mine from the grey literature that are
not discussed by developers in our primary study. These
points could represent future research opportunities, in
addition to those detailed in Section 6.2 that arose from the
interviews.

Kotlin is Slower to Compile. Several posts have tested the
compilation time of Kotlin code ([23], [25], [29], [32], [44]).
For example, Daga [23] reports a difference of 13% on the
compilation time w.r.t. Java. Wilson [38] reports that, after
migrating a library named OkHttp’s from Java to Kotlin, the
compilation time went from 2.4 to 10.2 seconds. Engineers
from Uber [39] found that the Kotlin’s new type inference
system adds an overhead of 8% in total compilation time.

Kotlin Increases the Size of the APK. Some of the grey litera-
ture posts mention the increase in the size of the APKs (the
package file format used by Android, which contains com-
piled code) when Kotlin is used. For example, Wilson [38]
reports that, after migrating its library named OkHttp’s
from Java to Kotlin, the binary (APK) size increased by 60%.
Daga [23] reports an average increases of 800 KB and 1 MB,
and Kust [32] reports an approximate 300 KB increase.

Absence of Checked Exceptions in Kotlin. Unlike Java, Kotlin
does not have checked exceptions (i.e., types of exceptions
that must either be caught or declared in the method in
which it is thrown). Articles from the grey literature high-
light some benefits of getting by without them: Daga [23]
states “Kotlin does away with them to aid code conciseness”, and
Gour [33] states “it can minimize the verbosity and improve
type safety”.

Problems With Wildcard-Types. Kotlin has neither primi-
tive (raw) types nor Wildcard-types (i.e., the symbol ‘?’ in
Java which represents an unknown type in generic pro-
gramming) [29]. Kotlin code that uses wildcards and that
was generated by the auto-converter tool can produce run-
time failures according to [34]. This means developers must
revise and modify, as we mention in Section 4.3.2, the out-
put from the auto-converter tool.

Problems With Annotations. A post by Thornsby [28] men-
tions that one of the differences between developing in Java
and Kotlin is the use of KATP, the official tool for processing
annotations. A post by Hofmann [45] states that a problem of
adopting Kotlin was related to KATP, which produced build
errors when it was integrated into other libraries such as
Dagger,14 a dependency injection library. That integration

was also reported as problematic by [46]. Related to this,
engineers from Uber found that using KATP adds a �95%
overhead [39].

Performance Issues. Athaydes [47] and BeyksZ [48] discuss
andmeasure the runtime overhead introduced by Kotlin fea-
tures. The former shows that 8 out of 11 evaluated features
have an overhead lower than 5%, withthe remaining 3 (Var-
args + Spread Operator, Delegate Properties and Ranges)
having an overhead that is higher than 10%. We consider
that more research on the performance of Kotlin is needed.

6.2 Research Challenges

Wohlin et al. [13] indicate that an exploratory study, like the
one conducted in this paper, can be used as pre-study for a
more thorough investigation, and may provide new possi-
bilities that could be analyzed and should therefore be fol-
lowed up in a more focused or thorough survey. In this
section, we present some new possibilities that could be
exploited by the research community.

Auto-Converter Tools. The study we conduct shows that
developers used the auto-converter code and modified the
output code to make it more idiomatic. The automated-gen-
erated code is like “code written with Kotlin syntax but still
keeping Java style”. Future research could define new auto-
mated code conversion approaches and tools (like the initial
work from [49]) for generating idiomatic code, and conse-
quently, attempting to reduce the modifications that devel-
opers have to make.

Refactoring Kotlin Code After Migration. A challenge for
researchers is to define approaches and tools that propose
refactorings on Kotlin applications after the migration has
been (partially or fully) carried out. We envision two direc-
tions. First, for identifying and potentially automatically
removing code with technical-debt items, such as code
smells and code patterns [50], related to Kotlin code. Exist-
ing tools target Java code (e.g., JDeodorant [51]) but, to our
knowledge, none targets Kotlin code. Second, we envision
refactorings that make Kotlin code (both that written by
humans or generated by a tool) more idiomatic. For exam-
ple, one could propose using new Kotlin features (e.g., smart
casts) that had not previously been used by the developer.

