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A B S T R A C T

This paper proposes a new joint production, maintenance, and dynamic sampling inspection control policy, for failure-prone manufacturing systems. The integrated 
policy help decision-makers to find both production rate and maintenance frequency, as well as the size of the sample to be inspected. The inspection policy is 
based on a dynamic sampling plan, which adapts the sample size according to the system degradation and takes into account the interactions between production, 
maintenance, and quality control. To optimize jointly the integrated pol-icy’s control settings, a comprehensive and thorough mathematical model is developed to 
capture the complex dynamic and stochastic behavior of the manufacturing system. The proposed model relaxes several simplifying assumptions so that reliability 
and quality degradations are operation-dependent, duration and cost of inspection are non-negligible, no restriction on random distributions and failures occur at 
any time, as in the real manufacturing world. Besides, a new signal-based simulation model is developed and a detailed sensitivity analysis is carried out to 
validate analytical results. The results show the relevance of the analytical approach and help us to prove the importance of adapting the inspection effort to the 
inner quality in the production. An extended comparative study is provided and shows that the proposed integrated policy, based on dynamic in-spection, 
outperforms those based on classical inspection strategies considered in the literature and practice.   

1. Introduction

In an increasingly competitive environment, companies need to
innovate and master their production systems to satisfy their customers. 
Indeed, one must reduce production stoppage due to failures or non- 
quality issues. To diminish these wastages, and to better adapt to 
customer needs and remain competitive, companies need to calibrate 
their production, maintenance, and quality strategies mutually: the 
production rate, the stock level, the maintenance frequency, and the 
quality controls must be adjusted, jointly. Undeniably, integrated con-
trol policies have shown better performance compared to traditional 
planning approaches in which production, maintenance, and quality are 
treated as separate issues (Colledani and Tolio, 2011); It has been shown 
that integrated control models lead to an increase in profits of up to 40% 
(Colledani and Tolio, 2012). This has created a trend on the scientists’ 

part during the last few decades for the search for the best-integrated 
control models (Colledani et al., 2014). But still few works in the liter-
ature cover the joint optimization of production, maintenance, and 
quality control at the same time (Colledani and Tolio, 2011), (Colledani 
et al., 2014), (Hadidi et al., 2012), and (Wang et al., 2019). 

Implementing these models in real life is a challenge because they 
rely on a set of unrealistic assumptions (Van Horenbeek et al., 2013). 
Among these unrealistic hypotheses (Bouslah et al., 2018), we can cite 
(1) The assumption that the degradation of the system is
time-dependent, whereas, in the real world, most machine failures and
quality degradations depend on operations and machine utilization; (2)
the assumption that the system cannot fail during the construction phase
of the safety stock while failures can arise at any instant during the
production cycle; and (3) the hypothesis that quality is fixed in advance
whereas, in reality, it degrades with the system age. These assumptions,
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2. Literature review

Integrated approaches for production maintenance and quality
controls in unreliable manufacturing systems have become one of the 
most attractive research subjects in the last decades (Hadidi et al., 
2012). Inman et al. (2003) highlighted the fact that increasing quality is 
mandatory for modern companies. Kim and Gershwin (2005), (Kim and 
Gershwin, 2008)) presented an analytical model with a method for the 
performance analysis of production systems. They analyzed how pro-
duction system design, quality, and productivity are inter-related in such 
systems. Mhada et al. (2011) presented analytical expressions for the 
optimal production threshold and the optimal cost of a production 
control problem of a failure-prone manufacturing system that produces 
a random fraction of defective items. Dhouib et al. (2012) propose a 
model for a manufacturing system, which may shift to an out-of-control 
state producing defectives; they determined the inventory level and the 
age to conduct preventive actions. Njike et al. (2011) used iterative 
feedback based on the quantity of defective products to determine the 
optimal maintenance and production planning since they proposed that 
defective products are a consequence of global manufacturing system 
deterioration. Integrated approaches are also studied while considering 
the scheduling of the jobs instead of production control, to prove that 
the integrated model performs better. Sinisterra and Cavalcante (2020) 
propose analytical and simulation models to establish the best sequence 
that integrates the schedule of resumable jobs with the inspection’s 
action. The models minimize the expected total cost of maintenance and 

tardiness cost. The authors do not cover the quality aspect but, highlight 
the benefit of integrated approaches. Also, Zheng et al. (2020) consider, 
jointly, optimizing the job scheduling with preventive maintenance and 
quality monitoring, via a control chart, to minimize the expected total 
cost per time unit. 

In recent years, there has been particularly a surge in interest in 
incorporating the quality degradation aspect into integrated production 
and preventive maintenance (PM) models through inspection strategies. 
For example, Colledani and Tolio (2011) presented an analytical model 
for evaluating the performance of production systems monitored by 
statistical control charts. They consider inspection integrated to stations 
in the production line. Radhoui et al. (2010) proposed an integrated 
production and PM control policy considering a 100% inspection and 
assuming that feedback information from an inspection is used to 
improve PM planning. Rivera-Gomez et al. ((Rivera-Gómez et al., 2016), 
(Rivera-Gómez et al., 2018), (Rivera-Gómez et al., 2020)) used a nu-
merical approach and simulation to estimate the optimal integrated 
production and PM control for single-unit production systems subject to 
degradation with a 100% inspection plan. Recently, Bouslah et al. 
(2018) developed models integrating the hedging point policy (HPP), 
age-based PM and static sampling plan for manufacturing systems sub-
ject to operation-dependent degradation and they solved the problem 
with simulation optimization techniques. Newly, and based on simula-
tion modeling, Rivera-Gomez et al. (Rivera-Gómez et al., 2020) pro-
posed a dynamic sampling plan for a manufacturing system composed of 
one production unit. They considered quality deterioration that is 
caused by corrective maintenance actions and neglected the deteriora-
tion effects on reliability. 

From these models, we note the relevance of quality and inspection 
integration with maintenance and production. Moreover, we notice 
another limiting assumption: the inspection has a negligible duration 
and cost as in (Radhoui et al., 2010), (Mhada et al., 2013), and (Radhoui 
et al., 2009). Sahnoun et al. (2014) marginalized the impact of inspec-
tion duration but observed that significant savings are possible by using 
an optimized sampling plan. Recently, Bouslah et al. (2016) considered 
the problem of integrating the batch production strategy and quality 
control that is performed using a single acceptance-sampling plan by 
attributes. Also, they considered that maintenance is undertaken once 
the proportion of defectives in a rejected lot reaches a given threshold. 
This shows the importance of adapting the inspection effort to the inner 
quality in system. A static sampling plan is better than a 100% inspec-
tion which is too expensive. Even though, with a static plan we still 
losing money in the early age of the machine because we are doing too 
much inspection meanwhile the quality is good, and when the machine 
is aged due to the bad quality because the inspection effort is not enough 
to stop the bad parts from reaching the customer. Then a dynamic 
sampling plan, that takes into account the system degradation with age, 
should be better. For instance, as the quality level degrades with oper-
ations, the inspected quantity and the sampling plan should adapt to this 
quality level to be more efficient. As can be noted, more research is 
needed in this domain to fully integrate production-quality and main-
tenance functions in a joint control strategy. To the best of our knowl-
edge, there is no analytical model neither simulation model that 
addresses dynamic inspection in the joint control of production, PM, and 
quality. 

Table 1, highlights the main contributions in the literature related to 
the considered problem. The listed references, in this table, cover works 
that addressed deteriorating systems in the joint control context, which 
is the main concern of this paper. The comparison is done on the key 
features of the studied problem, such as the considered policies, type of 
degradation, and inspection strategy. We do compare also the ap-
proaches used to model and solve the problem by highlighting if the 
work uses a simulation and/or analytical model. 

Mainly, the majority of works cover only two of the three policies. 
Also, few works consider the operation-dependent degradation of the 
system. And even fewer consider the inspection duration. And no work 

and others, are motivated by computational simplification consider-
ations but often lead to poor estimates and low system performance and 
consequently to poor analysis and poor operations planning. 

From the quality control side, several authors use static inspection 
plans based on inspecting all produced items (100% inspection) or 
inspecting a fixed proportion of all produced items (static sampling 
plan). But in practice, inspecting all produced items is too costly, while 
adopting a static sampling plan is not efficient; in fact, too much in-
spection than needed in the early age of the machine and not enough 
inspection when the machine is too old. 

Indeed, making inspection strategies independent of the degradation 
of the system state, as it has often been considered in the literature, is 
costly. In reality, the quality of products is not constant and deteriorates 
with the operations and the age of the system. The most adequate 
approach is to correlate the inspection effort to the quality condition. 
This challenge of building an adaptive inspection plan within the design 
of the joint control of the three key policies is what we plan to grasp in 
the present research. 

Therefore, in the present paper, we propose an integrated produc-
tion, maintenance, and quality control policy with a dynamic sampling 
plan, which is calibrated to the quality needs. We take care of the impact 
of the age of the machine in terms of usage (number of produced items) 
on the reliability of the system and the quality of the final goods. The 
studied system is subject to an increasing stochastic failure rate that 
leads to more and more non-quality products. The objective is to find the 
optimal production and maintenance control policies and the right 
sampling strategy, for the inspection, that minimize the total cost over 
the long run. 

The present paper is organized as follows. Section 2 is dedicated to 
the literature review; we summarize the state of the art to highlight our 
contributions. In Section 3, we present the system under study and 
introduce the different policies used in the model. Section 4 is dedicated 
to the mathematical formulation of problem. A detailed simulation 
model is developed in Section 5 to validate the proposed mathematical 
model. A numerical example is analyzed in Section 6. Section 7 discusses 
the results through an extensive sensitivity analysis. We present, in 
section 8, a comparative study between different control policies, 
adapted, from the literature and usually used in practice to highlight the 
effectiveness of the proposed policy. Section 9 concludes the paper. 
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has addressed the dynamic inspection integrated with maintenance and 
production controls, in a context of operation-dependent degradations 
that act on both reliability and quality. 