Supporting Migration Activity. A potential research direc-
tion is to define guidelines, approaches, and tools that help
developers migrate their apps. Gradual migrations are con-
venient for migrating large applications (e.g., Duolingo [52])
because they allow developers and companies to migrate
some parts of their apps while simultaneously being able to
evolve other parts, add new features and release new
versions.

Gradual (or iterative) migration has already been studied
on legacy applications (e.g., [53]). It consists of first decompos-
ing the legacy apps [5] and then integrating the decomposed
parts by usingwrappers (e.g., [54]).Migration from Java toKot-
lin does not need such wrappers, as both languages are inter-
operable. In this scenario, a developer needs to define a
migration strategy that defines consecutive migration steps,
and for each of them, a subset of components or code files to
be migrated. This could be challenging, especially on large
applications: the wrong selection of files to be migrated could
increase the migration effort due to emerging errors [34]. We

14. Dagger: https://dagger.dev/ envision the definition of guidelines, approaches, and tools
 

11



that help developers define amigration strategy and select the
correct files, packages, or components to be migrated in one
particular step to minimize the migration effort. An initial
experiment on file recommendation for migration was per-
formed by [55].

Estimating the Cost of Migration. One of the main prob-
lems about migrations reported by our study and literature
on migration (e.g., [36]) is unfinished migrations due to the
lack of time or resources. Models for estimating the cost and
effort of migration could help developers and companies
forecast these issues. A challenge for researchers that focus
on migration is to define models that estimate the cost of
migrating Android apps to Kotlin based on existing estima-
tion models [56].

Kotlin Code Comprehensibility. In our study, some develop-
ers mentioned that the compact syntax of Kotlin affected the
readability of the code. A research direction could focus on
empirically studying the comprehensibility of Kotlin code.
To our knowledge, there is no previous work on this. Future
work could focus on defining tools that would attempt to
automatically measure code comprehensibility, and to point
out sections of code that are difficult to comprehend and
should therefore be refactored [57].

6.3 Research Ethics

Since our study involved human subjects, as recommended
by [13], we considered ethical aspects when we designed the
study: 1) we informed subjects of the research project’s title
and goals, 2) we mentioned our affiliations, and provided
links to our professional websites, 3) we explained that par-
ticipation would help us write a research paper, 4) we
guaranteed the confidentiality of the information obtained,
i.e., we did not share the answers, 5) every quote included in
this research is anonymized, and 6) names of developers
have been codified in order to protect their privacy.

Nevertheless, we consider that developers that responded
to this study (as well other developers we did not contact)
will benefit from this research in the long run because, for
instance,we enumerate and detail the various different prob-
lems that they encountered during the migration process,
allowing the research community to focus on providing solu-
tions to them.

7 RELATED WORK

7.1 Adoption of Kotlin

Oliveira et al. [4] conducted a study to understand how devel-
opers deal with the adoption of Kotlin as an official language
for Android development, their perception of the advantages
and disadvantages of it, and themost common problems they
face. Our work has a narrower goal than their study: to study
the migration of Android applications from Java to Kotlin.
Moreover, the surveys conducted have two main differences:
1) the goal: to obtain the experience of Kotlin adoption [4] ver-
sus experience of migration (us), 2) the size: 7 interviewees [4]
versus 98 developers thatmigrated code (us).

7.2 Surveys on Legacy System Migration and
Software Modernization

Torchiano et al. [58] conducted a survey that identified the
state-of-the-practice of 59 software migration projects in

Italian industries. There are three main differences to our
work. The study differs from our work in three main ways.
First, the scope: [58] focuses on industrial applications, and
we focus on open-source apps. Second, [58] does not focus
on a particular technology, and we focus on Kotlin and
Android. Third, the contacted subjects: [58] targets different
profiles (39.7% were software developers); we focus exclu-
sively on developers.

Khadka et al. [36] conducted an exploratory study to dis-
cover new perspectives, insights, drivers of modernization
and challenges with respect to legacy systems in industry. It
consisted of semi-structured interviews with 26 industrial
practitioners. The findings were then validated through a
separate structured survey that involved 198 professionals.
The differences: our study focuses on open-source apps ([36]
focuses on industrial projects) migrated from Java to Kotlin
onAndroid ([36] does not focus on particular technologies).

Other works have focused on the migration of specific
technologies by conducting surveys. For example, Razavian
and Lago [59] conducted a survey in seven companies to
understand the migration approaches from legacy systems
to service-oriented applications (SOA).

7.3 Empirical Studies on Kotlin Code

Gois Mateus and Martinez [8] found that 11% of the studied
open-source applications from Android have Kotlin code.
They also found that the adoption of Kotlin increases the
quality of applications, expressed in terms of the presence
of code smells. Flauzino et al. [60] studied 100 repositories
of programs containing Java or Kotlin code. They found
that, on average, Kotlin programs have fewer code smells
than Java programs. Gois and Martinez [31] have studied
the adoption of features introduced by Kotlin. Ardito et al.
[61] conducted a study with undergraduate students to
assess the assumed advantages of Kotlin over Java in the
context of Android development and maintenance. They
found evidence that the adoption of Kotlin led to more com-
pact code. These findings from students are aligned to our
findings derived from developers.

7.4 Studies on Library Migration

Other works focus on empirical studies of migrating of
libraries (e.g., [62], [63], [64]) and recommendations on
library migrations (e.g., [65], [66]). For instance, Salza et al.
[67] focus on studying the migration of third-party libraries
in mobile apps. They find that mobile developers rarely
update their apps. In this paper, we exclusively focus on the
migration of source code.

8 CONCLUSION

In this work, we conducted a qualitative study that gathered
data from 98 Android developers who migrated code from
Java to Kotlin to ask them Why they had migrated that
code. Developers found using Kotlin a way to a) use mod-
ern features not available in Java in their Android applica-
tions (e.g., extending function) and to b) have safer, shorter
and less verbose code.

In addition, we defined different research directions
extracted from our study based on the difficulties develop-
ers had encountered when they migrated code. In future

12



work, to help developers to overcome the difficulties they
currently have when they adopt Kotlin and migrate code
from Java to Kotlin, we plan to work on: 1) defining an
approach that translates code from Java to Kotlin and produ-
ces more idiomatic code; 2) defining an approach that refac-
tors Kotlin code to remove code smells, to improve code
comprehensibility, and to obtain more idiomatic code; 3)
helping developers to migrate large applications by present-
ing migration strategies (for example, suggesting files and
components to migrate first); and 4) improving the testing of
the migrated parts of systems under migration, as well as the
unmigrated parts that interact with themigrated parts.

ACKNOWLEDGMENTS

The authorswould like to thank the 98 developers that took the
time to answer our questions and Prof. Lara Maestripieri for
advising us about how to conduct qualitative studies, verifying
themethodswe applied, and for revising ourmanuscript.

REFERENCES

[1] IDC, “Smartphone OS market share,” 2017. [Online]. Available:
https://www.idc.com/promo/smartphone-market-share/

[2] M. Shafirov, “Kotlin on Android. Now official,” Kotlin Blog, May
17, 2017. [Online]. Available: https://blog.jetbrains.com/kotlin/
2017/05/kotlin-on-android-now-official/

[3] R. Coppola, L. Ardito, and M. Torchiano, “Characterizing the
transition to Kotlin of android apps: A study on F-droid, play
store, and GitHub,” in Proc. 3rd ACM SIGSOFT Int. Workshop App
Market Anal., 2019, pp. 8–14. [Online]. Available: http://doi.acm.
org/10.1145/3340496.3342759

[4] V. Oliveira, L. Teixeira, and F. Ebert, “On the adoption of Kotlin
on android development: A triangulation study,” in Proc. IEEE
27th Int. Conf. Softw. Anal., Evol. Reeng., 2020, pp. 206–216.

[5] M. L. Brodie and M. Stonebraker, Legacy Information Systems
Migration: Gateways, Interfaces, and the Incremental Approach. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995.

[6] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information
systems: Issues and directions,” IEEE Softw., vol. 16, no. 5,
pp. 103–111, Sep./Oct. 1999.

[7] M. Colosimo, A. D. Lucia, G. Scanniello, and G. Tortora,
“Evaluating legacy system migration technologies through empir-
ical studies,” Inf. Softw. Technol., vol. 51, no. 2, pp. 433–447, 2009.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584908000694

[8] B. G�ois Mateus and M. Martinez, “An empirical study on quality
of android applications written in Kotlin language,” Empirical
Softw. Eng., vol. 24, pp. 3356–3393, Jun. 2019. [Online]. Available:
https://doi.org/10.1007/s10664–019-09727-4

[9] M. Saunders, P. Lewis, and A. Thornhill, Research Methods for Busi-
ness Students. London, U.K.: Pearson, 2009.