In summary, from the literature review, we come with these major 
deficient elements: 

First, one common assumption used is that the reliability degrada-
tion of machines is time-dependent ((Gharbi and Kenné, 2005), (Kenné 
and Gharbi, 2004), (Kouedeu et al., 2015), (Lu et al., 2016), (Schutz 
et al., 2013), (Xiao et al., 2019)), whereas, in real life, most machine 
failures are operation-dependent ((Bouslah et al., 2016), (Buzacott and 
Hanifin, 1978), (Colledani and Tolio, 2011), (Colledani and Tolio, 
2012), (Dhouib et al., 2008), (Polotski et al., 2019), (Rivera-Gómez 
et al., 2018)). This assumption is prevalent in the literature because, 
analytically, modeling operation-dependent failures is much more 
complex than modeling time-dependent ones (Matta and Simone, 2016). 
The complexity here lies in the fact that in modeling 
operation-dependent failures only the time during which the machine is 
operational needs to be tracked. Also, it has been shown that modeling 
machines subject to operation-dependent failures in the same fashion as 
with machines subject to time-dependent failures may lead to a signif-
icant underestimation of overall production capacity (Sherwin, 2000). 

Second, in lean manufacturing systems, the operating speed is 
aligned with the demand rate, which leads to low inventory levels. 
However, in degrading manufacturing systems, safety stock is generally 
used to protect the system against the risk of shortage when machines 
are not available. Nevertheless, building a safety stock requires an extra 
production capacity, which means accelerating the production rate and 
increasing the degradation intensity accordingly (Groenevelt et al., 
1992). To restore and maintain the overall reliability and quality per-
formance, corrective and planned maintenance actions are required 
(Ben-Daya and Duffuaa, 1995). Hence, an effective integrated opera-
tions control for degrading systems should take into consideration these 
complex interactions between production, inventory, reliability, main-
tenance, and quality, as in real life, to realize the best trade-off strategy. 

Third, the degradation modeling of quality in integrated control 
policies is based also on many simplifying assumptions. For instance, the 
defective rate is considered whether constant, whether following a 
known probability distribution, or whether following a time-dependent 
deterioration model (Rosenblatt and Lee, 1986). These assumptions 
completely ignore the fact that quality degradation in manufacturing 
systems is directly and intrinsically affected by the produced quantity 
(the system age). For example, this has been seen in machining processes 

Table 1 
Our paper in comparison with the literature. 
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3. Problem description

The manufacturing system under study consists of two workstations;
a manufacturing one that makes the parts and a sampling/inspection 
station that checks the quality of products. The manufacturing work-
station is subject to stochastic failures and quality deterioration. The 
production system feeds a servicing buffer that holds final products until 
requested from the customer. The customer demand is qualified by a 
continuous and constant rate, d, and a specific level of product quality. 
The average fraction of bad quality products sent to the customer (the 
average outgoing quality, AOQ) should not exceed a critical level called 
the average outgoing quality limit (AOQL); see Fig. 1. 

The machine failure and the product quality are operation- 
dependent: The aging of the machine (the number of produced items 
(a)) leads to an increasing failure rate and an increasing proportion of 
defectives produced. To dodge unexpected break-downs, an Age-Based 
Preventive Maintenance policy (PM) is adopted. Even though failures 
occur, they are instantaneously detected and are removed by corrective 
maintenance (CM) interventions. The production is controlled by a 
hedging-point policy. 

Due to the high inspection cost, only a proportion of produced items 
are inspected based on a dynamic sampling plan: A ‘dynamic fraction’ (f) 
of the production is inspected depending on the machine age (a) and the 
detected defects are rejected from the system. As the inspection policy is 

not 100%, the delivered products are not defect-free. The bad parts that 
arrive at customers have a high cost. In other words, the average out-
going quality (AOQ) has a cost. The demand rate is constant and un-
fulfilled sales are lost. The objective is to jointly optimize the 
production, maintenance, and quality/inspection control policies while 
meeting the average outgoing quality limit (AOQL) imposed by the 
customer; i.e., the model aims to jointly determine the optimal pro-
duction rate, the optimal inventory level, the optimal sampling param-
eter and the optimal maintenance rate that minimize the total incurred 
cost. The incurred cost includes the inventory holding cost, the lost sales 
cost, the CM and PM costs, and the inspection, rejection, and bad sales 
costs. The optimal solution must ensure the right trade-off between 
production, maintenance, and quality costs while ensuring that the 
AOQL constraint is fully satisfied. 

The problem under consideration is modeled under the following 
assumptions:  

• After each maintenance action, PM or CM, the system is brought to
the state “as good as new”.

• Any inspected defective item is immediately detected and then
rejected from the system.

• After each maintenance action, PM or CM, if the buffer size s is
positive we wait until the buffer is empty before restarting the pro-
duction. Otherwise, if the buffer is empty, the machine starts
immediately.

3.1. Notations 

The problem under consideration is based on the following nota-
tions: 

d Product demand rate; 
a Age of the system (total produced items); a =

∫
u dt; 

u(a) The production rate of the system at age a; 
Umax The maximum production rate; 
Z Safety stock level; 
AZ Age of the system when the safety stock level is reached; 
s(a) Inventory level at the age a, of the system, s∈] − ∞,Z]. It is also 
the state of the buffer. In the following, we will use, indistinctively,s 
or s(a) to refer to the buffer level; 
s+ The surplus; s+ = max(s,0); 
s− The lost sales; s− = max( − s,0); 
T The cycle length; 
tf Time to failure. Time from the moment the system is Up until it 
fails; 

Fig. 1. Manufacturing system under study.  

were increasing the production rate accelerates the deterioration of 
cutting and drilling tools, and accordingly, impacts the quality of 
machined surfaces (Njike et al., 2011). In discrete manufacturing pro-
cesses such as stamping or machining, during the production phase, 
random drifts of the tool components can considerably degrade the 
quality of the product (Chen and Jin, 2006). 

And the major conclusions from this literature review are: (1) that 
the inspection policy is not well implemented: Authors consider the 
inspection effort (fraction controlled or sampling plan parameters) is 
constant even for the cases where the quality is degrading with time or 
system age. We claim that this is irrelevant and one should tune, wisely, 
the inspection to meet the needed effort that guarantee the right level of 
quality. (2) That while the joint control of production and maintenance 
is valuable, the integrated mathematical models are nonetheless too 
difficult to address real-life problems. Difficulties arise from the sto-
chasticity of the problem and the complex analytical formulation of 
degradation phenomenon of both quality and reliability. To deal with 
these limitations, authors, either, use many assumptions in their math-
ematical models or use simulations. In the first case, the assumptions 
could lead to incorrect results, and no work has proven the effectiveness 
of these assumptions in all conditions. For the second case, the 
computing effort is high; in fact, simulations take a long time to com-
plete, and many replications are needed to perform significant and extra 
analyses. 

In the present paper, we tackle the challenge of formulating an 
analytical model for the integrated production, quality, and preventive 
maintenance problem with a dynamic inspection plan. We propose, also, 
to develop a dynamic sampling plan that closely shadows the system’s 
inner quality and compute the right inspection effort to apply. The 
implemented approach could be used to address all inspection strategy 
from 100% inspection to dynamic sampling plan via static sampling; 
which allows us to compare our policy with other policies considered in 
the literature and practice. 

The paper aims to overcome existing limitations in analytical ap-
proaches and proposes an exhaustive mathematical formulation that 
integrates the three policies relaxing the most unrealistic assumptions. 
The main contributions are i) Introduction of a dynamic sampling 
approach to quality inspection; ii) Joint control of the production, 
maintenance, and quality; iii) Exact approach to solve the optimal 
control problem through a stochastic mathematical model; iv) a simu-
lation model to validate the mathematical results. 
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Af Age of the system at failure instant tf . The failure rate is increasing
with the machine age a;
ff Probability Density Function (PDF) associated with the random
variable (r.v.) Af ;
Ff Cumulative Distribution Function (CDF) associated with the r.v.
Af ;
Mi,f (a) The ith order lower partial moment of ff ; Mi,f (a) =

∫a

− ∞
xi.ff (x).dx;

MUTF The mean usage (i.e., the mean number of produced parts) to 
the failure; 
tr Time to repair (repair duration). fr, Fr are, respectively, the asso-
ciated PDF and CDF; 
Mi,r(t) The ith order lower partial moment of fr ; Mi,r(t) =
∫ t
− ∞ xi.fr(x).dx;

MTTR The mean time to repair; 
tm Time to maintain (preventive maintenance duration). fm, Fm are, 
respectively, the associated PDF and CDF; 
Mi,m(t) The ith order lower partial moment of fm; Mi,m(t) =
∫ t
− ∞ xi.fm(x).dx;

MTTM The mean time to maintain; 
M Maintenance threshold expressed as the age of the system (the 
produced items before the next preventive maintenance action, once 
the machine is up); 
tM Instant at which the preventive maintenance is due. Time at which 
the age of the system= M; 
p(a) The proportion of defects at a specific age a of the machine. The 
aging of the machine leads to more defects, i.e., p(a) is increasing 
with the age; 
p The long-run average proportion of defects; 
qg(a) The proportion of good parts at the age a of the machine; 
qg(a) = 1 − p(a); 
Qg(a) The total good parts produced up to the age a of the machine; 

Qg(a) =
∫a

0
qg(x)dx;

Tinsp Inspection duration for a produced item; 
f(a) The fraction of production to be inspected at machine age a; 
IF The long-run average inspected fraction; 
Is The inspection severity factor; 
q(a) The proportion of parts sent to servicing buffer at the age a of the 
machine; q(a) = 1 − p(a)f(a); 
Q(a) The total parts sent to the servicing buffer up to the age a of the 

machine; Q(a) =
∫a

0
q(x)dx;

AOQ(a) Average outgoing quality at age a; the average fraction of 
bad parts sent to the customer; 
AOQ∞ The long-run average outgoing quality; 
AOQL Average outgoing quality limit (The threshold for the quality 
level); the maximum average fraction of bad parts accepted by the 
customer; 
Ch Unit inventory holding cost per time unit; 
Cl Cost of one item of lost sales due to shortage; 
Cpm Preventive maintenance cost; 
Ccm Corrective maintenance cost; 
Cinsp Unit inspection cost; 
Crej Unit cost of rejected parts; 
Cdef Unit cost of a bad item sold to the customer; 

During the rest of this document, and for any expression or 
functionϕ, we use ϕ(t) to state its expression that depends on the time 
and ϕ(a) to state its expression that depends on the age of the system 
(number of produced items). 

4. Mathematical formulation

In this section, we will develop the mathematical formulation of the
described system under the proposed integrated production- 
maintenance-quality policy. we show that the system dynamics follow 
a renewal process. Then, we detail the considered production, mainte-
nance, and quality control policies. Finally, we develop the mathemat-
ical model of the problem and give the formulation of the total incurred 
cost per unit of time. The implemented approach for the present work is 
as follows: i) we develop each policy and present its parameters. ii) We 
validate that our process is a “renewal process” and, thus, the cost 
function is a “renewal-reward process”. iii) This leads to the expression 
of the objective function as the average cost over a cycle divided by the 
average length of a time cycle. iv) We compute the optimal strategy. v) 
We develop a simulation model to validate analytical results generated 
by the proposed mathematical model. 

4.1. The renewal-reward process 

The state of the machine goes, episodically, from UP to DOWN and 
from DOWN to UP. Fig. 2 shows the machine cycle; it has three parts: i) 
UP of length tf or M; ii) DOWN of length tr or tm; iii) the waiting time (Off 
period) if the buffer is not empty. Consequently, the system has three 
phases:  

- Phase 1: Inventory building phase: the machine is producing at the
maximum rate.

- Phase 2: Production at demand phase, once the buffer is full (s = Z),
the production rate is slowed-down to maintain the buffer level Z.

- Phase 3: Reparation phase: after a failure or a specific age (produc-
tion of M items), we repair the machine, either correctively or pre-
ventively, respectively.

Fig. 3 presents the buffer state for different scenarios. In this figure,
we have the evolution of buffer size for three major scenarios: i) scenario 
1: the failure occurs during phase 1, the safety stock building phase. The 
age of the machine at failure Af is belowAZ. ii) Scenario 2: the failure 
occurs in phase 2. The age of the machine at failure Af is aboveAZ and 
belowM. iii) Scenario 3: the failure did not happen because the machine 
reaches the preventive maintenance due age, M. Each scenario can end 
with two possible situations depending on the maintenance action 
duration: 1) At the end of the maintenance the buffer is empty, the 
machine restarts immediately, we have lost sales, and the buffer level is 
set to zero; 2) At the end of the maintenance, the buffer level is positive, 
then we wait until the buffer is empty before restarting the machine and 
we do not have any lost sales. We opt for emptying the buffer before the 
machine starts again. Indeed, since the machine is as good as new, there 
is no need to build a safety stock immediately. 

The buffer state has the same cycles as the machine in Fig. 2. It is 
characterized by the buffer level s(t) ∈] − ∞,  Z]. From Figs. 2 and 3, we 
could notice that the buffer size, at the beginning and the end of each 
cycle is equal to zero, and the state of the machine is renewed at the 
beginning of each cycle. From these observations, and due to the inde-
pendence between cycles, we could assure that the process is a renewal 
process. 

Therefore, all KPIs (key performance indicators) will be computed 
over each Cyclei, like:  

- Ii total inventory during Cyclei,
- Li lost sales during Cyclei,
- Costi total cost during Cyclei,
- NbPMi number of preventive maintenances during Cyclei,
- NbCMi number of corrective maintenances during Cyclei,
- NbInspi number of inspections done during Cyclei,
- NbReji number of rejected parts during Cyclei,

DOI : 10.1016/j.ijpe.2021.108140 5



- TBSoldi number of defects sent to customer during Cyclei,
- AOQi average outgoing quality at the end of Cyclei,
- InsIi average inventory in the inspection shop during Cyclei,
- Availi average system availability in Cyclei,

All these stochastic variables are “rewards” and their cumulative,
over a horizont, are “renewal-reward process”. 

Consequently, to compute the average value of any KPI per unit of 
time over an infinite horizon, we apply “the elementary renewal theo-
rem for renewal reward processes” (Christer, 1978), which means: 

lim
t→∞

KPI(t)
t

=
E[KPIi]

E[Ti]
(1) 

In the following subsection, we will detail the production, the 
maintenance, and the quality control policies and then we propose the 
integrated analytical model. 

4.2. Production policy 

The production rate u(a) of the manufacturing system at age a, is one 
of the main control parameters affecting the optimal control policy. It 
goes from 0 to Umax; Where Umax is the maximum production rate. The 
proposed production control policy is based on hedging point policy 
(HPP) (Akella and Kumar, 1986). According to the HPP policy and due 
to the operation dependent failure mode, the production rate u(a) is 
adjusted depending on the number of produced items a, the demand rate 
d, the proportion of defects p, the inspected fraction f , and the threshold 
inventory level Z as explained below. 

The proposed production control policy is defined by equation (2). 
According to this policy: i) The production rate, u(a), is set to its 
maximum value, Umax, when the buffer level is below the threshold level 
Z; ii) When the buffer is full,s(a) = Z, the production rate is set such that 
the buffer level holds its maximum value Z. We know that the out-rate of 

the buffer is d – the demand rate – and the in-rate is u(a)(1 − f(a)p(a)),
only the non-inspected parts and the good part from those inspected 
could arrive to buffer. In other words, the bad parts detected by in-
spection never reach the servicing buffer since they are rejected. Then to 
maintain the buffer level Z, the production rate should be adjusted to 
u(a) = d/(1 − f(a)p(a)); iii) finally, when the buffer is above Z or when 
the machine is down, the production rate is zero. 

u(a)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Umax if s < Z & machine UP
d

1 − f (a)p(a)
if s = Z & machine UP

0 if s > Z Or machine DOWN

(2) 

Under this production control policy, the system has three phases, as 
shown in Fig. 3: i) The safety stock building phase: the machine produces 
at a constant rate of Umax. The age of the system (AZ) at the end of this 
phase, if no failure occurs, is a crucial element. It is characterized by 
equation (3). ii) The production at demand phase: The system rate is 
adjusted according to the policy defined by equation (2) to maintain the 
buffer at its maximum level Z. The age of the system at the end of this 
phase, if no failure occurs, is the maintenance threshold M. This second 
phase may not exist if the failure occurs during phase 1. iii) The last 
phase is the reparation phase during which the system may fail or rea-
ches the threshold age M and requires to be maintained. The production 
rate during this phase is null and the buffer level is decreasing according 
to the demand rate, d. 
⎛

⎝
∫AZ

0

(1 − p(a)f (a))da

⎞

⎠ −
AZ

Umax
d =Q(AZ) −

AZ

Umax
d = Z (3) 

Consequently, the production control policy is defined by the system 
state and the safety stock level Z. 

4.3. Maintenance control policy 

The system is subject to random failures, and to dodge these break-
downs, we consider an age-based preventive maintenance policy 
(ABPM). When the system is Up when starting with a new cycle, we reset 
the counter for its age to zero (the system is considered as good as new) 
and if it survives till the threshold age M, then it is stopped to carry out 
preventive action. Otherwise, if a failure occurs before M, corrective 
action is carried out. The maintenance control policy is summarized by 
equation (4). 

PM =

{
No if a < M
Yes if a ≥ M (4) 

The system deterioration is operation-dependent. So, the threshold 
age M of the preventive maintenance policy is expressed in terms of the 

Fig. 2. Machine states & buffer level.  

Fig. 3. Buffer state for different scenarios (the solid circles depict the end of 
the cycles). 
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Consequently, the preventive maintenance policy is defined by the 
maintenance threshold M. 

4.4. Quality control policy 

Most of the time, manufacturing systems deteriorate with usage, the 
number of produced items. Also, the cumulative usage of the machine 
accelerates its degradation and therefore increases the rate of defective 
parts. This degradation phenomenon is common in many industries, 
generally in systems with a large number of components that stochas-
tically deteriorate over time (Kouedeu et al., 2015). As a consequence of 
this dynamic degradation, the quality level is not the same during the 
lifespan of a machine, as shown in Fig. 4. In the early lifetime, when the 
manufacturing machine is new, the defects’ rate is low. While at the 
end-of-life or before a breakdown, the number of defects is high. To 
account for this dynamic context of deterioration, we propose a dynamic 
inspection plan to control the level of quality: An inspection plan that 
adapts to the degradation of the system and therefore to the level of 
quality. Indeed, for better performance, a dynamic policy rather than a 
100% or static inspection policy is more appropriate. The proposed 
dynamic inspection policy adapts the severity of the quality control to 
the system degradation level. 

Fig. 4 epitomizes the real world, when the system is new, the rate of 
defects is small (min level) and the quality degradation slow. After a 
certain age (in Fig. 4 ~ 1 unit of the system age, the age here is not the 
time but the usage of the machine, number of produced items), the 
quality starts to degrade fast. However, when the system is old (~6 units 
of the system age), the rate of defects reaches its peak (peak level) and 
the degradation is slow or null. From these observations, we derived a 
function to model the quality degradation as realistic as possible. 
Equation (5) represents the percentage of defects during the production 
phase. This percentage of defects p(a) depends on the age of the sys-
tem,a. It increases witha, and models the impact of the system age on the 
quality degradation. p0 is the initial quality level when the system is new 
and (p0 +η) represents the peak of defects, which is reached when the 
system is old. The shape of p(a)modeled by this equation is the same as 
the one given in Fig. 4; the quality level degrades slowly and suddenly it 
drops rapidly to reach its climax. λq andγq are used to tune the shape and 
the scale of the derogation model. 

p(a)= p0 + η.
(
1 − exp

(
− λq.aγq

))
(5) 

The model described by equation (5) is general and common in the 
literature ((Bouslah et al., 2016), (Bouslah et al., 2018), (Cheng et al., 
2018), (Cheng and Li, 2020), (Rivera-Gómez et al., 2018), (River-
a-Gómez et al., 2020)). All these authors use the same model for quality 
degradation. They even highlight this “S” shape by plotting it from 
simulation results. They argue also that this formulation is the most 
general, since, it can represent any case. Also, it has the advantage of 
modeling the saturation effect. Indeed, the percent of defects could not 
increase indefinitely, it has a natural limit of 100%. Usefully, one could 

model any situation; in fact, by changing the values of λq andγq, we could 
have a three-stage model – “S” shape, the two-stages model – expo-
nential and polynomial, and the one-stage – linear. Also, one could adapt 
the initial and the peak value of defects (from 0% to 100%) by tuning p0 

and η. Besides, this model and its parameters could be easily fitted from 
historical data (Bouslah et al., 2018). In section 7.3, we experiment with 
different quality degradation shapes and different peak values to show 
that our model could handle any quality degradation case. Besides, one 
should notice that the peak values of the quality have an impact on the 
feasibility of the system (to be able to meet demand and AOQL 
constraint). In a real system, too much defect is not representative and 
could lead to an infeasible system. In the reviewed papers we found that 
the peak level was around 10% ((Bouslah et al., 2016), (Bouslah et al., 
2018), (Cheng et al., 2018), (Cheng and Li, 2020), (Rivera-Gómez et al., 
2018), (Rivera-Gómez et al., 2020)). Also, even if we allow the peak 
level to reach 100%, the maintenance will reset the system to keep it 
under reasonable conditions, in our case, as in Table 7, the maximum 
observed peak level is. pobs

max = 23% 
Based on the quality model in equation (5), we could compute the 

average outgoing quality, AOQ, at any age a of the system. equation (6) 
expresses the AOQ as a function of the age a. At a given age,a, the 
average production fraction sent to customer is (1 − f(a)p(a)), and this 
production includes a percentage p(a)(1 − f(a)) of bad parts. 