[10] M. Martinez, “Miga tool.” Accessed: Jul. 2020. [Online]. Available:
https://github.com/UPHF/migA

[11] M. Martinez and M. Monperrus, “Coming: A tool for mining
change pattern instances from git commits,” in Proc. IEEE/ACM
41st Int. Conf. Softw. Eng.: Companion Proc., May 2019, pp. 79–82.

[12] D. Silverman,Doing qualitative research: A practical handbook. London,
U.K.: Sage, 2013.

[13] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A.
Wessln, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012.

[14] M. Q. Patton, Qualitative Evaluation and Research Methods. London,
U.K.: Sage, 1990.

[15] B. Mateus, “Appendix.” Accessed: Jul. 2020. [Online]. Available:
https://github.com/UPHF/kotlin_migration_experiment

[16] B. G. Glaser and A. L. Strauss, Discovery of Grounded Theory: Strate-
gies for Qualitative Research. New York, NY, USA: Routledge, 2017.

[17] L. Cohen, L. Manion, and K. Morrison, Research Methods in Educa-
tion. New York, NY, USA: Routledge, 2002.

[18] F.-X. Geiger, I. Malavolta, L. Pascarella, F. Palomba, D. Di Nucci,
and A. Bacchelli, “A graph-based dataset of commit history of
real-world android apps,” in Proc. 15th Int. Conf. Mining Softw.
Repositories, 2018, pp. 30–33. [Online]. Available: http://doi.acm.
org/10.1145/3196398.3196460

[19] V. Kovalenko, F. Palomba, and A. Bacchelli, “Mining file histories:
Should we consider branches?,” in Proc. 33rd ACM/IEEE Int. Conf.
Automated Softw. Eng., 2018, pp. 202–213. [Online]. Available:
https://doi.org/10.1145/3238147.3238169

[20] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen,
“Unveiling exception handling bug hazards in android based on
GitHub and Google code issues,” in Proc. 12th Working Conf. Min-
ing Softw. Repositories, 2015, pp. 134–145.

[21] J. Butterworth, “Migrating to Kotlin—What to look out for,” Feb.
2020. [Online]. Available: https://engineering.autotrader.co.uk/
2020/02/21/migrating-to-kotlin-what-to-look-out-for.html

[22] N. Caneco, “Migrating from Java to Kotlin: The easy way,” May
2017. [Online]. Available: https://engineering.talkdesk.com/
migrating-from-java-to-kotlin-the-easy-way-37b25a379d72

[23] M. Daga, “Java vs Kotlin: Which programming language is better for
android developers?,” May 2018. [Online]. Available: https://dzone.
com/articles/java-vs-kotlin-which-programming-language-is-bette

[24] P. Sommerhoff, “Kotlin for Java developers: 10 features you will
love about Kotlin,” Dec. 2015. [Online]. Available: http://
petersommerhoff.com/dev/kotlin/kotlin-for-java-devs/

[25] N. Heath, “Should android devs switch from java to Kotlin?
Here’s google’s advice on swapping programming languages,”
May 2019. [Online]. Available: https://www.techrepublic.com/
article/should-android-devs-switch-from-java-to-kotlin-heres-
googles-advice-on-swapping-programming/

[26] P. Sommerhoff, “Kotlin vs. Java: 9 benefits of Kotlin for your busi-
ness,” Feb. 2020. [Online]. Available: https://blog.udemy.com/
kotlin-vs-java-9-benefits-of-kotlin-for-your-business/

[27] R. Software, “Android development using Kotlin: Streamline the
development workflow,” Sep. 2017. [Online]. Available: https://
www.rishabhsoft.com/blog/kotlin-for-android-development

[28] J. Thornsby, “Kotlin vs Java for android: Key differences,” Oct.
2019. [Online]. Available: https://www.androidauthority.com/
kotlin-vs-java-783187/

[29] H. Atha, “Java vs Kotlin — Which should you choose for android
development,” Aug. 2018. [Online]. Available: https://www.
moveoapps.com/blog/java-vs-kotlin/

[30] Press Duolingo, Apr. 2020. [Online]. Available: https://www.
duolingo.com/press