AOQ(a)=
∫ a

0 (p(x) − f (x)p(x))dx
∫ a

0 (1 − f (x)p(x))dx
(6) 

As stated in the introduction, one of the objectives of this work is to 
find the optimal inspection policy that adapts to the level of quality. To 
do so, we need to design a sampling plan that adapts to the system’s state 
and, thus, eliminate the defects in an optimal way (neither too much 
inspection nor not enough). The inspected fraction f(.) in this sampling 
plan should be dynamic and adapt to the quality level. To do so, we 
should consider either, scenario (1), which capture the quality degra-
dation characteristics and shape the inspection fraction in concordance 
with these characteristics and the machine age; Or scenario (2), which 
adapts the inspection effort to the quality level itself (i.e., inspected 
fraction as a function of the percentage of defects). The second one could 
have the advantage of tailoring the inspection to direct cause but has the 
drawback that in the real world, one could not have access to real-time 
system inner quality level. This real-time level could never be known 
before the inspection! While the first one estimates the quality level from 
parameters λq andγq and the machine age and it has the advantage of 
being easy to implement as explained in the managerial insights section 
(section 9). In the present study, we use scenario (1) and, in the present 
study. In section 6.2, we will compare the performances of the two 
scenarios. 

Undeniably, too much inspection is costly and less inspection leads to 
a low average outgoing qualityAOQ. Then we should target the right 
effort or frequency of inspection. We propose: i) To penalize the in-
spection effort and the AOQ in the cost function, by including in our 
model the cost of the inspection, the cost incurred if a part is rejected, 
and a high cost for any bad part send to the customer. ii) To limit the 
AOQ by imposing the AOQL threshold. iii) To shape the function rep-
resenting the inspected fraction according to the quality degradation. 
From equation (5), we build equation (7) by keeping the same shape of 
the quality degradation, allowing the inspection fraction to vary from 
0 and go to 100%, and changing the scale factor from (λq) to (Is.λq), 
where Is defines the inspection severity factor. If Is = 0, there is no in-
spection, but if Is = ∞, all produced items are inspected (100% in-
spection). Fig. 5 plots the inspected fraction f(a) at age a for different 
values of Is. We plot, also, the quality level to show the relation between 
the quality degradation and the inspected fraction. The effect of the 
inspection severity factor Isis shown in this figure. 

f (a)=
(
1 − exp

(
−
(
Is.λq

)
.aγq

))
(7) Fig. 4. Quality degradation with the system age.  

usage of the system defined by the number of produced items. 
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The expressed inspection fraction f (Eq. (7)) has many advantages: i) 
It allows us to implement our dynamic sampling plan. ii) It makes the 
model easy to optimize, there is only one parameterIs to tune to find the 
right plan. iii) It allows to generalize the proposed model by imple-
menting extreme cases: the no-inspection and the 100% inspection 
cases. 

The AOQL constraint is mandatory because the defective products 
that have not been inspected will be sold to consumers. To define this 
constraint, we compute the long-run average proportion of defective 
products delivered to consumers, called the long-run Average Outgoing 
Quality (AOQ∞), and ensure that the AOQL limit is fully satisfied. 

Consequently, the quality control policy is defined by the inspection 
severity factor Is. 

4.5. The mathematical model 

Based on the previous sub-sections, we develop now the mathe-
matical model, starting with the cycle length, then the KPIs, and finally 

expressing the objective function (the total incurred cost) and the 
constraints. 

4.5.1. The cycle length 
In Fig. 6, we have an illustration of the cycle length, buffer profile, 

and lost sales. The cycle starts with a new system and an empty buffer 
and ends when the system is repaired (correctively or preventively) and 
the buffer is empty. In Figure (6-a), the system reparation ends while the 
buffer is not empty (tr ≤

s(Af )

d or tm ≤
s(M)

d ); the cycle will last until the 
buffer level is zero. Then the cycle length is tf or tM plus the time it takes 
to empty the buffer; the buffer level is, all the time, positive, there is no 
shortage and, so, no lost sales. In Figure (6-b), the system reparation 
ends after the buffer is empty (tr ≥

s(Af )

d or tm ≥
s(M)

d ); the production 
system undergoes a shortage state. Then the cycle length is equal to tf or 
tM in addition to the time required to carry out the maintenance action. 
In both cases, the profile of the surplus s+, is the same. 

From these observations, we compute the length of the cycle for a 
given tr (or tm). 

Fig. 5. Effect of the Is, on the inspected fraction.  

Fig. 6. Buffer profile and cycle illustration for cases (a) with no lost sales and (b) with lost sales.  
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

case1 : T =

∫M

0

(
tf +

s(a)
d

)
dFf (a) +

(

tM +
s(M)

d

)
(
1 − Ff (M)

)

case2 : T =

∫M

0

(
tf + tr

)
dFf (a) + (tM + tm)

(
1 − Ff (M)

)

(8) 

For case 1, the cycle length is also the total time required to sold or 
consume all produced and inspected items to the customer according to 
the demand rate, d. For case 2, we have to add an extra time 

((tr − s(Af ) /d) or (tm − s(M) /d)) corresponding to the period during 
which the buffer is not fed (the lost sales period). The cycle length is 
then: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

case1:T=
1
d

⎡

⎣
∫M

0

Q(a)dFf (a)+Q(M)
(
1− Ff (M)

)

⎤

⎦

case2:T=

⎡

⎣
∫M

0

(
Q(a)− s(a)

d
+tr

)

dFf (a)+
(

Q(M)− s(M)

d
+tm

)
(
1− Ff (M)

)

⎤

⎦

(9) 

For a specific age a of the system, the probability of occurrence of 

case 1 is Fr

(
s(a)
d

)
, or Fm

(
s(a)
d

)
and for case 2, and any given tr, or tm, the

probability is dFr

(
t
⃒
⃒
⃒t≥s(a)

d

)
, or dFm

(
t
⃒
⃒
⃒t≥s(a)

d

)
. Accordingly, the average

cycle length is given by equation (10). 

T =

∫M

0

⎛

⎝
Q(a) − s(a)

(
1 − Fr

(
s(a)

d

))

d
+MTTR − M1,r

(s(a)
d

)
⎞

⎠ dFf (a)

+

⎛

⎜
⎝

Q(M) − s(M)

(

1 − Fm

(
s(M)

d

))

d
+MTTM − M1,m

(s(a)
d

)

⎞

⎟
⎠
(
1 − Ff (M)

)

(10)  

4.5.2. The total inventory and the lost sales 
From the problem description and the chosen policies, the buffer 

level could be expressed in time as in equation (11). This level, s(t), is a 
piecewise function with three pieces: Piece 1 correspond to the safety 
stock building phase, it is equal to the in-going quantity, Q(a(t)), minus 
the out-going demand. Piece 2 is equal toZ, it corresponds to the pro-
duction at demand phase. Finally, piece 3 represents the phase at which 
the machine is not producing. 

s(t)=

⎧
⎨

⎩

Q(a(t)) − d.t if a(t) ≤ min
(
Af ,AZ

)

Z if AZ ≤ a(t) ≤ min
(
Af ,M

)

Z − d.t if a(t) ≥ max
(
min

(
Af ,M

)
,AZ

) (11) 

With AZ is the solution to equation (3) 
Hence, from Fig. 6, the total inventory during dt for t ∈ [0, tf ] : is 

given by 

dI = s(t).dt. (12) 

and the total inventory, for the part (the triangle) after failure, in 
Fig. 6 for case 1 and case 2, ΔI is given by: 

ΔI =
(
s
(
Af
))2

2d
I{Af <M} +

(s(M))
2

2d
I{Af ≥M} (13)  

where:I{Assert} =

{
1
0

if Assert is true
otherwise 

Finally, the average total inventory is the integral of equation (12) on 
the interval [0, tf ], plus ΔI, in equation (13), for a given tf (i.e., Af ):   

Now let’s compute the lost sales. From Fig. 6, we have lost sales only 
in case 2, and in such case their value, for a given Af , is: (d.tr − s(Af ))

I{Af<M} + (d.tm − s(M))I{Af≥M}. 
Then the average lost sales are: 

L=

∫M

0

(
d
(

MTTR − M1,r

(s(a)
d

))
− s(a)

(
1 − Fr

(s(a)
d

)))
dFf (a)

+

(

d
(

MTTM − M1,m

(
s(M)

d

))

− s(M)

(

1 − Fm

(
s(M)

d

)))
(
1 − Ff (M)

)

(15)  

4.5.3. The other KPIs  

- The number of total parts and good parts produced per cycle: The
average total produced items during a given cycle is given by
equation (16). It is equal to M if there was no failure during the cycle.
The average total good parts are given by equation (17). It is

expressed through the function Qg(a) =
∫a

0
(1 − p(x))dx that computes

the amount of good parts produced at a specific age a. The total 
defectives in equation (18) are obtained by the difference between 
total produced and total good parts. 

TProd =M1,f (M) + M
(
1 − Ff (M)

)
(16)  

TGProd =

∫M

0

Qg(a) ff (a) da + Qg(M)
(
1 − Ff (M)

)
(17)  

TBProd =M1,f (M)+M
(
1 − Ff (M)

)
−

∫M

0

Qg(a) ff (a) da

− Qg(M)
(
1 − Ff (M)

)
(18)    

- The number of total parts and good parts sold per cycle: The average
total products, the number of good parts, and the number of bad
parts sold to customers during a given cycle are given by equations
(19), (19) and (19), respectively.

I =
∫M

0

⎛

⎝

⎡

⎣

⎛

⎝
∫AZ

0

(

Q(x) −
d

Umax
x
)

dx
Umax

⎞

⎠+ Z

⎛

⎝
∫a

AZ

(
(1 − f (x)p(x))

d

)

dx

⎞

⎠+
Z2

2d

⎤

⎦I{a≥Az} +

⎡

⎣

⎛

⎝
∫a

0

(

Q(x) −
d

Umax
x
)

dx
Umax

⎞

⎠+
(s(a))2

2d

⎤

⎦I{a<AZ}

⎞

⎠ dFf (a)

+

⎛

⎝

⎡

⎣

⎛

⎝
∫AZ

0

(

Q(x) −
d

Umax
x
)

dx
Umax

⎞

⎠+ Z

⎛

⎝
∫M

AZ

(
(1 − f (x)p(x))

d

)

dx

⎞

⎠+
Z2

2d

⎤

⎦I{M≥Az} +

⎡

⎣

⎛

⎝
∫M

0

(

Q(x) −
d

Umax
x
)

dx
Umax

⎞

⎠+
(s(M))

2

2d

⎤

⎦I{M<AZ}

⎞

⎠
(
1 − Ff (M)

)
(14)   
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TSold =

∫M

0

Q(a) ff (a) da + Q(M)
(
1 − Ff (M)

)
(19)  

TGSold =

∫M

0

Qg(a) ff (a) da + Qg(M)
(
1 − Ff (M)

)
(20)  

TBSold =

∫M

0

(
Q(a) − Qg(a)

)
ff (a) da +

(
Q(M) − Qg(M)

) (
1 − Ff (M)

)

(21)    

- The average number of preventive and corrective maintenance per
cycle: They are respectively the cumulative distribution function (Eq.
(22)) and survival function (Eq. (23)) of the reliability distribution.

NbPM = 1 − Ff (M) (22)  

NbCM =Ff (M) (23)    

- The average number of inspections done per cycle:

NbInsp=
∫M

0

⎛

⎝
∫a

0

f (x)dx

⎞

⎠ff (a) da +
(
1 − Ff (M)

)
∫M

0

f (x)dx (24)    

- The average number of rejected parts per cycle:

NbRej=M1 f (M) − M
(
Ff (M) − 1

)
−

∫M

0

Q(a) ff (a) da − Q(M)
(
1 − Ff (M)

)

(25)    

- The average inventory per cycle in the inspection shop:

InsI =Tins

⎛

⎝
∫M

0

⎛

⎝
∫a

0

f (x)dx

⎞

⎠ff (a) da+
(
1 − Ff (M)

)
∫M

0

f (x)dx

⎞

⎠ (26)    

- The long-run average outgoing quality:

AOQ∞ =

∫M
0

(
Q(a) − Qg(a)

)
ff (a) da +

(
Q(M) − Qg(M)

) (
1 − Ff (M)

)

∫M
0 Q(a) ff (a) da + Q(M)

(
1 − Ff (M)

)

(27)    

- The steady-state system availability:

Avail=
T −

(
MTTR.Ff (M) − MTTM

(
Ff (M) − 1

))

T
(28)  

4.5.4. The total cost 
Finally, the total cost per unit of time (Eq. (29)) is the sum of holding 

cost, lost sales cost, maintenance costs, inspection cost, rejection cost, 
and the cost of the defective per cycle divided by the cycle length: 

Cost(Z,M, Is)=
Ch.(I + InsI) + Cl.L

T
+

Cpm.NbPM + Ccm.NbCM
T

+
Cinsp.NbInsp + Crej.NbRej + Cdef .TBSold

T
(29)  

4.6. Optimization approach 

The optimal strategy is defined by three decision variables: the buffer 
level Z, the maintenance threshold M, and the inspection severity factor 
Is. To find the optimal strategy, we solve the following optimization 

problem: 

Minimize Cost(Z,M, Is) (30)  

Subject  to : Az ≤M ⇔ Z ≤ Q(M) −
d.M
Umax

(31)  

AOQ∞ ≤ AOQL (32)  

(Z,M, Is) ∈ (R+)
3 (33) 

The objective function Cost(Z,M, Is) (Eq. (30)) is the total incurred 
cost by the studied manufacturing system and detailed in equation (29). 
The first constraint, equation (31), is the link between the maintenance 
threshold and the safety stock level. As we allow the failures to happen 
during the safety stock building phase, the optimal maintenance 
threshold could occur before the buffer is full. In other words, it could be 
optimal to stop the machine for preventive maintenance during the 
safety stock building phase. In such a case the maximum level of the 
safety stock will be the one reached by the maintenance due date. Hence 
the maximum level of the buffer Z is always below the buffer level that 
the machine could reach at the maintenance due date, which is equal to 
Q(M) − d.M

Umax
. We could, also, express such constraint by limiting, Az, the 

age of the machine when the buffer is full (i.e., the buffer level equal Z), 
to M. The second constraint, equation (32), states that the long-run 
average outgoing quality should be less than the limit AOQL to meet 
the customer expectations in terms of quality level. The third constraint, 
equation (33), is the type of the decision variables. 

5. The simulation model and the validation

To validate the proposed analytical model, we compared analytical
results with those generated from the simulation. In this paper, we 
developed a powerful, fast and precise simulation model. Unlike clas-
sical simulation models in manufacturing, which use entity-based 
simulation, we use a new paradigm based on signals. We model the 
system as signals that flow through different blocks, change their states, 
and mimic the changes in the real system. This approach is more suitable 
for a continuous simulation and allows precise results and faster 
execution time, which helps to do more replications (Ait El Cadi et al., 
2016). 

5.1. Simulation model 

In this section, we will present the simulation model for the studied 
system. The routine of building a model under Simulink consists of using 
blocks and connecting them; there are some blocks that one could 
customize with a customized code (program). The Simulink user guide 
explains how to build a model inside Simulink (MathWorks, 2001). 

Fig. 7 illustrates the simulation model. It includes two parts:  

• Part a) represents the up level of the model and has two blocks. The
“Manufacturing system” block representing the model of the studied
system and the KPI block computing the necessary statistics used for
evaluating the system.

• Part b) represents the model beneath the “Manufacturing system” 
block. In this part, the numbered tags refer to the inputs (1 and 2) and
the outputs (1–9) of the block in the upper level. This part summa-
rizes the implemented logic which consists of a series of signals
flowing between blocks and representing the system dynamics.

The first bock “MachState” broadcast three signals. The first one
provides the state of the machine (Up or Down), the second one delivers 
the actual age of the machine, and the third one states if the machine is 
under PM or CM action. This block uses the random signal generators to 
implement the desired distribution for the machine’s lifespan, the PM 
repair duration, and the CM repair duration. The thresholdM, the 
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number of produced items before PM, indicates to machine block when 
the PM is due. The signal rate feeds the machine block, which allows the 
block to compute the age of the machine through usage. The “Buffer” 
block takes two feeds, RateIn and RateOut signals, and uses an “Inte-
grator” to compute its level, its continuous state; and “Relays” that de-
tects the (discrete) states of buffer and broadcasts them to the other 
blocks. The “inspection” block takes the production rate and the age of 
machine signals does the inspection with the right quality level that 
depends on the age and, then broadcast signals about the number of 
good parts and bad parts and some statistics about the inspection. 

5.2. Validation 

We run the simulation model in Fig. 7, with the data presented in 
sub-section 6.1 and with a safety buffer level of Z = 40, a maintenance 
threshold M = 400 and an inspection severity factor Is = 4.8594. 

To validate the simulation model, we plot the main indicators of the 
system, like machine state and buffer level, and check their accuracy to 
prove that the simulation is a mimic replication of the studied system. 

Fig. 8 is an example of plotted graphics that validate the simulation. 
This figure shows the machine state and age, the buffer level, and the 

quality level change during the simulation. For example, point (1) 
highlights the occurrence of a preventive maintenance action: as the 
system age reaches the threshold of 400 items, the machine is stopped 
and its state is 0 (down for PM) and, at the same time, we notice that the 
buffer level decreases, no production, and only demand outflow is going. 
Point (2) shows a case in which the machine is down due to PM action 
and the buffer is empty, therefore there are some lost sales, the lost sales 
is not zero but equal to the demand rate. Point (3) displays a case of a 
failure: The machine is down and its age is less than the maintenance 
threshold and the buffer level is decreasing. Point (4) highlights how the 
quality level changes with the system age. We also notice that the 
inspected fraction is adapted to the quality level; it depends on the 
system age. These signals from Fig. 8, allow analyzing the evolution of 
the system performance indices and assessing the simulation validity. 
The results in this figure were obtained from a numerical instance when 
the control parameters are set to Z = 45, M = 400 and Is = 30. The main 
conclusion from this figure is that simulation reproduces faithfully the 

Fig. 7. The simulation model.  
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behavior of the studied manufacturing system. 

6. Experiments and numerical results

6.1. Experimental data

For the sake of easiness, we will use the mean time between failure as 
a reference to time’s unit and the demand rate for usage’s unit. Then, 
and with no loss of generality, the demand rate is equal to ten items per 
time unit and the mean usage to failure (MUTF) is equal to 1000 items (i. 
e., mean time to failure MTTF is equal to 100 units of time). These 
simplifications will help us to state the relations between corrective 
maintenance duration, preventive maintenance duration, and the time 
to failure from one side, and from another side the relation between the 
maximum capacity of the production system and the market demand. 
The studied case data are listed below:  

• The failure density function is following a Weibull distribution

ff (a)= λf .γf .a(
γf − 1)exp

(
− λf .aγf

)

with : λf =
π
4
.10− 6 and γf = 2.0

The failure rate is increasing with the machine age.  

• The product quality, the proportion of defect, depends on the system
age. It increases with the age following equation (5) with parameters
λq = 2π.10− 6, γq = 2.0,p0 = 0.02,and η = 0.28.

The defect proportion is chosen such that: (1) When the machine is
new, the proportion is 2%; (2) When the machine is somehow aged (a 
usage superior to MUTF) the proportion is around 30%. 