[31] B. G. Mateus and M. Martinez, “On the adoption, usage and evo-
lution of Kotlin features in android development,” in Proc. 14th
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., 2020. [Online].
Available: https://doi.org/10.1145/3382494.3410676

[32] I. Kut, “Ten Kotlin features to boost android development, 2017.
[Online]. Available: https://www.toptal.com/android/kotlin-
boost-android-development

[33] R. Gour, “Why you must switch from Java to Kotlin for android
development?,” Mar. 2020. [Online]. Available: https://codeburst.
io/why-you-must-switch-from-java-to-kotlin-for-android-
development-6cf179d16dc7

[34] M. Abdelaziz, “Migrating Java enterprise apps to Kotlin, 2020.
[Online]. Available: https://vaadin.com/learn/tutorials/migrate-
to-kotlin

[35] Strumenta, “Migration of Java applications to Kotlin, 2020. [Online].
Available: https://superkotlin.com/java-to-kotlin-migrations/

[36] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage,
“Howdo professionals perceive legacy systems and softwaremod-
ernization?,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 36–47.
[Online]. Available: https://doi.org/10.1145/2568225.2568318

[37] K. Trehan, “Kotlin migration @pepperfry,” Jun. 2019. [Online].
Available: https://medium.com/pepperfry-tech/kotlin-migration-
pepperfry-part-one-motivation-b05102bf0e7a

[38] J. Wilson, “Metrics for Okhttp’s Kotlin upgrade,” May 2019.
[Online]. Available: https://publicobject.com/2019/05/13/metrics-
for-okhttps-kotlin-upgrade/

[39] E. Fernandes, T. Machado, T. Nguyen, and Z. Sweers, “Measuring
Kotlin build performance at Uber, Apr. 2019. [Online]. Available:
https://eng.uber.com/measuring-kotlin-build-performance/

[40] D. Vvra, “How to remove all !! from your Kotlin code,” Jun. 2017.
[Online]. Available: https://android.jlelse.eu/how-to-remove-all-
from-your-kotlin-code-87dc2c9767fb

13



[41] B. Baxter, “Lessons learned while converting to Kotlin with
android studio,” Jun. 2017. [Online]. Available: https://medium.
com/androiddevelopers/lessons-learned-while-converting-to-
kotlin-with-android-studio-f0a3cb41669

[42] R. Verdecchia, I. Malavolta, and P. Lago, “Guidelines for architect-
ing android apps: A mixed-method empirical study,” in Proc.
IEEE Int. Conf. Softw. Architecture, 2019, pp. 141–150.

[43] V. Garousi, M. Felderer, and M. V. M€antyl€a, “Guidelines for
including grey literature and conducting multivocal literature
reviews in software engineering,” Inf. Softw. Technol., vol. 106,
pp. 101–121, 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950584918301939

[44] S. Rattra, “Kotlin vs Java – Android development,” May 2020.
[Online]. Available: https://hackernoon.com/kotlin-vs-java-android-
development-qh6z329j

[45] P. Hofmann, “Migrating an android app from Java to Kotlin,” Nov.
2017. [Online]. Available: https://medium.com/monsterculture/
moving-from-java-to-kotlin-on-android-f60c593c39f8

[46] A. Papadopoulos, “Effective migration to Kotlin on Android,”
Jun. 2018. [Online]. Available: https://android.jlelse.eu/effective-
migration-to-kotlin-on-android-cfb92bfaa49b

[47] R. Athaydes, “Kotlin’s hidden costs – Benchmarks,” Oct. 2017.
[Online]. Available: https://sites.google.com/a/athaydes.com/
renato-athaydes/posts/kotlinshiddencosts-benchmarks

[48] C. Beyls, “Exploring Kotlin’s hidden costs,” Jul. 2017. [Online].
Available: https://bladecoder.medium.com/exploring-kotlins-
hidden-costs-part-1-fbb9935d9b62

[49] C. Courtney and M. Neilsen, “Vetting anti-patterns in Java to Kot-
lin translation,” in Proc. 34th Int. Conf. Comput. Appl., G. Lee and
Y. Jin, Eds., 2019, pp. 191–202. [Online]. Available: https://
easychair.org/publications/paper/Jdw6

[50] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (Dagstuhl Seminar 16162),”
Dagstuhl Rep., vol. 6, no. 4, pp. 110–138, 2016. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2016/6693

[51] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant:
Identification and removal of type-checking bad smells,” in Proc.
12th Eur. Conf. Softw. Maintenance Reeng., 2008, pp. 329–331.