• The preventive maintenance duration has an exponential distribu-
tion with a mean ofMTTM = 2.0.

• The corrective maintenance duration has an exponential distribution
with a mean ofMTTR = 4.0.

• The other parameters are given in Table 2.

The manufacturing machine can produce at a maximum rate Umax =

15 which is 50% above the market demand (d = 10). The mean time to 
maintain (MTTM) and the meantime to repair (MTTR) are, respectively, 
around 2% and 4% of the  MTTF (MUTF = 1000  products⇒MTTF =

100  units  of  time;  MTTM = 2;  MTTR = 4). 

Fig. 8. Simulation Signals: Machine state and age, buffer level, lost sales, quality level and inspected fraction.  

Table 2 
Experimental parameters.  

Umax 15.0  d  10.0  Tins 2.10− 2  AOQL 2.5% 

Ch 1.0  Cl 120.0  Cpm 2000.0  Ccm 4000.0  
Cins 12.5  Crej 12.5  Cdef 100.0     

DOI : 10.1016/j.ijpe.2021.108140 12



6.2. Optimal control policy 

We solved the optimization problem (Eqs. (30)–(33)) with MATLAB 
and we found the optimal cost: 

Cost* = 208.76 

This optimal solution is realized with the optimal control policy 
given by: 

(Z*,M*, Is*)= ( 35.00 310.88 4.36 )

In Fig. 9, we have the cost surface at the neighborhood of the optimal 
point solution(Z*,M*, Is*). The shape of the surface is convex and shows 
that we have an optimum point. 

Table 3, presents the KPIs of the studied system at the optimal policy 
obtained by solving the optimization problem (Eqs. (30)–(33)). It shows 
the optimal buffer level (Z*), the optimal preventive maintenance 
threshold (M*), the optimal inspection severity factor (Is*), the average 
cycle length, the average storage (WIP), the lost sales, the number of 
preventive and corrective maintenance actions, the number of inspec-
ted, rejected, and defect items per time unit, and the long-run averages 
of outgoing quality, percentage of defects and inspected fraction. At the 
end of this table, we have the optimal total cost and its confidence in-
terval at a 95% level. 

The analytical results presented in Table 3 are validated through 
simulation. We simulated the system at the optimal point for 100 000 
units of time (~25 000 cycles and 1 000 000 produced items) with ten 
replications, and then we computed the confidence interval at a 95% 

level. The last line of Table 3 indicates the confidence interval con-
cerning the total incurred cost and shows that the analytical value of the 
optimal cost is within the confidence interval. 

To check that our model based on dynamic inspection fraction (Eq. 
(7)) reflects well the dependency with the quality degradation, we 
compare the results of the two scenarios discussed in section 4.4: sce-
nario (1), our approach that captures the quality degradation charac-
teristics and shapes the inspection fraction in concordance with these 
characteristics and the machine age; And scenario (2), which adapt the 
inspection effort directly to the quality level. As the real inner quality 
could not be known in advance, we use a simulation model for scenario 
(2), and capture in real-time the quality level, p, and use it to compute 
the fraction to inspect as f = Is × p. Scenario (1) is our base case shown 
in Table 3. The data used to compare the two scenarios are the same as 
those in section 6.1. 

From Table 4, we notice: we were able in the two scenarios to find 
the optimal solution and the corresponding cost. We find that the two 
solutions are different: More safety stock, More maintenance, and less 
inspection in scenario (1) than (2). But, scenario (1) leads to a less 
expensive solution than scenario (2) (208.8 vs. 210). The difference in 
the cost is very low (0.63%) and it could be explained by the fact that in 
scenario (1) the joint design of the three policies works better because it 
is based on the main factor that explains the degradations, the machine 
age; thus, the system could use adequately the maintenance and the 
safety level to cope with the quality degradation. In conclusion, both 
scenarios are valid and lead to almost the same total cost. Thus, we will 
continue with scenario (1) in the rest of the study because it does not 
require knowing the inner quality in real-time but only the parameters 
that summarize the quality level, parameters that could be fitted from 
historical data. 

7. Sensitivity analysis

To understand how the input data affect the optimal solution and to
get additional insights on the results, a set of experiments is derived from 
the basic case by changing the costs’ inputs and the system parameters 
(quality and reliability). The objective behind the sensitivity analysis, 
besides demonstrating the quality of the proposed mathematical model 
and proving its effectiveness, is to investigate these effects on the 
optimal control settings and to study important aspects related to the 
interrelations between production, quality, and maintenance control 
settings. Tables 5–7 summarize the results for the changes in costs’ in-
puts, in system reliability parameters, and in quality level, respectively. 
The three tables are organized as follows: The first column “Case” shows 
the case number. Column 2 (Name) and 3 (Variation) give the consid-
ered parameter and the changes in its value compared to the base case. 
Columns 4 to 6 exhibit the optimal values of decision variables (Z*, M*, 
Is*). Column 7 displays the value of the optimal incurred cost. Columns 8 
and 9 show the quality indices which are respectively, the average 
inspected fraction IF, and the average proportion of defects p (the 
average inner quality). For Table 7, columns 10 and 11 give also the 
maximum level of quality deterioration that the system experienced 
(pobs

max), and the maximum allowed quality level (pmax), respectively. The 
last 6 columns draw the effects of the parameters’ changes on the 
optimal control parameters (Z*, M*, Is*), the optimal incurred cost, and 

Fig. 9. Cost (Z, M, Is = 4.36).  

Table 3 
KPI values at the optimal solution.  

Optimal Storage level: Z* 34.9997 
Optimal maintenance Threshold: M* 310.8796 
Optimal inspection severity: Is* 4.3554 
Cycle length 29.4686 
Average WIP 28.3536 
Lost sales per unit of time 0.1525 
Number of PM per unit of time 0.0315 
number of CM per unit of time 0.0025 
Number of Inspected items per unit of time 4.7319 
Number of rejected items per unit of time 0.4411 
Number of defect items per unit of time 0.2462 
AOQ∞ 2.50% 
p  6.68% 

IF  45.99% 

Optimal total cost* per unit of time 208.7638 
Confidence Interval at 95% on the total cost [207.97, 209.18]  

Table 4 
Comparison of inspection models based on the quality degradation.  

SCENARIOS OPTIMAL SOLUTION 

Z* M* Is* Cost*

(1) INSPECTION LEVEL BASED THE 
MACHINE AGE 

35.00 310.88 4.36 208.76 

(2) INSPECTION LEVEL BASED DIRECTLY 
ON THE QUALITY LEVEL 

29.73 367.26 6.34 210.08  
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the quality indices. 

7.1. Influence of cost parameters 

The changes in the cost parameters affect the solution and the sys-
tem’s performance. Here is, below, for each cost parameter the changes 
explained and assessed. We have, in Table 5, 14 cases that go by a 
couple: the case with an odd (even) number corresponds to a decrease 
(increase) in the parameter.  

• Variation of the inventory and lost-sales costs (cases 1 to 4): These
two costs have opposites effects on the system. The effect on 
increasing the inventory cost Chleads to the same effect of decreasing 
the lost-sales cost Cl and vice versa. We will present hereafter only 
the variation of Ch. When the inventory cost Chdecreases (case 1), 
the model reacts by increasing the safety stock level Z* because in-
ventory holding is less costly. As a consequence, the system produces 
at a higher rate implying more quality and reliability degradation. 
Then the system needs to conduct more maintenance actions, by 
decreasing M*, and more inspection, by increasing its severity I*

s . For 
case 2, where Chincreases, we note the opposite effects. Cases 3 and 4 
produce, respectively, the opposite effects of cases 1 and 2.  

• Variation of the maintenance cost cases (5 to 8): When the preventive
maintenance cost Cpm decreases (case 5), it is normal to observe that
M* decreases, the system will do more preventive maintenance as it
costs less. On the opposite, the safety stock level Z* increases, this is,
because doing more stops for the preventive maintenance leads to
less availability and a high risk of shortage. Then to fulfill the de-
mand as much as possible we should increase the stock. As a result,
the production rate is higher and the quality degrades faster which

CASE COST’S ELEMENT DECISION VARIABLES  QUALITY INDICES CHANGES 

Name Variation Z* M* Is* Cost* IF  p  Z* M* Is* Cost* IF  p  

Base – – 35.00 310.88 4.36 208.764 45.99% 6.68%       
1 Ch − 10% 75.50 226.49 5.05 206.305 35.17% 4.71% ↑ ↓ ↑ ↓ ↓ ↓ 
2 Ch +10% 30.86 321.24 4.27 211.467 46.99% 6.94% ↓ ↑ ↓ ↑ ↑ ↑ 
3 Cl − 10% 29.96 321.65 4.27 206.746 47.03% 6.95% ↓ ↑ ↓ ↓ ↑ ↑ 
4 Cl +10% 74.33 222.99 5.07 210.556 34.59% 4.64% ↑ ↓ ↑ ↑ ↓ ↓ 
5 Cpm − 10% 69.89 209.66 5.15 200.809 32.24% 4.36% ↑ ↓ ↑ ↓ ↓ ↓ 
6 Cpm +10% 31.40 344.76 4.08 214.713 49.07% 7.52% ↓ ↑ ↓ ↑ ↑ ↑ 
7 Ccm − 10% 34.34 316.90 4.31 207.762 46.58% 6.83% ↓ ↑ ↓ ↓ ↑ ↑ 
8 Ccm +10% 35.67 305.09 4.40 209.746 45.41% 6.54% ↑ ↓ ↑ ↑ ↓ ↓ 
9 Cins − 10% 32.63 335.21 4.16 202.683 48.26% 7.28% ↓ ↑ ↓ ↓ ↑ ↑ 
10 Cins +10% 71.61 214.83 5.12 214.298 33.18% 4.46% ↑ ↓ ↑ ↑ ↓ ↓ 
11 Crej − 10% 34.32 317.02 4.30 208.202 46.59% 6.83% ↓ ↑ ↓ ↓ ↑ ↑ 
12 Crej +10% 35.69 305.04 4.40 209.305 45.40% 6.54% ↑ ↓ ↑ ↑ ↓ ↓ 
13 Cdef − 10% 35.10 310.65 4.36 206.302 45.97% 6.67% ↑ ↓ ↑ ↓ ↓ ↓ 
14 Cdef +10% 34.90 311.11 4.35 211.226 46.01% 6.69% ↓ ↑ ↓ ↑ ↑ ↑  

Table 6 
Sensitivity analysis, the influence of system’s reliability parameters.  