[52] A. Chaidarun, “Migrating Duolingo’s android app to 100%
Kotlin,” Apr. 2020. [Online]. Available: https://blog.duolingo.
com/migrating-duolingos-android-app-to-100-kotlin/

[53] A.DeLucia , R. Francese,G. Scanniello, andG. Tortora, “Developing
legacy systemmigrationmethods and tools for technology transfer,”
Softw. Pract. Experience, vol. 38, no. 13, pp. 1333–1364,Nov. 2008.

[54] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca,
“Decomposing legacy programs: A first step towards migrating to
client–server platforms,” J. Syst. Softw., vol. 54, no. 2, pp. 99–110,
2000. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0164121200000303

[55] B. G. Mateus, C. Kolski, and M. Martinez, “An experience-based
recommendation system to support migrations of android appli-
cations from Java to Kotlin,” 2021, arXiv:2103.09728. [Online].
Available: http://arxiv.org/abs/2103.09728

[56] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 33–53, Jan. 2007.

[57] M. Wyrich, A. Preikschat, D. Graziotin, and S. Wagner, “The mind
is a powerful place: How showing code comprehensibility metrics
influences code understanding,” in Proc. 43rd Int. Conf. Softw.
Eng., 2021, pp. 512–523.

[58] M. Torchiano, M. Di Penta, F. Ricca, A. De Lucia, and F. Lanubile,
“Software migration projects in Italian industry: Preliminary
results from a state of the practice survey,” in Proc. 23rd IEEE/
ACM Int. Conf. Automated Softw. Eng. - Workshops, 2008, pp. 35–42.

[59] M. Razavian and P. Lago, “A survey of SOA migration in
industry,” in Proc. Int. Conf. Serv.-Oriented Comput., G. Kappel,
Z.Maamar, andH. R.Motahari-Nezhad, Eds., 2011, pp. 618–626.

[60] M. Flauzino, J. Ver�ıssimo, R. Terra, E. Cirilo, V. H. S. Durelli, and
R. S. Durelli, “Are you still smelling it?: A comparative study
between Java and Kotlin language,” in Proc. 7th Braz. Symp. Softw.
Compon., Architectures, Reuse, 2018, pp. 23–32. [Online]. Available:
http://doi.acm.org/10.1145/3267183.3267186

[61] L. Ardito, R. Coppola, G. Malnati, and M. Torchiano, “Effectiveness
of Kotlin vs. Java in Android app development tasks,” Inf. Softw.
Technol., vol. 127, 2020, Art. no. 106374. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0950584920301439

[62] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of
library migrations in Java,” J. Softw., Evol. Process, vol. 26, no. 11,
pp. 1030–1052, Nov. 2014. [Online]. Available: http://dx.doi.org/
10.1002/smr.1660

[63] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?,” Empirical Softw.
Eng., vol. 23, no. 1, pp. 384–417, Feb. 2018. [Online]. Available:
https://doi.org/10.1007/s10664–017-9521-5

[64] A. Hora, R. Robbes, M. T. Valente, N. Anquetil, A. Etien, and
S. Ducasse, “How do developers react to API evolution? A large-
scale empirical study,” Softw. Qual. J., vol. 26, no. 1, pp. 161–191,
Mar. 2018. [Online]. Available: https://doi.org/10.1007/s11219–
016-9344-4

[65] C. Teyton, J. Falleri, and X. Blanc, “Automatic discovery of func-
tion mappings between similar libraries,” in Proc. 20th Working
Conf. Reverse Eng., 2013, pp. 192–201.

[66] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “On the use of infor-
mation retrieval to automate the detection of third-party Java
library migration at the method level,” in Proc. 27th Int. Conf. Prog.
Comprehension, 2019, pp. 347–357. [Online]. Available: https://
doi.org/10.1109/ICPC.2019.00053

[67] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, and
F. Ferrucci, “Do developers update third-party libraries in mobile
apps?,” in Proc. 26th Conf. Prog. Comprehension, 2018, pp. 255–265.
[Online]. Available: http://doi.acm.org/10.1145/3196321.3196341

14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