CASE RELIABILITY PARAMETER DECISION VARIABLES  QUALITY INDICES CHANGES 

Name Variation Z* M* Is* Cost* IF  p  Z* M* Is* Cost* IF  p  

BASE – – 35.00 310.88 4.36 208.76 45.99% 6.68%       
15 λf  − 20% 33.31 321.23 4.27 207.15 47.11% 6.95% ↓ ↑ ↓ ↓ ↑ ↑ 
16 λf  +20% 73.45 220.36 5.09 211.46 34.07% 4.57% ↑ ↓ ↑ ↑ ↓ ↓ 

17 γf − 10% 27.77 363.32 3.93 201.91 51.11% 8.09% ↓ ↑ ↓ ↓ ↑ ↑ 
18 γf +10% 69.96 209.88 5.14 221.20 31.77% 4.32% ↑ ↓ ↑ ↑ ↓ ↓  

Table 7 
Sensitivity analysis, the influence of system’s quality parameters.  

CASE QUALITY PARAMETER DECISION VARIABLES  QUALITY INDICES CHANGES 

Name Variation Z* M* Is* Cost* IF  p  pobs
max pmax Z* M* Is* Cost* IF  p  

BASE – – 35.00 310.88 4.36 208.76 45.99% 6.68% 14,7% 30%       
19 η  − 50% 29.24 367.06 2.22 184.40 37.91% 5.04% 10,0% 16% ↓ ↑ ↓ ↓ ↓ ↓ 
20 η  +50% 72.26 216.79 7.30 224.18 41.62 5.76% 12,7% 44% ↑ ↓ ↑ ↑ ↓ ↓ 
21 η  +100% 70.55 211.64 9.30 234.97 46.12% 6.79% 15,7% 58% ↑ ↓ ↑ ↑ ↑ ↑ 

22 η  +200% 67.00 201.01 13.01 251.86 51.43% 8.54% 20,8% 86% ↑ ↓ ↑ ↑ ↑ ↑ 
23 η  +250% 65.32 195.97 14.79 258.98 53.16% 9.29% 23,0% 100% ↑ ↓ ↑ ↑ ↑ ↑  

Table 8 
The optimal results for different quality degradation shapes.  

CASE QUALITY PARAMETER DECISION VARIABLES  

Name Variant Z* M* Is* Cost*

BASE Quality shape “S” curve 35.00 310.88 4.36 208.76 
24 linear 28.22 393.73 6.35 232.24 
25 Exponential 28.25 388.66 5.10 221.29 
26 polynomial 27.67 394.83 4.47 215.60  

Table 5 
Sensitivity analysis, the influence of cost’s elements.  
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imposes to the system to increase the inspection severity I*
s . For case

6, where Cpm increases, we note the opposite effects. The changes in
the corrective maintenance cost Ccm (cases 7 and 8) lead, respec-
tively to an opposite effect of preventive maintenance cost Cpm
(cases 5 and 6).

• Variation of the inspection, rejection, and defective costs (cases 9 to
14): When the inspection cost Cins decreases (case 9), the inspection
costs less; we afford to do more inspection, IF the average inspected
fraction increases. This does not mean necessary to increase I∗s .
Indeed, by inspecting more we do not need to protect the system
from degradation and we notice an increase of M∗, the preventive
maintenance threshold. Which leads to longer cycles and smaller I∗s 
we achieve more inspections. Further, the safety stock level Z∗is
reduced, because as the quality is good, we need less storage. Here
also, case 10, with an increased inspection cost, has the inverse
effects.

The changes in the rejection cost Crej(case 11, and 12) have the same
effects like the changes in the inspection cost Cins, while the changes in 
the defectives cost Cdef(case 13 and 14) have an opposite effect. Indeed 
both Crej and Cins are part of the inspection cost and when this cost is 
low the system tends to do more inspection. Further, when Cdef de-
creases, bad quality has less effect on the customer so we do not need to 
inspect more. The inspection severity I∗s adapts to the cycle length to 
achieve less inspection. 

7.2. Influence of system reliability parameters 

The changes in the system parameters affect the solution and the 
system performance. We have, in Table 6, four cases that go by a couple: 
the case with an odd (even) number corresponds to a decrease (increase) 
in the parameter. 

The decrease of the scale parameter λf (case 15) means a decrease in 
the failure rate. Then, as the failure rate decreases, the system is more 
reliable and then reacts by increasingM∗, the preventive maintenance 
threshold, to do less maintenance, decreasingZ∗, the safety stock level, 
and decreasing the inspection severity factorI∗s . Indeed, as the system is 
more reliable we need less control. The case 16, where the scale 
parameter increases (the failure rate increase), we have the opposite 
effect. The changes in the shape parameter γf (cases 17 and 18) have, 
respectively, the same effects as the changes in the scale parameter λf . 
However, the impact magnitude of the changes in the shape γf is higher 
than the scale λf : A change of 20% in λf (10% in γf ) leads to an average 
change of 1% in the total cost (5% of total cost); Because the scale λf 

controls the failure rate itself meanwhile the shape γf controls its de-
rivative. 

7.3. Influence of system quality parameters 

In this subsection, we first study the effect of the quality peak level 
(cases 19–23) on the proposed policy, control parameters, and the total 
incurred cost. Then, we discuss and show how our model could handle 
any quality degradation shape. 

a) Variation of the inner quality peak level η: Table 7 summarizes the
effect of the changes in the quality peak level. It shows also the
maximum level of quality degradation that the system could expe-
rience pobs

max as well as the maximum allowed one pmax.

First, we notice that even if we allow the system to go up to 100% 
percent of defects, it never reaches it, it stops at 23% maximum. This is 
due, first, to maintenance actions which will reset the quality and, sec-
ond, it is not beneficial to produce for making scrap only. 

Second, when η decreases (case 19), the system has fewer defects and 

then fewer inspections needed, which explains the decrease in inspec-
tion severity factorI∗s . Also, as a consequence of this high level of quality, 
we do not need more storage and we could permit more degradation of 
the system. Hence, the system opts for less maintenance, by increasing 
the thresholdM∗, and decreases the safety stock levelZ∗. For cases 20 to 
23, where η increases, the system uses the three control parameters to 
cope with quality degradation. It opts for a higher inspection level by 
increasing I∗s , more maintenance by decreasing the threshold M∗, and 
more storage by increasing Z∗. Except for the last case 23, the optimal 
storage level Z∗ is less than the one found for case 22, because inspection 
severity and maintenance were enough to cope with the system quality 
degradation. These observations highlight that the interactions are not 
linear but more complex. 

b) The inner quality shapes: In the baseline model we use an “S” 
shape for the quality degradation with the age, as is the case in the
majority of works in the literature. This could be the case for some
manufacturing systems in which, the first stage means the system is
new and under control, the second stage represents changes in the
system state, which become out of control, and the third stage rep-
resents the degradation in the out-of-control state. However, this
may not apply to other cases such as tools wear. So, to be impartial in
our study and to show that our model could cope with all situation,
we consider, as in Table 8, a linear degradation shape (case 24)
which has one stage, and the cases with two stages, the exponential
shape (case 25) and polynomial shape (case 26).

Fig. 10 summarizes the behavior of all the studied cases. These 
shapes could be fitted from historical records of the quality level. To use 
our approach, one could use the shape that fits at best the quality 
degradation of the manufacturing system under study. The objective of 
the experiments, shown in Table 8, is to show that the proposed inte-
grated model based on dynamic inspection could adapt to any case. 
Indeed, for all the cases (24–26), we were able to find the optimal so-
lution and the associated total incurred cost. As done to determine the 
reliability distribution function, the shape that most describes the sys-
tem quality degradation is generated from quality historical data. 
However, the “S” curve could be used to emulate all these cases by 
tuning its parameters. 

8. Comparative study: proposed policy vs other policies

To show and assess the contribution of the proposed policy, we
compare it with policies considered in the literature and practice 
involving a fixed fraction, full, or no inspection, and with or without 
preventive maintenance interventions. The studied policies in this 
comparative study are: 

Policy-I: The proposed integrated policy considering a dynamic 
inspection. 
Policy-II: The same production and maintenance policies as Policy-I 
with a fixed inspected fraction (f*). 
Policy-III: The same production and maintenance policies as Policy-I 
with a 100% screening strategy for the quality inspection. 
Policy-IV: The same production and maintenance policies as Policy-I 
with no inspection. 
Policy-V to Policy-VIII: are respectively the same as Policies I to IV 
but without preventive maintenance interventions. 

8.1. Comparison with the base case 

Table 9 summarizes the eight policies and their respective optimal 
control parameters. The first column gives the policy name. The three 
following columns describe the specific production, maintenance, and 
quality control policies, respectively. The fifth to eight columns present 
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the optimal strategy parameters: the safety stock level (Z*), the main-
tenance Threshold (M*), the inspection severity (Is*) (for the dynamic 
inspections) and the fixed inspected fraction (f*) (for the static in-
spections). The ninth column shows the average inspected fraction IF. 
The last two columns exhibit, respectively, the total incurred minimal 
cost and the relative cost reduction (%) compared to the proposed policy 
(Policy-I). 

From Table 9, we could notice that the proposed integrated policy 
based on dynamic inspection outperforms all other policies. The results 
show that the dynamic inspection (Policy-I) allows a cost reduction of 
7.21%, 29.87%, and 43.43% compared to static inspection (policy-II), 
100% inspection (Policy-III), and no inspection (Policy-IV), respectively. 
Indeed, Policies II, III, and IV do not adapt the inspection effort to the 
needs. The inspection effort is the same whenever the system is new or 
old, which does not match with the quality degradation that increases 
with the system age. This leads to an excessive inspection in the early 
age of the system and an insufficient inspection effort when the system 
quality is degraded. For the 100% inspection case, we waste effort and 
resources throughout the life of the system. However, for static plans, we 
waste efforts at the beginning, while the quality is good, and we do not 
do enough screening when the quality is bad. Regarding policy-IV that 
does not inspect any produced item, one can notice that the system opts 
for a smaller maintenance threshold. Undeniably, this was the unique 
way to keep the quality level under AOQL. In conclusion, preventive 
maintenance resets the quality degradation. 

For cases without preventive maintenance (policies V to VIII), we 
have the same conclusion; policy-V with dynamic inspection out-
performs the others. The results show that the dynamic inspection 
(Policy-V) allows a cost reduction of 9.49% and 9.59% compared to 

static inspection (policy-VI) and 100% inspection (Policy-VII), respec-
tively. For policy VIII, without maintenance nor inspection, we were not 
able to find any solution that meets the AOQL constraint. For policies V 
to VII, as there is no maintenance, the system decides to keep a small 
level of safety stock compared to policies I to IV. In this way, it reduces 
the production speed and then the quality degradation. 

Compared to policy V, preventive maintenance integrated into the 
proposed policy (Policy I) has contributed to improving the overall 
performance of the manufacturing system by reducing the total incurred 
cost by 25.17%. Indeed, with no maintenance, the manufacturing sys-
tem degradation is higher, and specifically the quality degradation; thus, 
the system produces more defects, requiring more inspections, which 
increase operations’ costs. Effectively, and on average, Policy-V allows 
inspecting almost 27% more items than in Policy-I (IF equals 73% for 
Policy-V versus 46% for Policy-I). The same deduction is found when 
comparing Policy-II to Policy-VI. This shows the importance of main-
tenance to protect the system against reliability and quality degrada-
tions. When there is no maintenance, the system will try to lessen the 
costs by finding the right trade-off between the safety stock level and the 
inspection level and even though the costs are too high. In other words, 
preventive maintenance allows resetting the system age and the quality 
level. 

Also, considering or not preventive maintenance interventions, the 
proposed dynamic inspection gives good results and adapt to different 
situations. In fact, we notice that the gain between static and dynamic 
inspection is higher when there is no maintenance (9.49% without 
maintenance vs. 7.21% with maintenance). In conclusion, we are 
confident that our policy could adapt to any maintenance policy and 
even get the best of it. 

Fig. 10. Different quality degradation shapes.  

Table 9 
Comparative study between different policies.  

POLICIES PRODUCTION 
POLICY 

MAINTENANCE 
POLICY 

QUALITY CONTROL 
POLICY 

Z* M* IS* F* 
(%) 

IF 
(%)  

COST* COST RED. 
(%) 

PROPOSED POLICY 
I 

HPP ABPM Dynamic inspection 35.0 310.9 4.355 – 46 208.76 – 

POLICY II HPP ABPM Static inspection (f*) 64.4 193.2 – 39 39 223.82 7.21 
POLICY III HPP ABPM 100% inspection 96.4 289.3 – 100 100 271.12 29.87 
POLICY IV HPP ABPM No inspection 31.1 93.2 – 0 0 299.43 43.43 
POLICY V HPP No PM Dynamic inspection 6.7 – 1.637 – 73 261.31 25.17 
POLICY VI HPP No PM Static inspection (f*) 5.4 – – 90 90 286.11 37.05 
POLICY VII HPP No PM 100% inspection 6.7 – – 100 100 286.38 37.18 
POLICY VIII HPP No PM No inspection No solution that respects the AOQL constraint  
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Fig. 11. Comparative analysis of the effects of system costs/parameters on the total cost for the studied policies.  
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As stated above, Policy I dominates all the others (Lowest total cost) 
for all scenarios. However, for other policies, the curves intersect in 
some cases. Also, the gap increases when the system degrades (sub- 

figures a and b). Compared to policy II (static inspection), this gap in-
creases also when the costs of PM, storage, and defects increase. We also 
see in this figure that the total cost, and this for all policies and all 
scenarios, increases when the cost parameter considered increases (sub- 
figures c to i) and also when the quality parameter increases (quality 
degrades) (sub-figure a). On the other hand, for the reliability param-
eter, the total cost decreases when the latter increases (because reli-
ability improves) (sub-figure b). However, some curves are horizontal, 
are not affected by certain parameters. This is the case of the policy 
without an inspection, policy-IV, in sub-figures g and h. It is clear that 
the costs of inspection and rejection have no effect on this policy and 
thus, the curves are horizontal. 

Also, for the cases of policies without preventive maintenance, pol-
icies V to VII, we can see that their curves are horizontal in sub-figure f. 
Effectively, the cost of preventive maintenance does not affect the total 
cost for these policies. 

In conclusion, the dynamic inspection, embedded within the right 
production, maintenance, and quality policies, will allow better per-
formance. It reduces the operational costs, permits better use of the 
assets, and results in a good quality of products. Also, our approach – 
combining the joint design of production, maintenance, and quality 

Fig. 12. Implementation flowchart of the proposed integrated policy.  

8.2. Exhaustive comparative study 

The objective of this subsection is to extend the comparison, of the 
control policies across a wide range of system parameters derived from 
the basic case (Table 2). We aim to highlight the evolution of the pro-
posed control policy compared to others and to confirm the results ob-
tained in Table 9. Fig. 11 summarizes the effect of system parameters 
(sub-figures a-b) and production, maintenance, and quality costs (sub- 
figures c-i) on the total cost incurred for each studied control policy. 
Policy-VIII has been discarded because it does not generate a feasible 
solution that respects the AOQL constraint. Indeed, for a real system 
subject to degradations of reliability and quality, it would be difficult - if 
not impossible - to comply with market requirements such, as the limit 
quality level, without any inspection nor maintenance. 

As indicated above, Fig. 11 confirms that the proposed policy (Policy 
I) outperforms other policies. Indeed, our policy is more inclusive and 
allows the system to adjust to the requirements of quality and reliability, 
depending on the state of the latter.
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9. Managerial insight and practical implementation

The proposed integrated production, maintenance, and quality
control policy is based on the dynamic inspection principle. It adapts its 
effort to the system quality degradation. This is done via a simple and 
easy to implement formulation of the dynamic inspection fraction. This 
fraction is computed through the quality factors λq and γq, obtained from 
historical records, and the inspection severity factor Is, optimized with 
our model. We establish a joint control policy that allows the manager to 
synchronize maintenance, production, and quality while minimizing the 
total incurred cost. 

Fig. 12 presents a flowchart that guides the process of decision- 
making for the base case (Table 2). Before the implementation of the 
control strategy, the manager should collect historical data about the 
production quality to fit the model presented in equation (5). This will 
lead to computing the values of λq and γq and then defines the dynamic 
fraction to be inspected through the optimal value of Is (Eq. (7)). Then, 
at the beginning, when the machine is new, the manager should reset the 
counter to set the age of the machine to zero. Then he has to monitor the 
machine state, the machine age (number of produced parts), and the 
inventory level. According to the optimal control parameters (Z*, 
M* Is*), if the machine is “Down”, it should be repaired and the manager 
should reset the age counter. If no failure occurs during the production 
of M* = 311 (the PM threshold), the manufacturing system should be 
stopped and a PM action is carried out. Again, the manager should reset 
the age counter. During the manufacturing process, a fraction f of parts 
is inspected and the defects are rejected. If the inventory level is less than 
Z* = 35 (the safety level), the manufacturing system should operate at 
maximum production rate Umax(=15 items/time unit). However, if the 
safety stock level is reached, the production rate is adjusted to meet the 
demand rate d (=10 items/time unit). 

10. Conclusion

In this paper, we propose a new integrated production, maintenance,
and quality control policy based on the dynamic inspection principle, 
which outperforms classical policies. The dynamic inspection adapts its 
effort to the quality degradation with the age of system. A stochastic 
mathematical model is developed to optimize, jointly, the production 
control, the inventory level, the preventive maintenance threshold, and 
the inspection effort to achieve the lowest operations’ cost. It is a real-
istic model since it relaxes several simplifying assumptions and takes 
into account many features of the real-life: no restriction on random 
distributions, allows failure’s occurrence during the safety stock build-
ing phase, duration and cost of inspection are non-negligible, and both 
reliability and quality are operation-dependent. We also develop a fast 
and precise simulation model that mimics the dynamic and stochastic 
behavior of the manufacturing system; unlike classical simulation ap-
proaches based on discrete event simulation software, we propose a new 
signal-based modeling approach using Simulink software. 

Simulation experiments and detailed sensitivity analysis have been 
carried out, and have confirmed the validity and the robustness of the 
proposed mathematical model. 

The results show also, that there are important interactions between 
production, maintenance, and quality control. Maintenance could 
mitigate the quality degradation and, by so, leading to less inspection 
effort. A good inspection strategy could allow the manager to let the 
system age more before the preventive intervention and without 
reducing the overall performance. 

A comparative study has then been carried out to compare the per-
formance of the proposed integrated policy based on dynamic inspection 

to others based on classical inspection strategies. The results show 
clearly the contribution of preventive maintenance in reducing the total 
incurred cost. Indeed, the proposed policy allows a cost reduction of 
25.17% compared to the same policy without PM. Also, the proposed 
policy allows a cost reduction of 7.21%, 29.87%, and 43.43% compared 
to those based on optimal static inspection, 100% inspection, and no 
inspection quality control strategies, respectively. An extended 
comparative study has confirmed the superiority of the proposed inte-
grated policy based on dynamic inspection against those based on 
classical inspection strategies; this concludes that the sampling plan for 
inspection should not be the same at different stages of the 
manufacturing system life. We also provide a flowchart explaining how 
the manager should proceed to implement the optimal integrated policy 
and to adapt the inspection level according to the system degradation. 
The implementation of our approach could adapt to any manufacturing 
system. We need only, reliability and quality parameters (which could 
be fitted from historical data) to design the right controls with three 
simple main decision variables (Z*, M* Is*). Then, following the steps in 
the flowchart, the manager could operate the system at its optimal level 
by adapting the inspection to the system degradation. 

In this study, we consider the case where the inspection process is 
perfect. Future extensions of this paper can be envisioned to integrate 
the imperfect inspection process. The proposed model considers an Age- 
Based Preventive Maintenance (ABPM). We could investigate more 
flexible strategies with their interaction with the dynamic inspection; for 
example, condition-based maintenance, when the inspection detects a 
certain level of quality, we call a preventive maintenance action. We are 
confident that our model could help in selecting the best maintenance 
policy, for example, a proactive one. Also, further research can be 
conducted to extend this model to larger manufacturing systems with 
multiple products and multiple machines. 
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